Sonar Atlas of Caverns Comprising the U.S. Strategic Petroleum Reserve
Volume 4: West Hackberry Site, Louisiana

Christopher A. Rautman and Anna Snider Lord

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
Approved for public release; distribution is unlimited.
Abstract

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 4 focuses on the West Hackberry SPR site, located in southwestern Louisiana. Volumes 1, 2, and 3, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the Bryan Mound SPR site, Texas. The atlas uses a consistent presentation format throughout.

The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.
Contents

Abstract ... 3
Figures .. 6
Tables .. 36
Introduction ... 37
Methodology ... 38
 Sonar Surveying .. 38
 Three-dimensional Computer Visualization 42
Cavern Attributes ... 43
 Elevation ... 44
 Cavern Radius ... 44
 Centered Radius ... 46
 Minimum Radius, Maximum Radius, and Average Radius 46
 Radius Standard Deviation .. 48
 Out-of-Round Distance and Ratios 48
 Pillar-to-Diameter Ratios and Minimum Inter-cavern Distances 50
Results: The Sonar Atlas ... 54
 Cavern Geometry .. 54
 Velocity of Sound .. 56
The Interactive Sonar Atlas ... 56
The West Hackberry SPR Site ... 57
 Cavern WH-6 ... 57
 Cavern WH-7 ... 83
 Cavern WH-8 ... 109
 Cavern WH-9 ... 135
 Cavern WH-11 ... 161
 Cavern WH-101 ... 187
 Cavern WH-102 ... 213
 Cavern WH-103 ... 239
 Cavern WH-104 ... 265
 Cavern WH-105 ... 291
 Cavern WH-106 ... 317
 Cavern WH-107 .. 343
 Cavern WH-108 .. 369
 Cavern WH-109 .. 395
 Cavern WH-110 ... 421
 Cavern WH-111 ... 447
 Cavern WH-112 ... 473
 Cavern WH-113 ... 499
 Cavern WH-114 ... 525
 Cavern WH-115 ... 551
 Cavern WH-116 ... 577
Cavern WH-117 ... 603
The West Hackberry Cavern Field as a Whole 629
References ... 640
Appendix: Installation and Use of 4DIM Player Software 641
 Introduction .. 643
 Software Installation Instructions 643
 Software Operating Instructions 643

Figures
1. Index map showing the locations of the four active Strategic Petroleum
 Reserve sites along the Gulf Coast of Texas and Louisiana. 37
2. Highly schematic, conceptual representation of the downhole mechanics
 of a sonar survey. .. 39
3. Geometry assumed in reducing the nominal, measured sonar distances to
 cavern geometry (coordinates of the reflecting point). 40
4. Geometry assumed in reducing inclined sonar distances to cavern
 geometry (coordinates of reflecting point). 40
5. Conceptual illustration of possible spurious, calculated reflection positions
 resulting from irregular cavern-wall geometry. 42
6. Calculation of an erroneous apparent reflecting point on the wall of a
 cavern resulting from refraction of the sonar beam at the density interface
 between the oil- and brine-filled portions of the cavern. 43
7. Visualization of a simplified sonar mesh representing the walls of an
 underground storage cavern. ... 44
8. Two arbitrary caverns, located at different vertical positions, showing
 the elevation attribute. ... 45
9. Comparison of the radius (left) and centered radius (right) attributes for
 a cavern for which the access well (x), through which the cavern was
 surveyed, is particularly off center. 47
10. Example of the overall cavern radius attribute. 49
11. Examples of the three out-of-round attributes described in the text. 51
12. Geometrical relationships involved in the standard computation of
 the pillar-to-diameter ratio. ... 52
13. Conceptual illustration of the concepts underlying the definition and
 calculation of the three-dimensional pillar-to-diameter ratio. 53
14. Index map showing positions of the West Hackberry caverns within
 the DOE SPR property boundary 55
15. Map view sonar image of cavern WH-6, showing the basic geometric shape of the cavern.

