
Drell-Yan Lepton Pair Azimuthal Asymmetry in Hadronic

Processes

Jian Zhou,1, 2 Feng Yuan,2, 3 and Zuo-Tang Liang1

1School of Physics, Shandong University, Jinan, Shandong 250100, China

2 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

3RIKEN BNL Research Center, Building 510A,

Brookhaven National Laboratory, Upton, NY 11973

Abstract

We study the azimuthal asymmetry (cos 2φ) in the Drell-Yan lepton pair production in hadronic

scattering processes at moderate transverse momentum region, taking into account the contribu-

tions from the twist-three quark-gluon correlations from the unpolarized hadrons. The contribu-

tions are found to dominate the asymmetry, and are not power suppressed by q⊥/Q at small q⊥

where q⊥ and Q are the transverse momentum and invariant mass of the lepton pair. Accordingly,

the Lam-Tung relation will be violated at this momentum region, and its violation depends on the

twist-three functions. However, at large transverse momentum q⊥ ∼ Q, the Lam-Tung relation

still holds because all corrections are power suppressed by Λ2/q2
⊥ ∼ Λ2/Q2 where Λ is the typical

nonperturbative scale.
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1. Introduction. Drell-Yan lepton pair production in hadronic scattering process [1]

has been playing a very important role in studying nucleon structure and QCD dynamics [2],

and is an important complementary to the deep inelastic scattering studies [3]. Moreover,

the later development on the angular distribution of lepton pair has laid ground for parton

model and QCD dynamics studies [4–6]. The lepton pair production in hadronic scattering,

H1 +H2 → γ∗ +X → ℓ+ℓ− +X , (1)

comes from the virtual photon decays. At higher energies, we should also consider the

weak boson (Z0) decay contributions. In this paper, we will limit our discussions only

for the virtual photon decays. An extension to including Z0 boson decay contributions is

straightforward. In the leading order, virtual photon is produced through quark-antiquark

annihilation process, qq̄ → γ∗ in the parton picture [1]. In the rest frame of the lepton

pair, we can define two angles [4]: one is the polar angle θ between one lepton momentum

and the hadron; the azimuthal angle φ is defined as the angle between the hadronic plane

and the lepton plane. Here and in the following discussions, we follow the Collins-Soper

frame [4] to define these angles. Our results can be translated to other frames too. The

general expression for the lepton pair angular distribution can be written as [4],

dN

dΩ
= (1 + cos2 θ) + A0(

1

2
− 3

2
cos2 θ) + A1 sin 2θ cosφ+

A2

2
sin2 θ cos 2φ . (2)

It has been argued [4] that the coefficients A0, A1, and A2 are all power suppressed at

large Q2, where Q is the invariant mass of the lepton pair: A0 ∼ A2 ∼ 〈k2
⊥〉/Q2 and

A1 ∼ 〈k⊥〉/Q where k⊥ is the typical transverse momentum scale in the process [4]. As a

result, the lepton pair angular distribution will be dominated by (1 + cos2 θ) in the small

transverse momentum region. These power counting results were generalized to analyze the

various relations between the above coefficients [5]. One of the interesting observations is

the so-called Lam-Tung relation [5]: 2ν − (1 − λ) = 0, where λ = (2 − 3A0)/(2 + A0) and

ν = 2A2/(2 +A0). According to the above power counting results, this relation is obviously

valid because λ = 1 and ν = 0 at the leading power.

Finite transverse momentum of the lepton pair (q⊥) can be generated from gluon radiation

from the leading partonic process, for example, through the quark-antiquark annihilation

channel qq̄ → γ∗g. Its contribution to the lepton pair angular distribution at finite transverse
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momentum was found [6],

dN

dΩ
=

3

16π

[

Q2 + 3
2
q2
⊥

Q2 + q2
⊥

+
Q2 − 1

2
q2
⊥

Q2 + q2
⊥

cos2 θ +
1
2
q2
⊥

Q2 + q2
⊥

sin2 θ cos 2φ+ . . .

]

, (3)

where the sin 2θ term does not have simple expression and has been omitted in the above

equation. Similar expression can be derived for the qg → γ∗q channel. Certainly, at finite

transverse momentum, the angular coefficients Ai in Eq. (2) are not zero any more. However,

they do obey the power counting rule. For example, the A2 coefficient in Eq. (2) from the

contribution in Eq. (3) is power suppressed by q2
⊥/Q

2 at low transverse momentum. However,

the Lam-Tung relation is still valid for any value of q⊥ from this contribution. This has been

regarded as a simple prediction from QCD [6]. Higher order perturbative corrections to

this relation has been calculated in the literature [7], where it was found that the violation

is numerically very small. These studies have motivated many experimental investigations

of the lepton pair angular distributions in hadronic scattering [8]. In particular, the π

induced fixed target experiment found large cos 2φ azimuthal asymmetry, which is difficult

to understand [8, 9]. The intrinsic transverse momentum effects have been proposed to

explain these effects [10], which however is limited to small transverse momentum whereas

the experimental data are in both small and moderate transverse momentum region.

