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Abstract. The Gardner and van Genuchten models of relative perme-1

ability are widely used in analytical and numerical solutions to flow prob-2

lems. However, the applicability of the Gardner model to real problems is3

usually limited, because empirical relative permeability data to calibrate the4

model are not routinely available. In contrast, van Genuchten parameters can5

be estimated using more routinely available matric potential and saturation6

data. However, the van Genuchten model is not amenable to analytical so-7

lutions. In this paper, we introduce generalized conversion formulae that rec-8

oncile these two models. In general, we find that the Gardner parameter αG9

is related to the van Genuchten parameters αvG and n by αG/αvG ≈ 1.3 n.10

This conversion rule will allow direct recasting of Gardner-based analytical11

solutions in the van Genuchten parameter space. The validity of the proposed12

formulae was tested by comparing the predicted relative permeability of var-13

ious porous media with measured values.14
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1. Introduction

Unsaturated flow in porous media can mathematically be described by Richards’ equa-15

tion16

1

KS

∂θ

∂t
= ∇ · [kr(ψ)∇ψ] +

∂kr

∂z
(1)17

where KS[L T−1] is saturated hydraulic conductivity, ψ[L] is matric potential, θ [L3/L−3]18

is water content and kr is relative permeability. Analytical solutions to Richards’ equation19

(1), when available, provide powerful insights into the primary features of unsaturated flow20

problems. Nevertheless, these solutions often come at the cost of extensive simplification21

of the problem descriptions. Where detailed quantitative analyses are needed, therefore,22

numerical models are the tools of choice.23

One major difference between analytical and numerical approaches is in the descriptions24

of the constitutive relationship between relative permeability (kr) and matric potential25

(ψ). Many analytical solutions depend on a quasilinearization of equation (1) using a sim-26

ple exponential kr–ψ relationship first introduced by Gardner [1958], whereas numerical27

solutions typically utilize more flexible relations such as those of Brooks and Corey [1964]28

and van Genuchten [1980]. Because of these and other differences (e.g., in the definitions29

of initial and boundary conditions), it is usually difficult to achieve a perfect agreement30

between analytical solutions and their numerical simulation counterparts.31

One approach to reconciling analytical and numerical solutions is to seek correspon-32

dence between the parameters of their respective constitutive relations. The objective of33

this paper is to introduce generalized conversion formulae between the parameters of the34
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Gardner and van Genuchten functions, which provide excellent matches in the hydrologi-35

cally significant moisture regime.36

2. Theoretical Considerations

Using the Kirchhoff integral transformation37

φ =
∫ ψ

−∞
krdψ (2)38

the Richards equation (1) can be rewritten as39

1

KS

∂θ

∂t
= ∇2φ + α∗

∂φ

∂z
(3)40

where φ[L] is the Kirchhoff potential and α∗[L
−1] = (1/kr)(dkr/dψ) is the sorptive number.41

Many analytical and semi-analytical solutions are based on the linearization of the right-42

hand side of equation (3) by assuming that α∗ is constant [for detailed reviews, see Pullan,43

1990; Raats , 2001]. This condition is equivalent to requiring44

kr ∝ eα∗ψ (4)45

Gardner [1958] introduced the earliest and most widely used exponential relationship. A46

modified version of the Gardner model—with finite air-entry pressure—is given by [e.g.,47

Gardner and Mayhugh, 1958]48

kr =

{
1 ψ ≥ ψb

exp[αG(ψ − ψb)] ψ < ψb
(5)49

where αG is a constant sorptive number (a measure of the pore-size distribution of the50

medium) and ψb is air-entry pressure (a function of the largest pore size).51

Quasi-linearization of the flow equation (3) has been used to solve numerous multidi-52

mensional steady flows, such as surface and subsurface drip sources, flow to sinks, and flow53

around solid and air-filled obstructions [e.g., Raats , 2001]. However, the application of the54
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quasilinear analyses is often limited to relatively simple geometries and initial/boundary55

conditions.56

Numerical solutions, on the other hand, are not constrained by the need for linearization57

and often utilize more flexible Θ–ψ and kr–ψ functions such as the van Genuchten/Mualem58

model [van Genuchten, 1980; Mualem, 1976]59

Θ = [1 + (|αvG ψ|)n]−m (6)60

61

kr =
√

Θ [1− (1−Θ1/m)m]2 (7)62

where αvG [L−1] is a parameter related to the modal pore size, n is a function of the spread63

of pore-size distribution, and m = 1 − 1/n. The effective saturation (Θ) is defined as a64

function of volumetric water content θ, satiated water content (θs), and residual water65

content (θr) by66

Θ = (θ − θr)/(θs − θr) (8)67

Typically, van Genuchten parameters are obtained by fitting equation (6) to empirical68