16. Sonar images of cavern WH-6, showing the basic geometry of the cavern.

17. Sonar images of cavern WH-6, showing the basic geometry of the cavern.

18. Sonar images of cavern WH-6, showing the geometry of the cavern colored by measured radius.

19. Sonar images of cavern WH-6, showing the geometry of the cavern colored by measured radius.

20. Sonar images of cavern WH-6, showing the geometry of the cavern colored by centered radius.

21. Sonar images of cavern WH-6, showing the geometry of the cavern colored by centered radius.

22. Sonar images of cavern WH-6, showing the geometry of the cavern colored by average radius.

23. Sonar images of cavern WH-6, showing the geometry of the cavern colored by average radius.

24. Sonar images of cavern WH-6, showing the geometry of the cavern colored by minimum radius.

25. Sonar images of cavern WH-6, showing the geometry of the cavern colored by minimum radius.

26. Sonar images of cavern WH-6, showing the geometry of the cavern colored by maximum radius.

27. Sonar images of cavern WH-6, showing the geometry of the cavern colored by maximum radius.

28. Sonar images of cavern WH-6, showing the geometry of the cavern colored by radius standard deviation.

29. Sonar images of cavern WH-6, showing the geometry of the cavern colored by radius standard deviation.

30. Sonar images of cavern WH-6, showing the geometry of the cavern colored by out-of-round distance.

31. Sonar images of cavern WH-6, showing the geometry of the cavern colored by out-of-round distance.

32. Sonar images of cavern WH-6, showing the geometry of the cavern colored by out-of-round ratio.

33. Sonar images of cavern WH-6, showing the geometry of the cavern colored by out-of-round ratio.

34. Sonar images of cavern WH-6, showing the geometry of the cavern colored by overall out-of-round ratio.
35. Sonar images of cavern WH-6, showing the geometry of the cavern colored by overall out-of-round ratio. .. 77
36. Sonar images of cavern WH-6, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 78
37. Sonar images of cavern WH-6, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 79
38. Sonar images of cavern WH-6, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 80
39. Sonar images of cavern WH-6, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 81
40. Sonar image of cavern WH-6, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of August 1982. 82
41. Map view sonar image of cavern WH-7, showing the basic geometric shape of the cavern... 83
42. Sonar images of cavern WH-7, showing the basic geometry of the cavern. 84
43. Sonar images of cavern WH-7, showing the basic geometry of the cavern. 85
44. Sonar images of cavern WH-7, showing the geometry of the cavern colored by measured radius. ... 86
45. Sonar images of cavern WH-7, showing the geometry of the cavern colored by measured radius. ... 87
46. Sonar images of cavern WH-7, showing the geometry of the cavern colored by centered radius. ... 88
47. Sonar images of cavern WH-7, showing the geometry of the cavern colored by centered radius. ... 89
48. Sonar images of cavern WH-7, showing the geometry of the cavern colored by average radius. ... 90
49. Sonar images of cavern WH-7, showing the geometry of the cavern colored by average radius. ... 91
50. Sonar images of cavern WH-7, showing the geometry of the cavern colored by minimum radius. ... 92
51. Sonar images of cavern WH-7, showing the geometry of the cavern colored by minimum radius. ... 93
52. Sonar images of cavern WH-7, showing the geometry of the cavern colored by maximum radius. ... 94
53. Sonar images of cavern WH-7, showing the geometry of the cavern colored by maximum radius. ... 95
54. Sonar images of cavern WH-7, showing the geometry of the cavern colored by radius standard deviation. .. 96
55. Sonar images of cavern WH-7, showing the geometry of the cavern colored by radius standard deviation. ... 97
56. Sonar images of cavern WH-7, showing the geometry of the cavern colored by out-of-round distance. ... 98
57. Sonar images of cavern WH-7, showing the geometry of the cavern colored by out-of-round distance. ... 99
58. Sonar images of cavern WH-7, showing the geometry of the cavern colored by out-of-round ratio. .. 100
59. Sonar images of cavern WH-7, showing the geometry of the cavern colored by out-of-round ratio. .. 101
60. Sonar images of cavern WH-7, showing the geometry of the cavern colored by overall out-of-round ratio. ... 102
61. Sonar images of cavern WH-7, showing the geometry of the cavern colored by overall out-of-round ratio. ... 103
62. Sonar images of cavern WH-7, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 104
63. Sonar images of cavern WH-7, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 105
64. Sonar images of cavern WH-7, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 106
65. Sonar images of cavern WH-7, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 107
66. Sonar image of cavern WH-7, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of May 2005. 108
67. Map view sonar image of cavern WH-8, showing the basic geometric shape of the cavern.. 109
68. Sonar images of cavern WH-8, showing the basic geometry of the cavern.. 110
69. Sonar images of cavern WH-8, showing the basic geometry of the cavern .. 111
70. Sonar images of cavern WH-8, showing the geometry of the cavern colored by measured radius. .. 112
71. Sonar images of cavern WH-8, showing the geometry of the cavern colored by measured radius. .. 113
72. Sonar images of cavern WH-8, showing the geometry of the cavern colored by centered radius. .. 114
73. Sonar images of cavern WH-8, showing the geometry of the cavern colored by centered radius. .. 115
74. Sonar images of cavern WH-8, showing the geometry of the cavern colored by average radius. .. 116
75. Sonar images of cavern WH-8, showing the geometry of the cavern colored by average radius. ... 117
76. Sonar images of cavern WH-8, showing the geometry of the cavern colored by minimum radius. ... 118
77. Sonar images of cavern WH-8, showing the geometry of the cavern colored by minimum radius. ... 119
78. Sonar images of cavern WH-8, showing the geometry of the cavern colored by maximum radius. .. 120
79. Sonar images of cavern WH-8, showing the geometry of the cavern colored by maximum radius. .. 121
80. Sonar images of cavern WH-8, showing the geometry of the cavern colored by radius standard deviation. .. 122
81. Sonar images of cavern WH-8, showing the geometry of the cavern colored by radius standard deviation. .. 123
82. Sonar images of cavern WH-8, showing the geometry of the cavern colored by out-of-round distance. .. 124
83. Sonar images of cavern WH-8, showing the geometry of the cavern colored by out-of-round distance. .. 125
84. Sonar images of cavern WH-8, showing the geometry of the cavern colored by out-of-round ratio. .. 126
85. Sonar images of cavern WH-8, showing the geometry of the cavern colored by out-of-round ratio. .. 127
86. Sonar images of cavern WH-8, showing the geometry of the cavern colored by overall out-of-round ratio. 128
87. Sonar images of cavern WH-8, showing the geometry of the cavern colored by overall out-of-round ratio. 129
88. Sonar images of cavern WH-8, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 130
89. Sonar images of cavern WH-8, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 131
90. Sonar images of cavern WH-8, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 132
91. Sonar images of cavern WH-8, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 133
92. Sonar image of cavern WH-8, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of September 2003. 134
93. Map view sonar image of cavern WH-9, showing the basic geometric shape of the cavern. .. 135
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>Sonar images of cavern WH-9, showing the basic geometry of the cavern.</td>
<td>136</td>
</tr>
<tr>
<td>95</td>
<td>Sonar images of cavern WH-9, showing the basic geometry of the cavern.</td>
<td>137</td>
</tr>
<tr>
<td>96</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by measured radius.</td>