Meanwhile, at low transverse momentum, there exist large logarithms in terms of

αn
s ln2n(Q2/q2

⊥) from the fixed order perturbative calculations [11–14]. Resummation of

these larger logs has been formulated for the leading contribution from the partonic con-

tribution, especially for the Drell-Yan lepton pair and vector boson production in hadronic

scattering [14]. This corresponds to the leading term in the lepton pair angular distribu-

tion (1 + cos2 θ) in Eq. (2). Because the rest terms (Ai) are power suppressed in the limit

q⊥/Q≪ 1, it has been difficult to follow the Collins-Soper-Sterman resummation method [9].

Recently, there have been much efforts to study the soft gluon resummation for these higher

order terms [15, 16], and hopefully these developments will lead to a final solution to this

issue, especially following the original Collins-Soper-Sterman formalism.

In this paper, we study the lepton pair azimuthal asymmetry, in particular for the A2

coefficient in Eq. (2) from different perspective. We are interested in its behavior at the

moderate transverse momentum region ΛQCD ≪ q⊥ ≪ Q. At this region, there are two

large momentum scales q⊥ and Q. The contribution to A2 from Eq. (3) is power suppressed

by q2
⊥/Q

2 as we mentioned above. However, from the following calculations we find that
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there exit contributions from the twist-three quark-gluon correlation functions from both

incident hadrons, which are not power suppressed by q2
⊥/Q

2, instead by Λ2/q2
⊥ where Λ is

the typical nonperturbative scale. These contribution will dominate A2 coefficient at the

moderate transverse momentum region, depending on the relative strength of q2
⊥/Q

2 and

Λ2/q2
⊥

1. More importantly, because they are not power suppressed by q2
⊥/Q

2, the soft gluon

resummation can be performed following the classical Collins-Soper-Sterman approach, and

the resummation effect will be similar to the leading term of (1 + cos2 θ) (see for example,

the similar study in [17]). We notice that another higher-twist effect from only one side of

the incoming hadrons has also been studied in the literature [18, 19], which are different

from our calculations below.

2. Twist-three times twist-three contributions to the lepton pair azimuthal

asymmetry. From the general analysis of twist-three functions of the unpolarized

hadrons [20, 21], we find the only twist-three function is T
(σ)
F (x, y) which is equivalent to

E(x, y) studied in the literature [21, 22]. It is defined as

T
(σ)
F (x1, x2) =

∫

dy−1 dy
−
2

4π
eiy−

2
(x2−x1)P++iy−

1
x1P+〈P |ψ̄(0−)σ+µgF+

µ(y−2 )ψ(y−1 )|P 〉 , (4)

where µ is a transverse index, the sums over color and spin indices are implicit, |P 〉 denotes

the unpolarized hadron state with momentum P = (P+, 0−, 0⊥) and P± = (P 0 ± P z)/
√

2,

ψ is the quark field, and F+µ the gluon field tensor, and the gauge link has been suppressed.

This correlation is a chiral-odd function, and can generate transverse polarized Hyperon

production in unpolarized hadronic collisions [23]. Because of this chirality property, we

have to introduce two correlation functions from both incoming hadrons.

To calculate its contribution, we follow the procedure outlined in [20, 24], and recent

developments for the similar calculations [25–27]. In the collinear factorization framework,

a general factorization formula for the contributions from the above correlation functions

can be written as,

dσ

d4qdΩ
=

∑

q

∫

dxdx′

x

dzdz′

z
T

(σ)
F,q (x, x′)T

(σ)
F,q̄ (z, z′)H(x, x′; z, z′;Q2, q⊥) , (5)

1 From power counting point of view, at this particular order, the new contribution will dominate in

the region of Λ2 ≪ q2

⊥
≪ ΛQ whereas the contribution from Eq. (3) will dominate in the region of

ΛQ ≪ q2

⊥
≪ Q2.
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where T
(σ)
F,q (x, x′) is the correlation function associated with the quark from hadron H1 and

T
(σ)
F,q̄ (z, z′) for the antiquark from hadron H2, H is the hard part and can be calculated from

perturbative partonic process. This factorization formula follows (as a conjecture) earlier

general arguments for the higher-twist contributions to the hadronic cross sections [18, 20].

