CARBON-13 NMR OR SOLID STATE HYDROCARBONS AND RELATED SUBSTANCES-FINAL REPORT

PDF Version Also Available for Download.

Description

CARBON-13 NMR OR SOLID STATE HYDROCARBONS AND RELATED SUBSTANCES-FINAL REPORT Abstract: During recent years we have been engaged in SSNMR (Solid State NMR) structural studies of unusual tetracyanoethylene compounds with unusually long bonds between four carbons centered on two electrons. The chemical shift tensors reflect these unusual atomic arrangements. Quantum chemistry predicts the strange tensor shifts. The three dimensional molecular structure may be determined in this manner. Despite significant advances in structural determination from powder diffraction data, NMR shift tensors argument the structural accuracy and also suggest initial trial structures. Mixtures of polymorphs are difficult to analyze with diffraction methods ... continued below

Physical Description

3 pages

Creation Information

Grant, David M. August 16, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

CARBON-13 NMR OR SOLID STATE HYDROCARBONS AND RELATED SUBSTANCES-FINAL REPORT Abstract: During recent years we have been engaged in SSNMR (Solid State NMR) structural studies of unusual tetracyanoethylene compounds with unusually long bonds between four carbons centered on two electrons. The chemical shift tensors reflect these unusual atomic arrangements. Quantum chemistry predicts the strange tensor shifts. The three dimensional molecular structure may be determined in this manner. Despite significant advances in structural determination from powder diffraction data, NMR shift tensors argument the structural accuracy and also suggest initial trial structures. Mixtures of polymorphs are difficult to analyze with diffraction methods whereas the SSNMR methods are able to characterize such mixtures in one another’s presence. Spectroscopic developments in our laboratory include SSNMR INADEQUATE and FIREMAT methods. We have used these methods to study the 13C and 15N NMR explosive CL-20.

Physical Description

3 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/15536-1
  • Grant Number: FG02-04ER15536
  • DOI: 10.2172/946427 | External Link
  • Office of Scientific & Technical Information Report Number: 946427
  • Archival Resource Key: ark:/67531/metadc897748

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 16, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 4, 2016, 3:48 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Grant, David M. CARBON-13 NMR OR SOLID STATE HYDROCARBONS AND RELATED SUBSTANCES-FINAL REPORT, report, August 16, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc897748/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.