<td>138</td>
</tr>
<tr>
<td>97</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by measured radius.</td>
<td>139</td>
</tr>
<tr>
<td>98</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by centered radius.</td>
<td>140</td>
</tr>
<tr>
<td>99</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by centered radius.</td>
<td>141</td>
</tr>
<tr>
<td>100</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by average radius.</td>
<td>142</td>
</tr>
<tr>
<td>101</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by average radius.</td>
<td>143</td>
</tr>
<tr>
<td>102</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by minimum radius.</td>
<td>144</td>
</tr>
<tr>
<td>103</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by minimum radius.</td>
<td>145</td>
</tr>
<tr>
<td>104</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by maximum radius.</td>
<td>146</td>
</tr>
<tr>
<td>105</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by maximum radius.</td>
<td>147</td>
</tr>
<tr>
<td>106</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by radius standard deviation.</td>
<td>148</td>
</tr>
<tr>
<td>107</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by radius standard deviation.</td>
<td>149</td>
</tr>
<tr>
<td>108</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by out-of-round distance.</td>
<td>150</td>
</tr>
<tr>
<td>109</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by out-of-round distance.</td>
<td>151</td>
</tr>
<tr>
<td>110</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by out-of-round ratio.</td>
<td>152</td>
</tr>
<tr>
<td>111</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by out-of-round ratio.</td>
<td>153</td>
</tr>
<tr>
<td>112</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by overall out-of-round ratio.</td>
<td>154</td>
</tr>
<tr>
<td>113</td>
<td>Sonar images of cavern WH-9, showing the geometry of the cavern colored by overall out-of-round ratio.</td>
<td>155</td>
</tr>
</tbody>
</table>
114. Sonar images of cavern WH-9, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 156
115. Sonar images of cavern WH-9, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 157
116. Sonar images of cavern WH-9, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 158
117. Sonar images of cavern WH-9, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 159
118. Sonar image of cavern WH-9, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of May 1977. 160
119. Map view sonar image of cavern WH-11, showing the basic geometric shape of the cavern. .. 161
120. Sonar images of cavern WH-11, showing the basic geometry of the cavern. 162
121. Sonar images of cavern WH-11, showing the basic geometry of the cavern. 163
122. Sonar images of cavern WH-11, showing the geometry of the cavern colored by measured radius. .. 164
123. Sonar images of cavern WH-11, showing the geometry of the cavern colored by measured radius. .. 165
124. Sonar images of cavern WH-11, showing the geometry of the cavern colored by centered radius. .. 166
125. Sonar images of cavern WH-11, showing the geometry of the cavern colored by centered radius. .. 167
126. Sonar images of cavern WH-11, showing the geometry of the cavern colored by average radius. .. 168
127. Sonar images of cavern WH-11, showing the geometry of the cavern colored by average radius. .. 169
128. Sonar images of cavern WH-11, showing the geometry of the cavern colored by minimum radius. .. 170
129. Sonar images of cavern WH-11, showing the geometry of the cavern colored by minimum radius. .. 171
130. Sonar images of cavern WH-11, showing the geometry of the cavern colored by maximum radius. .. 172
131. Sonar images of cavern WH-11, showing the geometry of the cavern colored by maximum radius. .. 173
132. Sonar images of cavern WH-11, showing the geometry of the cavern colored by radius standard deviation. ... 174
133. Sonar images of cavern WH-11, showing the geometry of the cavern colored by radius standard deviation. ... 175
134. Sonar images of cavern WH-11, showing the geometry of the cavern colored by out-of-round distance. ... 176
135. Sonar images of cavern WH-11, showing the geometry of the cavern colored by out-of-round distance. ... 177
136. Sonar images of cavern WH-11, showing the geometry of the cavern colored by out-of-round ratio. ... 178
137. Sonar images of cavern WH-11, showing the geometry of the cavern colored by out-of-round ratio. ... 179
138. Sonar images of cavern WH-11, showing the geometry of the cavern colored by overall out-of-round ratio. ... 180
139. Sonar images of cavern WH-11, showing the geometry of the cavern colored by overall out-of-round ratio. ... 181
140. Sonar images of cavern WH-11, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. ... 182
141. Sonar images of cavern WH-11, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. ... 183
142. Sonar images of cavern WH-11, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 184
143. Sonar images of cavern WH-11, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 185
144. Sonar image of cavern WH-11, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of May 2003. ... 186
145. Map view sonar image of cavern WH-101, showing the basic geometric shape of the cavern. ... 187
146. Sonar images of cavern WH-101, showing the basic geometry of the cavern. ... 188
147. Sonar images of cavern WH-101, showing the basic geometry of the cavern. ... 189
148. Sonar images of cavern WH-101, showing the geometry of the cavern colored by measured radius azimuth. ... 190
149. Sonar images of cavern WH-101, showing the geometry of the cavern colored by measured radius. ... 191
150. Sonar images of cavern WH-101, showing the geometry of the cavern colored by centered radius. ... 192
151. Sonar images of cavern WH-101, showing the geometry of the cavern colored by centered radius. ... 193
152. Sonar images of cavern WH-101, showing the geometry of the cavern colored by average radius. ... 194
153. Sonar images of cavern WH-101, showing the geometry of the cavern colored by average radius. ... 195
154. Sonar images of cavern WH-101, showing the geometry of the cavern colored by minimum radius. ... 196
155. Sonar images of cavern WH-101, showing the geometry of the cavern colored by minimum radius. ... 197
156. Sonar images of cavern WH-101, showing the geometry of the cavern colored by maximum radius. ... 198
157. Sonar images of cavern WH-101, showing the geometry of the cavern colored by maximum radius. ... 199
158. Sonar images of cavern WH-101, showing the geometry of the cavern colored by radius standard deviation. .. 200
159. Sonar images of cavern WH-101, showing the geometry of the cavern colored by radius standard deviation. .. 201
160. Sonar images of cavern WH-101, showing the geometry of the cavern colored by out-of-round distance. .. 202
161. Sonar images of cavern WH-101, showing the geometry of the cavern colored by out-of-round distance. .. 203
162. Sonar images of cavern WH-101, showing the geometry of the cavern colored by out-of-round ratio. ... 204
163. Sonar images of cavern WH-101, showing the geometry of the cavern colored by out-of-round ratio. ... 205
164. Sonar images of cavern WH-101, showing the geometry of the cavern colored by overall out-of-round ratio. .. 206
165. Sonar images of cavern WH-101, showing the geometry of the cavern colored by overall out-of-round ratio. .. 207
166. Sonar images of cavern WH-101, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 208
167. Sonar images of cavern WH-101, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 209
168. Sonar images of cavern WH-101, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 210
169. Sonar images of cavern WH-101, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 211
170. Sonar image of cavern WH-101, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of September 2006. 212
171. Map view sonar image of cavern WH-102, showing the basic geometric shape of the cavern.. 213
172. Sonar images of cavern WH-102, showing the basic geometry of the cavern. 214