It will be very important to have a rigorous proof for this particular contribution as written in

Eq. (5): the higher-twist effects coming from both sides of incoming hadrons, which is beyond

the situations considered in [18]. Because of the higher-twist nature, it is always much more

involved to calculate their contributions than those for the leading-twist contributions like

Eq. (3). However, recent developments [25–27] have laid solid ground and useful technique

to carry out those calculations. In particular, the two variables in T
(σ)
F will be fixed by taking

pole contributions, or equivalently by calculating the imaginary part of the interference of the

scattering amplitudes. For example, in the above equation x′ will be equal to x depending

on a soft or hard pole contribution [25–27]. In this paper, we will follow the procedure

developed in [25–27] to calculate the hard part in Eq. (5).

First, we notice that the hard partonic part is separately gauge invariant summing up all

possible diagrams. Therefore, we can carry out the calculations of these contributions with

either A+ or A⊥ field connecting the hard and soft parts. A particular example has been

given in [26] for similar calculations. In our calculations, we find that it is more convenient

to work the A⊥ part, and construct the field tensor accordingly. However, it has been known

that the individual diagrams associated with the A⊥ field depend on the boundary condition,

although the final results of all diagrams contributions do not [28, 30]. Further calculations

show that the retarded boundary condition A⊥(y− = −∞) = 0 will greatly simplify the

derivations of Eq. (5). In the following, we will choose this boundary condition for the

gauge field A⊥ from both hadrons. Under this boundary condition, on the other hand, we

have to take into account the contributions from the operator with partial derivative on the

quark field
(

ψ̄∂⊥ψ
)

. This is because, this matrix element can be related to the quark-gluon

correlation function defined in Eq. (5),

∫

dy−

4π
eixP+y−〈P |ψ̄(0)σ+µi∂⊥µψα(y−)|P 〉 = T

(σ)
F (x) ≡ T

(σ)
F (x, x) , (6)

with retarded boundary condition for the gauge field [29]. Therefore, for a complete calcu-

lations, we have to calculate the diagrams associated with the operators
(

ψ̄∂⊥ψ
)

, together

with that of
(

ψ̄A⊥ψ
)

[20]. For the A⊥ contribution, we can further deduce its contribution
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zp̄ + p⊥

xp + k⊥xp + k⊥

z1p̄ zp̄

xp + k⊥xp + k⊥

z1p̄ zp̄

xpx1p

zp̄ + p⊥

xpx1p

zp̄ + p⊥ zp̄ + p⊥

(b)

(d)

(a)

(c)

FIG. 1: Generic Feynman diagrams for the twist-three times twist-three contributions to the lepton

pair azimuthal asymmetry in hadronic scattering process: (a) ∂⊥ contribution from both sides of

hadrons: (b-c) ∂⊥ and A⊥ from each side; (d) A⊥ from both sides.

to that of T
(σ)
F (x1.x2). For example, under the same boundary condition for the gauge field

A⊥, we can write

∫

dy−dy−1
4π

P+eix1P+y−

ei(x−x1)P+y−

1 〈PS|ψ̄(0−)σ+µgA⊥µ(y
−
1 )ψ(y−)|PS〉

=
i

x− x1 + iǫ
T

(σ)
F (x, x1) , (7)

where the pole structure in the second line comes from the partial integral and the iǫ

prescription depends on the retarded boundary condition we are using. If we choose different

boundary condition, this prescription shall change accordingly [29]. We have also checked

that the above procedure can reproduce all previous results [25–27].

Following the above arguments, we plot the generic Feynman diagrams contributions in

Fig. 1, where (a) is the contribution from ∂⊥ operators from both sides of hadrons; (b-c)

are those diagrams with ∂⊥ and A⊥ on either side; (d) for A⊥ from both sides. There are

four diagrams for Fig. 1(a), 12 diagrams for Fig. 1(b) and (c) respectively, and 208 diagrams

for Fig. 1(d). As we mentioned above, in this paper we are interested in the cross section

contributions in the moderate transverse momentum region q⊥ ≪ Q. In carrying out these

calculations, we will utilize the power counting method. We will only keep the leading power
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contributions and neglect all higher power corrections in terms of q⊥/Q. The full expressions

of our results will be presented in a separate publication. The advantage to use the retarded

boundary condition is that we find that at the leading power, the contributions from the

diagrams of Fig. 1(d) are either power suppressed or canceled out between soft and hard

poles [29]. We are left with the contributions from Fig. 1(a-c) only, which are relatively

easier to work out. In the limit of q⊥ ≪ Q, the final result is

dσ

d4qdΩ
= σ0 sin2 θ cos(2φ)