Θ–ψ data that are less difficult to measure than kr–ψ data.69

Several methods for translating the van Genuchten parameters to Gardner parameters70

(and vice versa), have been proposed [e.g., Birkholzer et al., 1999; Furman and Warrick ,71

2005; Morel-Seytoux et al., 1996; Rucker et al., 2005]. Brief summaries of these approaches72

are given in the next subsection.73

2.1. Previous Approaches

2.1.1. Least-Squares Optimization74

The most straightforward approach for estimating the Gardner parameters ψb and αG75

using the known van Genuchten kr–ψ function involves minimizing the differences between76
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the Gardner and van Genuchten relative permeability curves [e.g., Birkholzer et al., 1999;77

Furman and Warrick , 2005]. The number and distribution of matching points for least-78

squares fitting can be chosen to provide the best match in the regime of interest. However,79

the method does not lend itself to derivation of a general correspondence between the80

Gardner and van Genuchten parameters.81

2.1.2. Capillary-Drive Approach82

In this approach, the Gardner parameters are estimated by matching the effective cap-83

illary drive of the Gardner function to that of the van Genuchten function. The effective84

capillary drive (Hc) is given by [Morel-Seytoux et al., 1996]85

Hc =
∫ 0

−∞
krdψ (9)86

The Hc of the Gardner and van Genuchten functions are obtained by substituting equa-87

tions (5) and (7) in equation (9), respectively88

Hc(G) = ψb + 1/αG (10)89

90

Hc(vG) =
1

αvG

0.046m + 2.07m2 + 19.5m3

1 + 4.7m + 16m2
(11)91

The latter is a polynomial fit to numerical evaluation of equation (9) with equation (7)92

evaluated over a wide range of m values [Morel-Seytoux et al., 1996]. An approximate93

air-entry pressure (ψb) for van Genuchten function was defined by Rucker et al. [2005] as94

the matric potential that gives some critical relative permeability. For a critical relative95

permeability of 0.9, the best-fit polynomial for the van Genuchten ψb is [Rucker et al.,96

2005]97

ψb =
1

αvG

(−2.0692m3 + 4.4099m2 − 1.5366m + 0.1504)2 (12)98

Manusctipt Submitted to Water Resources Research January 3, 2007



GHEZZEHEI ET AL.: GARDNER AND VAN GENUCHTEN RELATIVE PERMEABILITY FUNCTIONS X - 7

Then, αG can be estimated by requiring that the capillary drive of the Gardner function99

(equation 10) matches the capillary drive of the van Genuchten function (equation 11),100

and using equation (12):101

αG

αvG

=
(0.046m + 2.07m2 + 19.5m3

1 + 4.7M + 16m2
− (−2.0692m3 + 4.4099m2 − 1.5366m + 0.1504)2

)−1

(13)102

Note that the capillary-drive based conversion approach attempts to match the Gard-103

ner and van Genuchten relative permeability functions over the entire range of matric104

potentials, −∞ ≤ ψ ≤ 0. As a result, the agreement between the two functions is poor,105

especially in wet and very dry regimes. Moreover, as will be shown using illustrative106

examples (Section 3), the performance of the capillary-drive-based conversion approach107

deteriorates when the van Genuchten m parameter significantly deviates from a value of108

0.5.109

2.1.3. Capillary-Length Approach110

The capillary-length approach partly alleviates the problems of the capillary-drive ap-111

proach by restricting the range of matric potential over which matching is sought. Capil-112

lary length is defined as [Philip, 1985; Warrick , 1995]113

λ =
1

kwet − kdry

∫ ψwet

ψdry

krdψ (14)114

The capillary-length approach can be conditioned to give an excellent match between the115

two functions by limiting the range of capillary pressure (ψdry ≤ ψ ≤ ψwet) and relative116

permeability (kdry ≤ kr ≤ kwet) to the problem at hand. However, because the capillary117

length for the van Genuchten function has to be evaluated numerically over the problem-118

specific range, its application can be cumbersome. Specifically, the approach is not suitable119
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when exploring the implications of Gardner-function based analytical solutions using the120

equivalent van Genuchten parameters.121

2.2. Proposed Conversion Formulae

The Gardner [1958] relative permeability function can be uniquely defined using two122