173. Sonar images of cavern WH-102, showing the basic geometry of the cavern. 215
174. Sonar images of cavern WH-102, showing the geometry of the cavern colored by measured radius. ... 216
175. Sonar images of cavern WH-102, showing the geometry of the cavern colored by measured radius. ... 217
176. Sonar images of cavern WH-102, showing the geometry of the cavern colored by centered radius. ... 218
177. Sonar images of cavern WH-102, showing the geometry of the cavern colored by centered radius. ... 219
178. Sonar images of cavern WH-102, showing the geometry of the cavern colored by average radius. ... 220
179. Sonar images of cavern WH-102, showing the geometry of the cavern colored by average radius. ... 221
180. Sonar images of cavern WH-102, showing the geometry of the cavern colored by minimum radius. ... 222
181. Sonar images of cavern WH-102, showing the geometry of the cavern colored by minimum radius. ... 223
182. Sonar images of cavern WH-102, showing the geometry of the cavern colored by maximum radius. ... 224
183. Sonar images of cavern WH-102, showing the geometry of the cavern colored by maximum radius. ... 225
184. Sonar images of cavern WH-102, showing the geometry of the cavern colored by radius standard deviation. ... 226
185. Sonar images of cavern WH-102, showing the geometry of the cavern colored by radius standard deviation. ... 227
186. Sonar images of cavern WH-102, showing the geometry of the cavern colored by out-of-round distance. ... 228
187. Sonar images of cavern WH-102, showing the geometry of the cavern colored by out-of-round distance. ... 229
188. Sonar images of cavern WH-102, showing the geometry of the cavern colored by out-of-round ratio. ... 230
189. Sonar images of cavern WH-102, showing the geometry of the cavern colored by out-of-round ratio. ... 231
190. Sonar images of cavern WH-102, showing the geometry of the cavern colored by overall out-of-round ratio. ... 232
191. Sonar images of cavern WH-102, showing the geometry of the cavern colored by overall out-of-round ratio. ... 233
192. Sonar images of cavern WH-102, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. ... 234
193. Sonar images of cavern WH-102, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. .. 235
194. Sonar images of cavern WH-102, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 236
195. Sonar images of cavern WH-102, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 237
196. Sonar image of cavern WH-102, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of September 2006. 238
197. Map view sonar image of cavern WH-103, showing the basic geometric shape of the cavern. ... 239
198. Sonar images of cavern WH-103, showing the basic geometry of the cavern. ... 240
199. Sonar images of cavern WH-103, showing the basic geometry of the cavern. ... 241
200. Sonar images of cavern WH-103, showing the geometry of the cavern colored by measured radius. ... 242
201. Sonar images of cavern WH-103, showing the geometry of the cavern colored by measured radius. ... 243
202. Sonar images of cavern WH-103, showing the geometry of the cavern colored by centered radius. ... 244
203. Sonar images of cavern WH-103, showing the geometry of the cavern colored by centered radius. ... 245
204. Sonar images of cavern WH-103, showing the geometry of the cavern colored by average radius. ... 246
205. Sonar images of cavern WH-103, showing the geometry of the cavern colored by average radius. ... 247
206. Sonar images of cavern WH-103, showing the geometry of the cavern colored by minimum radius. ... 248
207. Sonar images of cavern WH-103, showing the geometry of the cavern colored by minimum radius. ... 249
208. Sonar images of cavern WH-103, showing the geometry of the cavern colored by maximum radius. ... 250
209. Sonar images of cavern WH-103, showing the geometry of the cavern colored by maximum radius. ... 251
210. Sonar images of cavern WH-103, showing the geometry of the cavern colored by radius standard deviation. .. 252
211. Sonar images of cavern WH-103, showing the geometry of the cavern colored by radius standard deviation. .. 253
212. Sonar images of cavern WH-103, showing the geometry of the cavern colored by out-of-round distance. .. 254
213. Sonar images of cavern WH-103, showing the geometry of the cavern colored by out-of-round distance. 255
214. Sonar images of cavern WH-103, showing the geometry of the cavern colored by out-of-round ratio. 256
215. Sonar images of cavern WH-103, showing the geometry of the cavern colored by out-of-round ratio. 257
216. Sonar images of cavern WH-103, showing the geometry of the cavern colored by overall out-of-round ratio. 258
217. Sonar images of cavern WH-103, showing the geometry of the cavern colored by overall out-of-round ratio. 259
218. Sonar images of cavern WH-103, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 260
219. Sonar images of cavern WH-103, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 261
220. Sonar images of cavern WH-103, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 262
221. Sonar images of cavern WH-103, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 263
222. Sonar image of cavern WH-103, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of August 2000. 264
223. Map view sonar image of cavern WH-104, showing the basic geometric shape of the cavern. 265
224. Sonar images of cavern WH-104, showing the basic geometry of the cavern. 266
225. Sonar images of cavern WH-104, showing the basic geometry of the cavern. 267
226. Sonar images of cavern WH-104, showing the geometry of the cavern colored by measured radius. 268
227. Sonar images of cavern WH-104, showing the geometry of the cavern colored by measured radius. 269
228. Sonar images of cavern WH-104, showing the geometry of the cavern colored by centered radius. 270
229. Sonar images of cavern WH-104, showing the geometry of the cavern colored by centered radius. 271
230. Sonar images of cavern WH-104, showing the geometry of the cavern colored by average radius. 272
231. Sonar images of cavern WH-104, showing the geometry of the cavern colored by average radius. 273
232. Sonar images of cavern WH-104, showing the geometry of the cavern colored by minimum radius. 274
233. Sonar images of cavern WH-104, showing the geometry of the cavern colored by minimum radius. .. 275
234. Sonar images of cavern WH-104, showing the geometry of the cavern colored by maximum radius. .. 276
235. Sonar images of cavern WH-104, showing the geometry of the cavern colored by maximum radius. .. 277
236. Sonar images of cavern WH-104, showing the geometry of the cavern colored by radius standard deviation. .. 278
237. Sonar images of cavern WH-104, showing the geometry of the cavern colored by radius standard deviation. .. 279
238. Sonar images of cavern WH-104, showing the geometry of the cavern colored by out-of-round distance. .. 280
239. Sonar images of cavern WH-104, showing the geometry of the cavern colored by out-of-round distance. .. 281
240. Sonar images of cavern WH-104, showing the geometry of the cavern colored by out-of-round ratio. .. 282
241. Sonar images of cavern WH-104, showing the geometry of the cavern colored by out-of-round ratio. .. 283
242. Sonar images of cavern WH-104, showing the geometry of the cavern colored by overall out-of-round ratio. .. 284
243. Sonar images of cavern WH-104, showing the geometry of the cavern colored by overall out-of-round ratio. .. 285
244. Sonar images of cavern WH-104, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. .. 286
245. Sonar images of cavern WH-104, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. .. 287
246. Sonar images of cavern WH-104, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 288
247. Sonar images of cavern WH-104, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 289
248. Sonar image of cavern WH-104, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of July 2000. .. 290
249. Map view sonar image of cavern WH-105, showing the basic geometric shape of the cavern. .. 291
250. Sonar images of cavern WH-105, showing the basic geometry of the cavern. .. 292