2

q4
⊥

αs

2π2

∑

q

e2q

∫

dx

x

dz

z

{

AT
(σ)
F,q̄ (z, z)δ(ξ̂ − 1) + ĀT

(σ)
F,q (x, x)δ(ξ − 1)

+2CF δ(ξ − 1)δ(ξ̂ − 1)T
(σ)
F,q (x, x)T

(σ)
F,q̄ (z, z)ln

Q2

q2
⊥

}

, (8)

where σ0 = α2
em/6SQ

2, ξ = x0/x, ξ̂ = z0/z with x0 = Q√
S
ey and z0 = Q√

S
e−y, and y is the

rapidity of the lepton pair in the center of mass frame of incoming two hadrons and S is the

hadronic center of mass energy square. The coefficient A is defined as

A =
1

2Nc

{[

x
∂

∂x
T

(σ)
F,q (x, x)

]

2ξ + T
(σ)
F,q (x, x)

2ξ(ξ − 2)

(1 − ξ)+

}

+
CA

2
T

(σ)
F,q (x, x0)

2

(1 − ξ)+

, (9)

and similar expression holds for Ā in the above equation. These diagrams (Fig. 1) also

contribute to other terms including A0 and A1 in Eq. (2), but they are all power suppressed

by q2
⊥/Q

2. From the above equations, we can see that this contribution to A2 coefficient is

not power suppressed by q2
⊥/Q

2 at moderate transverse momentum region. It is the same

order as the (1 + cos2 θ) term in this power counting. Of course, it is suppressed by Λ2/q2
⊥

because of the higher-twist nature. This can also be seen from the above expression.

More importantly, the above result can also be reproduced by a transverse momentum

dependent (TMD) factorization formalism [28, 30–35] with the so-called Boer-Mulders func-

tion from both hadrons [36, 37] at large transverse momentum which has been calculated

in [23]. This demonstrates that in the intermediate transverse momentum region, for this

part contribution, the twist-three times twist-three collinear factorization approach and the

TMD factorization approach are consistent for the cos(2φ) azimuthal asymmetry in the

unpolarized Drell-Yan processes. This is a nontrivial demonstration, because it goes be-

yond previous examples studied in the literature [27] where the twist-three effect from only

one side of the incoming hadrons was considered. Because of this consistency, the energy
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evolution equation [13] (the Collins-Soper evolution equation) can be derived for this contri-

bution, and the soft gluon resummation can be accordingly performed. This will significantly

change the relative sizes of this contribution and the contribution from Eq. (3) to the cos 2φ

asymmetry. We will leave a detailed study in a separate publication [29].

3. Conclusion. We have the following results for the angular distribution of the Drell-

Yan lepton pair production in hadronic reactions,

• At moderate transverse momentum, A2 is in order of 1, A0 is power suppressed by

q2
⊥/Q

2. As a result, the Lam-Tung relation will be violated because λ is 1 whereas ν is

order of 1. Of course this violation will depend on the sizes of the twist-three correlation

function T
(σ)
F from both incoming hadrons. Furthermore, soft gluon resummation

will not change the power counting result for A2, because the leading order TMD

factorization leads to the same resummation pattern similar to that discussed in [14],

which is important to understand the angular distributions of the lepton pair at this

momentum region [9].

• At large transverse momentum q⊥ ∼ Q, however, both A0 and A2 are in order of 1,

and they are dominated by the contribution from the unpolarized quark and antiquark

annihilation contribution Eq. (3). The contributions we calculated this paper are

suppressed by Λ2/q2
⊥ ∼ Λ2/Q2. Because of this, the Lam-Tung relation will be valid

again.

In summary, we have investigated the higher-twist effects to the Drell-Yan lepton pair

angular distributions in hadron-hadron scattering processes. We found that the twist-three

times twist-three contributions to the cos 2φ azimuthal asymmetry contribution are not

power suppressed by q2
⊥/Q

2, rather by Λ2/q2
⊥ at the moderate transverse momentum. We

further argue that this part of contribution will not be affected by the soft gluon resumma-

tion effects, and the Lam-Tung relation will be modified at small and moderate transverse

momentum. It will be interested to compare our predictions with the experimental data [8]

and check the phenomenological importance of our results. It will also be interested to

extend to other processes like the cos 2φ asymmetry in semi-inclusive hadron production

in deep inelastic scattering and back-to-back two hadron production in e+e− annihilation

processes where the similar effects shall play very important roles.
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