(ψ, kr) points. The main task of this paper is to define two characteristic ψ values at123

which the Gardner [1958] and van Genuchten [1980] should be matched, thereby enabling124

derivation of algebraic conversion equations.125

The Gardner and van Genuchten kr–ψ curves are schematically shown in Figure 1a. On126

a semi-log chart, the Gardner model is represented by two straight segments intersecting127

at ψ = ψb (marked as Point (i) in Figure 1a). On the wet side of the intersection, kr = 1;128

whereas on the dry side, kr is on a decreasing straight segment of slope αG. In contrast,129

the van Genuchten model is a smooth and continuous function for all matric potential130

values.131

2.2.1. First matching point132

We set the air-entry matric potential (ψ = ψb in the Gardner function) to be the first133

characteristic matching point. The concept of air-entry pressure stems from the observa-134

tion that, for many porous media, a finite quantity of matric potential ψ < ψb is needed to135

create an unsaturated state with relative permeability less than unity. Although the van136

Genuchten kr–ψ curve does not have such a distinct transition point, careful inspection137

of typical van Genuchten Θ–ψ curves reveals that deviation from Θ = 1 occurs at matric138

potential (ψ) values significantly below zero. In Figure 1b, a typical van Genuchten Θ–ψ139

curve and its curvature (d2Θ/dψ2) are plotted. Negative curvature denotes downward140

concavity. Figure 1b shows that the curvature has two local extreme values. At the point141
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of maximum downward concavity of the Θ–ψ curve (denoted by a circular symbol in Fig-142

ure 1b), the effective saturation Θ begins to rapidly drop below unity. For the purpose143

of matching with the Gardner kr–ψ function, we define this point as the air-entry ma-144

tric potential of the van Genuchten kr–ψ function. Accordingly, the point of maximum145

curvature should satisfy146

d3Θ/dψ3 = 0 and d2Θ/dψ2 < 0 (15)147

After substituting equation (6) in equation (15) and performing elementary algebraic148

manipulations, we arrive at149

ψb =
1

αvG

·
{

5m−m2 +
√

8m + 5m2 − 2m3 + m4

4m2 − 2m

}m−1

(16)150

Note that the denominator of equation (15) has real values only for m > 0.5 (n > 2);151

hence, the air-entry pressure of van Genuchten kr–ψ function exists only within this range.152

The implications of this limit will be further examined at the end of this section.153

2.2.2. Second matching point154

The second point needed to uniquely define the Gardner kr–ψ function can be placed155

anywhere along the sloping segment. In the following, we seek a ψ value in the van156

Genuchten kr–ψ function that represents the most nonlinear regime to be the second157

matching point. Note that the right-hand side of Richards equation (3) becomes nonlinear158

when the sorptive number α∗ varies with ψ (i.e., α∗(ψ) = d ln[K(ψ)]/dψ) and the strongest159

nonlinearity should occur in the regimes that result in the largest |dα∗(ψ)/dψ|. Thus, the160

special value of matric potential ψ = ψ∗ representing the maximum nonlinearity satisfies161

d2α∗(ψ)

dψ2
= 0 (17)162
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For the van Genuchten relative permeability function (6), the values of ψ∗ can be obtained163

by numerically evaluating (17) using equations (7) and (6). The values of ψ∗ · αvG in the164

range 0.5 < m < 1 (plotted in Figure 2) indicate that the neighborhood of ψ = 1/αvG165

represents the highest nonlinearity. Therefore, we set ψ = 1/αvG, marked as point (ii) in166

Figure 1a, as the second characteristic matching point, so that both the van Genuchten167

and Gardner functions comparably describe this highly nonlinear portion of the kr–ψ168

relationship.169

2.2.3. Approximation of sorptive number170

In the preceding subsections, we defined two characteristic matric potential values in the171

van Genuchten relative permeability function (7) that represent the onset of unsaturated172

conditions and the maximum nonlinearity. Using these characteristic points, the slope of173

the Gardner kr–ψ function on a semi-log chart is expressed by174

αG = − ln(1)− ln[kr(1/αvG)]

ψb − 1/αvG

(18)175

Substituting equation (7) in equation (18) and carrying out algebraic manipulation gives176

αG = − ln[(2−5m/4(1− 2m))2]

ψb − 1/αvG

(19)177

where ψb is as given by equation (16). The equivalence of the Gardner and van Genuchten178

parameters is visualized best when plotted in dimensionless form. Notice that the param-179

eters αG, ψb, and αvG have the same unit as the matric potential ψ, whereas n and m180

are dimensionless. In Figure 3, the ratios αG/αvG and ψb/α
−1
vG are plotted against the van181