251. Sonar images of cavern WH-105, showing the basic geometry of the cavern. .. 293
252. Sonar images of cavern WH-105, showing the geometry of the cavern colored by measured radius. .. 294
253. Sonar images of cavern WH-105, showing the geometry of the cavern colored by measured radius. ... 295
254. Sonar images of cavern WH-105, showing the geometry of the cavern colored by centered radius. .. 296
255. Sonar images of cavern WH-105, showing the geometry of the cavern colored by centered radius. .. 297
256. Sonar images of cavern WH-105, showing the geometry of the cavern colored by average radius. .. 298
257. Sonar images of cavern WH-105, showing the geometry of the cavern colored by average radius. .. 299
258. Sonar images of cavern WH-105, showing the geometry of the cavern colored by minimum radius. .. 300
259. Sonar images of cavern WH-105, showing the geometry of the cavern colored by minimum radius. .. 301
260. Sonar images of cavern WH-105, showing the geometry of the cavern colored by maximum radius. .. 302
261. Sonar images of cavern WH-105, showing the geometry of the cavern colored by maximum radius. .. 303
262. Sonar images of cavern WH-105, showing the geometry of the cavern colored by radius standard deviation. ... 304
263. Sonar images of cavern WH-105, showing the geometry of the cavern colored by radius standard deviation. ... 305
264. Sonar images of cavern WH-105, showing the geometry of the cavern colored by out-of-round distance. .. 306
265. Sonar images of cavern WH-105, showing the geometry of the cavern colored by out-of-round distance. .. 307
266. Sonar images of cavern WH-105, showing the geometry of the cavern colored by out-of-round ratio. ... 308
267. Sonar images of cavern WH-105, showing the geometry of the cavern colored by out-of-round ratio. ... 309
268. Sonar images of cavern WH-105, showing the geometry of the cavern colored by overall out-of-round ratio. .. 310
269. Sonar images of cavern WH-105, showing the geometry of the cavern colored by overall out-of-round ratio. .. 311
270. Sonar images of cavern WH-105, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 312
271. Sonar images of cavern WH-105, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 313
272. Sonar images of cavern WH-105, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 314
273. Sonar images of cavern WH-105, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 315
274. Sonar image of cavern WH-105, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of August 2000. 316
275. Map view sonar image of cavern WH-106, showing the basic geometric shape of the cavern. ... 317
276. Sonar images of cavern WH-106, showing the basic geometry of the cavern. 318
277. Sonar images of cavern WH-106, showing the basic geometry of the cavern. 319
278. Sonar images of cavern WH-106, showing the geometry of the cavern colored by measured radius. 320
279. Sonar images of cavern WH-106, showing the geometry of the cavern colored by measured radius. 321
280. Sonar images of cavern WH-106, showing the geometry of the cavern colored by centered radius. 322
281. Sonar images of cavern WH-106, showing the geometry of the cavern colored by centered radius. 323
282. Sonar images of cavern WH-106, showing the geometry of the cavern colored by average radius. 324
283. Sonar images of cavern WH-106, showing the geometry of the cavern colored by average radius. 325
284. Sonar images of cavern WH-106, showing the geometry of the cavern colored by minimum radius. 326
285. Sonar images of cavern WH-106, showing the geometry of the cavern colored by minimum radius. 327
286. Sonar images of cavern WH-106, showing the geometry of the cavern colored by maximum radius. 328
287. Sonar images of cavern WH-106, showing the geometry of the cavern colored by maximum radius. 329
288. Sonar images of cavern WH-106, showing the geometry of the cavern colored by radius standard deviation. 330
289. Sonar images of cavern WH-106, showing the geometry of the cavern colored by radius standard deviation. 331
290. Sonar images of cavern WH-106, showing the geometry of the cavern colored by out-of-round distance. 332
291. Sonar images of cavern WH-106, showing the geometry of the cavern colored by out-of-round distance. 333
292. Sonar images of cavern WH-106, showing the geometry of the cavern colored by out-of-round ratio. ... 334
293. Sonar images of cavern WH-106, showing the geometry of the cavern colored by out-of-round ratio. ... 335
294. Sonar images of cavern WH-106, showing the geometry of the cavern colored by overall out-of-round ratio. ... 336
295. Sonar images of cavern WH-106, showing the geometry of the cavern colored by overall out-of-round ratio. ... 337
296. Sonar images of cavern WH-106, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. ... 338
297. Sonar images of cavern WH-106, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. ... 339
298. Sonar images of cavern WH-106, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 340
299. Sonar images of cavern WH-106, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 341
300. Sonar image of cavern WH-106, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of June 2000. ... 342
301. Map view sonar image of cavern WH-107, showing the basic geometric shape of the cavern. ... 343
302. Sonar images of cavern WH-107, showing the basic geometry of the cavern. ... 344
303. Sonar images of cavern WH-107, showing the basic geometry of the cavern. ... 345
304. Sonar images of cavern WH-107, showing the geometry of the cavern colored by measured radius. ... 346
305. Sonar images of cavern WH-107, showing the geometry of the cavern colored by measured radius. ... 347
306. Sonar images of cavern WH-107, showing the geometry of the cavern colored by centered radius. ... 348
307. Sonar images of cavern WH-107, showing the geometry of the cavern colored by centered radius. ... 349
308. Sonar images of cavern WH-107, showing the geometry of the cavern colored by average radius. ... 350
309. Sonar images of cavern WH-107, showing the geometry of the cavern colored by average radius. ... 351
310. Sonar images of cavern WH-107, showing the geometry of the cavern colored by minimum radius. ... 352
311. Sonar images of cavern WH-107, showing the geometry of the cavern colored by minimum radius. ... 353
312. Sonar images of cavern WH-107, showing the geometry of the cavern colored by maximum radius. ... 354
313. Sonar images of cavern WH-107, showing the geometry of the cavern colored by maximum radius. ... 355
314. Sonar images of cavern WH-107, showing the geometry of the cavern colored by radius standard deviation. ... 356
315. Sonar images of cavern WH-107, showing the geometry of the cavern colored by radius standard deviation. ... 357
316. Sonar images of cavern WH-107, showing the geometry of the cavern colored by out-of-round distance. ... 358
317. Sonar images of cavern WH-107, showing the geometry of the cavern colored by out-of-round distance. ... 359
318. Sonar images of cavern WH-107, showing the geometry of the cavern colored by out-of-round ratio. ... 360
319. Sonar images of cavern WH-107, showing the geometry of the cavern colored by out-of-round ratio. ... 361
320. Sonar images of cavern WH-107, showing the geometry of the cavern colored by overall out-of-round ratio. ... 362
321. Sonar images of cavern WH-107, showing the geometry of the cavern colored by overall out-of-round ratio. ... 363
322. Sonar images of cavern WH-107, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. ... 364
323. Sonar images of cavern WH-107, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. ... 365
324. Sonar images of cavern WH-107, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 366
325. Sonar images of cavern WH-107, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 367
326. Sonar image of cavern WH-107, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of November 1999. ... 368
327. Map view sonar image of cavern WH-108, showing the basic geometric shape of the cavern. ... 369
328. Sonar images of cavern WH-108, showing the basic geometry of the cavern. ... 370
