Stressed glass technology for actuators and removable barrier applications.

PDF Version Also Available for Download.

Description

There are commercial and military applications in which a material needs to serve as a barrier that must subsequently be removed. In many cases it is desirable that once the barrier has served its function that it then be reduced to small pieces. For example, in pipelines and in downhole drilling applications, valves are needed to function as barriers that can sustain high pressures. Later the valves must be removed and essentially disappear or be rendered to such a small size that they do not interfere with the functioning of other equipment. Military applications include covers on missile silos or ... continued below

Physical Description

18 p.

Creation Information

Schwing, Kamilla, J.; Warren, Mial E.; Glass, Sarah Jill & Tappan, Alexander Smith July 1, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

There are commercial and military applications in which a material needs to serve as a barrier that must subsequently be removed. In many cases it is desirable that once the barrier has served its function that it then be reduced to small pieces. For example, in pipelines and in downhole drilling applications, valves are needed to function as barriers that can sustain high pressures. Later the valves must be removed and essentially disappear or be rendered to such a small size that they do not interfere with the functioning of other equipment. Military applications include covers on missile silos or launch vehicles. Other applications might require that a component be used once as an actuator or for passive energy storage, and then be irreversibly removed, again so as not to interfere with the function or motion of other parts of the device. Brittle materials, especially those that are very strong, or are pre-stressed, are ideal candidates for these applications. Stressed glass can be produced in different sizes and shapes and the level of strength and pre-stress, both of which control the fragmentation, can be manipulated by varying the processing. Stressed glass can be engineered to fracture predictably at a specific stress level. Controlling the central tension allows the fragment size to be specified. The energy that is stored in the residual stress profile that results from ion exchange or thermal tempering processes can be harnessed to drive fragmentation of the component once it has been deliberately fractured. Energy can also be stored in the glass by mechanical loading. Energy from both of these sources can be released either to perform useful work or to initiate another reaction. Once the stressed glass has been used as a barrier or actuator it can never be ''used'' again because it fragments into many small unrecognizable pieces during the actuation. Under some circumstances it will interfere with the motion or functioning of other parts of a device. Our approach was to use stressed glass to develop capabilities for making components that can be used as barriers, as actuating devices that passively store energy, or as a mechanical weaklink that is destroyed by some critical shock or crush load. The objective of this project was to develop one or more prototype devices using stressed glass technology and demonstrate their potential for applications of interest. This work is intended to provide critical information and technologies for Sandia's NP&A and MT&A customers, and is relevant to commercial applications for these same materials. Most of the studies in this project were conducted using the Corning 0317 sodium aluminosilicate glass composition.

Physical Description

18 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2007-4106
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/920791 | External Link
  • Office of Scientific & Technical Information Report Number: 920791
  • Archival Resource Key: ark:/67531/metadc897953

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 9, 2016, 7:16 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Schwing, Kamilla, J.; Warren, Mial E.; Glass, Sarah Jill & Tappan, Alexander Smith. Stressed glass technology for actuators and removable barrier applications., report, July 1, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc897953/: accessed November 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.