Genuchten parameter n. From Figure 3, it is evident that αG/αvG can be linearly related182

to n by the following fitting curve (with r2 = 0.99)183

αG

αvG

≈ 1.3 n (20)184
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Equation (20) provides a concise conversion formula that can also be extrapolated to185

n < 2 as shown in Figure 3. Similarly, a concise conversion rule for the air-entry pressure186

is given by the following power-law fit (with r2 = 0.99)187

ψb · αvG ≈ 1− (n/2)−1.163 for n > 2 (21)188

However, equation (21) cannot be extrapolated to n ≤ 2 because it results in unphysical189

positive air-entry pressure. Thus, we restrict the air-entry pressure of the van Genuchten190

function in the n ≤ 2 range to ψb = 0.191

3. Illustrative Examples

In this section, we test the validity of the concise conversion equations (20) and (21).192

Recall that the van Genuchten and Gardner kr–ψ functions (as used in this paper) are193

predictive models. Therefore, the ultimate test of their validity is achieved by comparing194

them with measured kr–ψ values. We selected 12 Θ–ψ and kr–ψ data sets that were used195

by Brooks and Corey [1964], van Genuchten [1980] and Tuller and Or [2001]. These data196

sets cover a broad range of porous media, ranging from loose, fragmented mixture to clay197

soil. The van Genuchten parameters of these media were obtained by fitting equation198

(6) to the measured Θ–ψ data. Corresponding Gardner parameters were calculated using199

three different approaches. The first approach is direct fitting of equation (5) to the kr–ψ200

data sets. Best-fit Gardner parameters were obtained by minimizing the residuals (r)201

between the measured and predicted log-transformed relative permeabilities:202

r = exp
[ 1

N

∑ |log(kP
r )− log(kM

r )|
]

(22)203

where kP
r and kM

r are predicted and measured relative permeabilities, respectively, and N204

is the number of data points. In addition, Gardner parameters were estimated based on the205
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corresponding van Genuchten parameters, using the capillary-drive approach (equations206

12 and 13) and the conversion formulae introduced in this paper (equations 20 and 21).207

The predicted van Genuchten and Gardner kr–ψ curves, along with the measured data, of208

all the example porous media are shown in Figure 4, and a summary of the van Genuchten209

and Gardner parameters is given in Table 1. From Figure 4, it is apparent that the210

predicted Gardner curves based on the formulae introduced in this paper are, in most211

cases, comparable to or better than the van Genuchten curves. In contrast, the Gardner212

curves that are based on the effective-capillary drive approach poorly match the measured213

values, with the exception of Silt Loam GE#3 (m ≈ 0.5).214

For the porous media with n < 2, both the van Genuchten and Gardner models fail to215

capture the pattern of the measured kr–ψ data. The major deviation of the van Genuchten216

prediction from the measured values occurs at a relative permeability of about 10−5, which217

could be attributed to significantly different modes of flow at moderate to high saturations218

versus very low saturations. Tuller and Or [2001] argue that at very low saturations, the219

predominant flow mechanism is not through capillary pools (the underlying assumption220

behind the van Genuchten model) but that of adsorbed films. For this reason, the data221

points that are believed to be inconsistent with the bundle of capillaries concept (open222

circles in Figure 4) were not used in fitting the Gardner equation to the measured data.223

As an objective measure of the goodness of fit, the Gardner parameters calculated using224

the formulae proposed herein and the effective capillary drive approach were compared225

with the fitted parameters. In Figure 5, αG/αvG is plotted against the van Genuchten226

parameter m. The curves in Figure 5 are the results of the predictive models and the227

symbols are the direct fits. It is apparent that the match between the fitted values and the228
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formulae introduced herein is good. Note that the misfit between the predicted and fitted229

parameter results partly from the weakness of the van Genuchten model in predicting the230

measured kr–ψ data. The porous media with the highest deviations between the predicted231

parameters (using the formulae introduced in this paper) and the fitted values are those232

for which the van Genuchten kr–ψ curves did not result in good agreement with the233

measured data. In contrast, the capillary-drive approach matches the fitted parameters234

only in the neighborhood of n = 2 (m = 0.5), such as the Silt Loam GE #3 (see Figure235

4c).236

4. Applications

The most useful application of the Gardner kr–ψ function has been developing analytical237

and semi-analytical solutions to flow and transport problems. In such quasilinear analy-238

ses, the characteristic quantity αG/2 is a useful measure of macroscopic capillary length239