329. Sonar images of cavern WH-108, showing the basic geometry of the cavern. ... 371
330. Sonar images of cavern WH-108, showing the geometry of the cavern colored by measured radius. ... 372
331. Sonar images of cavern WH-108, showing the geometry of the cavern colored by measured radius. ... 373
332. Sonar images of cavern WH-108, showing the geometry of the cavern colored by centered radius. 374
333. Sonar images of cavern WH-108, showing the geometry of the cavern colored by centered radius. 375
334. Sonar images of cavern WH-108, showing the geometry of the cavern colored by average radius. 376
335. Sonar images of cavern WH-108, showing the geometry of the cavern colored by average radius. 377
336. Sonar images of cavern WH-108, showing the geometry of the cavern colored by minimum radius. 378
337. Sonar images of cavern WH-108, showing the geometry of the cavern colored by minimum radius. 379
338. Sonar images of cavern WH-108, showing the geometry of the cavern colored by maximum radius. 380
339. Sonar images of cavern WH-108, showing the geometry of the cavern colored by maximum radius. 381
340. Sonar images of cavern WH-108, showing the geometry of the cavern colored by radius standard deviation. 382
341. Sonar images of cavern WH-108, showing the geometry of the cavern colored by radius standard deviation. 383
342. Sonar images of cavern WH-108, showing the geometry of the cavern colored by out-of-round distance. 384
343. Sonar images of cavern WH-108, showing the geometry of the cavern colored by out-of-round distance. 385
344. Sonar images of cavern WH-108, showing the geometry of the cavern colored by out-of-round ratio. 386
345. Sonar images of cavern WH-108, showing the geometry of the cavern colored by out-of-round ratio. 387
346. Sonar images of cavern WH-108, showing the geometry of the cavern colored by overall out-of-round ratio. 388
347. Sonar images of cavern WH-108, showing the geometry of the cavern colored by overall out-of-round ratio. 389
348. Sonar images of cavern WH-108, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 390
349. Sonar images of cavern WH-108, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 391
350. Sonar images of cavern WH-108, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 392
351. Sonar images of cavern WH-108, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 393
352. Sonar image of cavern WH-108, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of April 2003. 394
353. Map view sonar image of cavern WH-109, showing the basic geometric shape of the cavern. .. 395
354. Sonar images of cavern WH-109, showing the basic geometry of the cavern. . . 396
355. Sonar images of cavern WH-109, showing the basic geometry of the cavern. . . 397
356. Sonar images of cavern WH-109, showing the geometry of the cavern colored by measured radius. ... 398
357. Sonar images of cavern WH-109, showing the geometry of the cavern colored by measured radius. ... 399
358. Sonar images of cavern WH-109, showing the geometry of the cavern colored by centered radius. .. 400
359. Sonar images of cavern WH-109, showing the geometry of the cavern colored by centered radius. .. 401
360. Sonar images of cavern WH-109, showing the geometry of the cavern colored by average radius. .. 402
361. Sonar images of cavern WH-109, showing the geometry of the cavern colored by average radius. .. 403
362. Sonar images of cavern WH-109, showing the geometry of the cavern colored by minimum radius. .. 404
363. Sonar images of cavern WH-109, showing the geometry of the cavern colored by minimum radius. .. 405
364. Sonar images of cavern WH-109, showing the geometry of the cavern colored by maximum radius. .. 406
365. Sonar images of cavern WH-109, showing the geometry of the cavern colored by maximum radius. .. 407
366. Sonar images of cavern WH-109, showing the geometry of the cavern colored by radius standard deviation. 408
367. Sonar images of cavern WH-109, showing the geometry of the cavern colored by radius standard deviation. 409
368. Sonar images of cavern WH-109, showing the geometry of the cavern colored by out-of-round distance. .. 410
369. Sonar images of cavern WH-109, showing the geometry of the cavern colored by out-of-round distance. .. 411
370. Sonar images of cavern WH-109, showing the geometry of the cavern colored by out-of-round ratio. ... 412
371. Sonar images of cavern WH-109, showing the geometry of the cavern colored by out-of-round ratio. ... 413
372. Sonar images of cavern WH-109, showing the geometry of the cavern colored by overall out-of-round ratio. ... 414
373. Sonar images of cavern WH-109, showing the geometry of the cavern colored by overall out-of-round ratio. ... 415
374. Sonar images of cavern WH-109, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 416
375. Sonar images of cavern WH-109, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 417
376. Sonar images of cavern WH-109, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 418
377. Sonar images of cavern WH-109, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 419
378. Sonar image of cavern WH-109, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of April 2006. 420
379. Map view sonar image of cavern WH-110, showing the basic geometric shape of the cavern. ... 421
380. Sonar images of cavern WH-110, showing the basic geometry of the cavern. 422
381. Sonar images of cavern WH-110, showing the basic geometry of the cavern. 423
382. Sonar images of cavern WH-110, showing the geometry of the cavern colored by measured radius. ... 424
383. Sonar images of cavern WH-110, showing the geometry of the cavern colored by measured radius. ... 425
384. Sonar images of cavern WH-110, showing the geometry of the cavern colored by centered radius. .. 426
385. Sonar images of cavern WH-110, showing the geometry of the cavern colored by centered radius. .. 427
386. Sonar images of cavern WH-110, showing the geometry of the cavern colored by average radius. ... 428
387. Sonar images of cavern WH-110, showing the geometry of the cavern colored by average radius. ... 429
388. Sonar images of cavern WH-110, showing the geometry of the cavern colored by minimum radius. ... 430
389. Sonar images of cavern WH-110, showing the geometry of the cavern colored by minimum radius. ... 431
390. Sonar images of cavern WH-110, showing the geometry of the cavern colored by maximum radius. ... 432
391. Sonar images of cavern WH-110, showing the geometry of the cavern colored by maximum radius. .. 433
392. Sonar images of cavern WH-110, showing the geometry of the cavern colored by radius standard deviation. .. 434
393. Sonar images of cavern WH-110, showing the geometry of the cavern colored by radius standard deviation. .. 435
394. Sonar images of cavern WH-110, showing the geometry of the cavern colored by out-of-round distance. .. 436
395. Sonar images of cavern WH-110, showing the geometry of the cavern colored by out-of-round distance. .. 437
396. Sonar images of cavern WH-110, showing the geometry of the cavern colored by out-of-round ratio. .. 438
397. Sonar images of cavern WH-110, showing the geometry of the cavern colored by out-of-round ratio. .. 439
398. Sonar images of cavern WH-110, showing the geometry of the cavern colored by overall out-of-round ratio. .. 440
399. Sonar images of cavern WH-110, showing the geometry of the cavern colored by overall out-of-round ratio. .. 441
400. Sonar images of cavern WH-110, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. .. 442
401. Sonar images of cavern WH-110, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. .. 443
402. Sonar images of cavern WH-110, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 444
403. Sonar images of cavern WH-110, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 445
404. Sonar image of cavern WH-110, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of May 2003. .. 446
405. Map view sonar image of cavern WH-111, showing the basic geometric shape of the cavern. .. 447
406. Sonar images of cavern WH-111, showing the basic geometry of the cavern. .. 448
407. Sonar images of cavern WH-111, showing the basic geometry of the cavern. .. 449
408. Sonar images of cavern WH-111, showing the geometry of the cavern colored by measured radius. .. 450
409. Sonar images of cavern WH-111, showing the geometry of the cavern colored by measured radius. .. 451
410. Sonar images of cavern WH-111, showing the geometry of the cavern colored by centered radius. .. 452
411. Sonar images of cavern WH-111, showing the geometry of the cavern colored by centered radius. ... 453
412. Sonar images of cavern WH-111, showing the geometry of the cavern colored by average radius. ... 454
413. Sonar images of cavern WH-111, showing the geometry of the cavern colored by average radius. ... 455
414. Sonar images of cavern WH-111, showing the geometry of the cavern colored by minimum radius. ... 456
415. Sonar images of cavern WH-111, showing the geometry of the cavern colored by minimum radius. ... 457
416. Sonar images of cavern WH-111, showing the geometry of the cavern colored by maximum radius. ... 458
417. Sonar images of cavern WH-111, showing the geometry of the cavern colored by maximum radius. ... 459
418. Sonar images of cavern WH-111, showing the geometry of the cavern colored by radius standard deviation. ... 460
419. Sonar images of cavern WH-111, showing the geometry of the cavern colored by radius standard deviation. ... 461
420. Sonar images of cavern WH-111, showing the geometry of the cavern colored by out-of-round distance. ... 462
421. Sonar images of cavern WH-111, showing the geometry of the cavern colored by out-of-round distance. ... 463
422. Sonar images of cavern WH-111, showing the geometry of the cavern colored by out-of-round ratio. ... 464
423. Sonar images of cavern WH-111, showing the geometry of the cavern colored by out-of-round ratio. ... 465
424. Sonar images of cavern WH-111, showing the geometry of the cavern colored by overall out-of-round ratio. ... 466
425. Sonar images of cavern WH-111, showing the geometry of the cavern colored by overall out-of-round ratio. ... 467
426. Sonar images of cavern WH-111, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. ... 468
427. Sonar images of cavern WH-111, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. ... 469
428. Sonar images of cavern WH-111, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 470
429. Sonar images of cavern WH-111, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 471
430. Sonar image of cavern WH-111, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of April 2006. 472
431. Map view sonar image of cavern WH-112, showing the basic geometric shape of the cavern... 473
432. Sonar images of cavern WH-112, showing the basic geometry of the cavern. . . 474
433. Sonar images of cavern WH-112, showing the basic geometry of the cavern. . . 475
434. Sonar images of cavern WH-112, showing the geometry of the cavern colored by measured radius. .. 476
435. Sonar images of cavern WH-112, showing the geometry of the cavern colored by measured radius. .. 477
436. Sonar images of cavern WH-112, showing the geometry of the cavern colored by centered radius. .. 478
437. Sonar images of cavern WH-112, showing the geometry of the cavern colored by centered radius. .. 479
438. Sonar images of cavern WH-112, showing the geometry of the cavern colored by average radius. .. 480
439. Sonar images of cavern WH-112, showing the geometry of the cavern colored by average radius. .. 481
440. Sonar images of cavern WH-112, showing the geometry of the cavern colored by minimum radius. .. 482
441. Sonar images of cavern WH-112, showing the geometry of the cavern colored by minimum radius. .. 483
442. Sonar images of cavern WH-112, showing the geometry of the cavern colored by maximum radius. .. 484
443. Sonar images of cavern WH-112, showing the geometry of the cavern colored by maximum radius. .. 485
444. Sonar images of cavern WH-112, showing the geometry of the cavern colored by radius standard deviation. .. 486
445. Sonar images of cavern WH-112, showing the geometry of the cavern colored by radius standard deviation. .. 487
446. Sonar images of cavern WH-112, showing the geometry of the cavern colored by out-of-round distance. .. 488
447. Sonar images of cavern WH-112, showing the geometry of the cavern colored by out-of-round distance. .. 489
448. Sonar images of cavern WH-112, showing the geometry of the cavern colored by out-of-round ratio. .. 490
449. Sonar images of cavern WH-112, showing the geometry of the cavern colored by out-of-round ratio. .. 491
450. Sonar images of cavern WH-112, showing the geometry of the cavern colored by overall out-of-round ratio. ... 492
451. Sonar images of cavern WH-112, showing the geometry of the cavern colored by overall out-of-round ratio. ... 493
452. Sonar images of cavern WH-112, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. ... 494
453. Sonar images of cavern WH-112, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. ... 495
454. Sonar images of cavern WH-112, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 496
455. Sonar images of cavern WH-112, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 497
456. Sonar image of cavern WH-112, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of July 2006. ... 498
457. Map view sonar image of cavern WH-113, showing the basic geometric shape of the cavern. ... 499
458. Sonar images of cavern WH-113, showing the basic geometry of the cavern. ... 500
459. Sonar images of cavern WH-113, showing the basic geometry of the cavern. ... 501
460. Sonar images of cavern WH-113, showing the geometry of the cavern colored by measured radius. ... 502
461. Sonar images of cavern WH-113, showing the geometry of the cavern colored by measured radius. ... 503
462. Sonar images of cavern WH-113, showing the geometry of the cavern colored by centered radius. ... 504
463. Sonar images of cavern WH-113, showing the geometry of the cavern colored by centered radius. ... 505
464. Sonar images of cavern WH-113, showing the geometry of the cavern colored by average radius. ... 506
465. Sonar images of cavern WH-113, showing the geometry of the cavern colored by average radius. ... 507
466. Sonar images of cavern WH-113, showing the geometry of the cavern colored by minimum radius. ... 508
467. Sonar images of cavern WH-113, showing the geometry of the cavern colored by minimum radius. ... 509
468. Sonar images of cavern WH-113, showing the geometry of the cavern colored by maximum radius. ... 510
469. Sonar images of cavern WH-113, showing the geometry of the cavern colored by maximum radius. ... 511
470. Sonar images of cavern WH-113, showing the geometry of the cavern colored by radius standard deviation. ... 512
471. Sonar images of cavern WH-113, showing the geometry of the cavern colored by radius standard deviation. ... 513
472. Sonar images of cavern WH-113, showing the geometry of the cavern colored by out-of-round distance. ... 514
473. Sonar images of cavern WH-113, showing the geometry of the cavern colored by out-of-round distance. ... 515
474. Sonar images of cavern WH-113, showing the geometry of the cavern colored by out-of-round ratio. ... 516
475. Sonar images of cavern WH-113, showing the geometry of the cavern colored by out-of-round ratio. ... 517
476. Sonar images of cavern WH-113, showing the geometry of the cavern colored by overall out-of-round ratio. ... 518
477. Sonar images of cavern WH-113, showing the geometry of the cavern colored by overall out-of-round ratio. ... 519
478. Sonar images of cavern WH-113, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. ... 520
479. Sonar images of cavern WH-113, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. ... 521
480. Sonar images of cavern WH-113, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 522
481. Sonar images of cavern WH-113, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 523
482. Sonar image of cavern WH-113, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of November 2000. ... 524
483. Map view sonar image of cavern WH-114, showing the basic geometric shape of the cavern. ... 525