[Pullan, 1990] that enters the dimensionless quantity s (sorptive length), a measure of the240

relative importance of gravity and capillarity in determining flow,241

s =
1

2
αG l (23)242

where l is a problem-specific characteristic physical length. This quantity appears in many243

analytical solutions [e.g., Philip et al., 1989] and semi-analytical solutions. The proposed244

conversion equation (20) allows direct recasting of s in terms of van Genuchten parameters245

s ≈ 1.3

2
n αvG l (24)246

Equation (24) combines the effects of the major hydrologic properties (αvG and n) with247

the physical characteristic length l in a single parameter. In a subsequent communica-248

tion (Ghezzehei et al., Nature of the dry shadow below cavities in unsaturated media,249
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manuscript in preparation) we show that this rather compact representation of multiple250

variables allows generalization of van Genuchten-based numerical solutions in dimension-251

less form. Moreover, equations (20) and (21) can be used to present results of analytical252

and semi-analytical solutions in terms of saturation.253

5. Summary and Conclusions

The exponential relationship between relative permeability and matric potential intro-254

duced by Gardner [1958] is routinely used in derivation of analytical and semi-analytical255

solutions to flow problems in porous media. However, the practical application of these so-256

lutions is limited by the scarcity of empirical relative permeability data needed to calibrate257

the Gardner model. As an alternative, models that predict relative permeability based on258

matric potential versus saturation relations are used—one such widely used model is that259

of van Genuchten [1980]. However, van Genuchten’s model is not suitable for derivation260

of analytical solutions. In this paper, we introduced algebraic formulae for converting261

the van Genuchten parameters to Gardner parameters (or vice versa). In particular, we262

showed that the ratio of the Gardner parameter αG to the van Genuchten parameter αvG263

is related to the van Genuchten parameter n by αG/αvG = 1.3 n. This simple relation264

enables the recasting of analytical solutions derived using the Gardner model in terms265

of the equivalent van Genuchten parameters. Comparingrelative permeabilities predicted266

using the Gardner model with measured values showed that the proposed formulae per-267

form as well as the van Genuchten equation for n parameter values greater than two. For268

small n values, the performance of both the van Genuchten and Gardner models is less269

satisfactory.270
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Figure 1. Schematic diagrams showing (a) Gardner and van Genuchten relative per-

meability curves and (b) a van Genuchten retention curve along with its curvature.
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Figure 3. Correspondence of Gardner and van Genuchten parameters.
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Table 1. Fitted van Genuchten parameters (vG) and Gardner parameters calculated

by direct fitting (GFit), capillary-drive method (GCD), and formulae introduced in this

paper (GNew) for example porous media

vG GFit GCD GNew

Material Name αvG n αG ψb αG ψb αG ψb

Hygiene Sandstonea 0.79 10.40 10.39 1.11 4.36 0.89 10.45 1.09

Touchet Silt Loama 0.50 1.09 3.33 1.30 2.18 1.19 4.48 1.58

Silt Loam GE#3a 0.42 2.06 1.24 0.11 1.17 0.14 1.20 0.21

Volcanic Sandb 4.57 7.44 39.34 0.16 20.51 0.13 42.91 0.17

Glass Beadsb 3.15 20.52 54.86 0.28 24.07 0.26 83.45 0.30

Fine Sand GE#13b 2.09 7.09 27.42 0.40 9.10 0.29 18.71 0.38

Fragmented Mixb 4.56 7.92 35.55 0.16 21.33 0.14 45.69 0.18

Berea Sandstoneb 1.94 9.06 19.44 0.38 9.89 0.34 22.35 0.43

Beit Netofa Clayc 0.15 1.17 0.82 0.00 2.71 0.001 0.22 0.0

Gilat Loamc 2.29 1.67 6.08 0.22 8.08 0.005 4.88 0.0

Sandy Loamc 1.42 1.47 1.02 0.00 6.87 0.001 2.67 0.0

Clay Loamc 0.54 1.24 0.19 0.00 5.94 0.0 0.86 0.0

a van Genuchten [1980]

b Brooks and Corey [1964]

c Tuller and Or [2001]
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Figure 4. Illustrative examples comparing relative permeability functions predicted

using van Genuchten (vG) and Gardner equations with measured data. Notation: vG

= van Genuchten curve, GNew = Gardner curve using conversion formulae introduced in

this paper, and GCD = Gardner curve using capillary drive method.
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Figure 5. Comparison of Gardner parameters predicted using conversion formulae

introduced in this paper (equations 20 and 21) and the capillary-drive approach (equa-

tions 12 and 13) with parameters obtained by direct fitting of the Gardner model (5) to

measured kr–ψ data sets.
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