484. Sonar images of cavern WH-114, showing the basic geometry of the cavern. ... 526
485. Sonar images of cavern WH-114, showing the basic geometry of the cavern. ... 527
486. Sonar images of cavern WH-114, showing the geometry of the cavern colored by measured radius. ... 528
487. Sonar images of cavern WH-114, showing the geometry of the cavern colored by measured radius. ... 529
488. Sonar images of cavern WH-114, showing the geometry of the cavern colored by centered radius. ... 530
489. Sonar images of cavern WH-114, showing the geometry of the cavern colored by centered radius. ... 531
490. Sonar images of cavern WH-114, showing the geometry of the cavern colored by average radius. ... 532
491. Sonar images of cavern WH-114, showing the geometry of the cavern colored by average radius. ... 533
492. Sonar images of cavern WH-114, showing the geometry of the cavern colored by minimum radius. ... 534
493. Sonar images of cavern WH-114, showing the geometry of the cavern colored by minimum radius. ... 535
494. Sonar images of cavern WH-114, showing the geometry of the cavern colored by maximum radius. ... 536
495. Sonar images of cavern WH-114, showing the geometry of the cavern colored by maximum radius. ... 537
496. Sonar images of cavern WH-114, showing the geometry of the cavern colored by radius standard deviation. ... 538
497. Sonar images of cavern WH-114, showing the geometry of the cavern colored by radius standard deviation. ... 539
498. Sonar images of cavern WH-114, showing the geometry of the cavern colored by out-of-round distance. ... 540
499. Sonar images of cavern WH-114, showing the geometry of the cavern colored by out-of-round distance. ... 541
500. Sonar images of cavern WH-114, showing the geometry of the cavern colored by out-of-round ratio. ... 542
501. Sonar images of cavern WH-114, showing the geometry of the cavern colored by out-of-round ratio. ... 543
502. Sonar images of cavern WH-114, showing the geometry of the cavern colored by overall out-of-round ratio. ... 544
503. Sonar images of cavern WH-114, showing the geometry of the cavern colored by overall out-of-round ratio. ... 545
504. Sonar images of cavern WH-114, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. ... 546
505. Sonar images of cavern WH-114, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. ... 547
506. Sonar images of cavern WH-114, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 548
507. Sonar images of cavern WH-114, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. ... 549
508. Sonar image of cavern WH-114, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of July 2006. ... 550
509. Map view sonar image of cavern WH-115, showing the basic geometric shape of the cavern. 551
510. Sonar images of cavern WH-115, showing the basic geometry of the cavern. 552
511. Sonar images of cavern WH-115, showing the basic geometry of the cavern. 553
512. Sonar images of cavern WH-115, showing the geometry of the cavern colored by measured radius. 554
513. Sonar images of cavern WH-115, showing the geometry of the cavern colored by measured radius. 555
514. Sonar images of cavern WH-115, showing the geometry of the cavern colored by centered radius. 556
515. Sonar images of cavern WH-115, showing the geometry of the cavern colored by centered radius. 557
516. Sonar images of cavern WH-115, showing the geometry of the cavern colored by average radius. 558
517. Sonar images of cavern WH-115, showing the geometry of the cavern colored by average radius. 559
518. Sonar images of cavern WH-115, showing the geometry of the cavern colored by minimum radius. 560
519. Sonar images of cavern WH-115, showing the geometry of the cavern colored by minimum radius. 561
520. Sonar images of cavern WH-115, showing the geometry of the cavern colored by maximum radius. 562
521. Sonar images of cavern WH-115, showing the geometry of the cavern colored by maximum radius. 563
522. Sonar images of cavern WH-115, showing the geometry of the cavern colored by radius standard deviation. 564
523. Sonar images of cavern WH-115, showing the geometry of the cavern colored by radius standard deviation. 565
524. Sonar images of cavern WH-115, showing the geometry of the cavern colored by out-of-round distance. 566
525. Sonar images of cavern WH-115, showing the geometry of the cavern colored by out-of-round distance. 567
526. Sonar images of cavern WH-115, showing the geometry of the cavern colored by out-of-round ratio. 568
527. Sonar images of cavern WH-115, showing the geometry of the cavern colored by out-of-round ratio. 569
528. Sonar images of cavern WH-115, showing the geometry of the cavern colored by overall out-of-round ratio. 570
529. Sonar images of cavern WH-115, showing the geometry of the cavern colored by overall out-of-round ratio. ... 571
530. Sonar images of cavern WH-115, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 572
531. Sonar images of cavern WH-115, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 573
532. Sonar images of cavern WH-115, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 574
533. Sonar images of cavern WH-115, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. .. 575
534. Sonar image of cavern WH-115, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of August 2006. 576
535. Map view sonar image of cavern WH-116, showing the basic geometric shape of the cavern. ... 577
536. Sonar images of cavern WH-116, showing the basic geometry of the cavern. 578
537. Sonar images of cavern WH-116, showing the basic geometry of the cavern. 579
538. Sonar images of cavern WH-116, showing the geometry of the cavern colored by measured radius. .. 580
539. Sonar images of cavern WH-116, showing the geometry of the cavern colored by measured radius. .. 581
540. Sonar images of cavern WH-116, showing the geometry of the cavern colored by centered radius. ... 582
541. Sonar images of cavern WH-116, showing the geometry of the cavern colored by centered radius. ... 583
542. Sonar images of cavern WH-116, showing the geometry of the cavern colored by average radius. ... 584
543. Sonar images of cavern WH-116, showing the geometry of the cavern colored by average radius. ... 585
544. Sonar images of cavern WH-116, showing the geometry of the cavern colored by minimum radius. ... 586
545. Sonar images of cavern WH-116, showing the geometry of the cavern colored by minimum radius. ... 587
546. Sonar images of cavern WH-116, showing the geometry of the cavern colored by maximum radius. ... 588
547. Sonar images of cavern WH-116, showing the geometry of the cavern colored by maximum radius. ... 589
548. Sonar images of cavern WH-116, showing the geometry of the cavern colored by radius standard deviation. .. 590
549. Sonar images of cavern WH-116, showing the geometry of the cavern colored by radius standard deviation. .. 591
550. Sonar images of cavern WH-116, showing the geometry of the cavern colored by out-of-round distance. .. 592
551. Sonar images of cavern WH-116, showing the geometry of the cavern colored by out-of-round distance. .. 593
552. Sonar images of cavern WH-116, showing the geometry of the cavern colored by out-of-round ratio. .. 594
553. Sonar images of cavern WH-116, showing the geometry of the cavern colored by out-of-round ratio. .. 595
554. Sonar images of cavern WH-116, showing the geometry of the cavern colored by overall out-of-round ratio. ... 596
555. Sonar images of cavern WH-116, showing the geometry of the cavern colored by overall out-of-round ratio. ... 597
556. Sonar images of cavern WH-116, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. 598
557. Sonar images of cavern WH-116, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. 599
558. Sonar images of cavern WH-116, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 600
559. Sonar images of cavern WH-116, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 601
560. Sonar image of cavern WH-116, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of April 2000. 602
561. Map view sonar image of cavern WH-117, showing the basic geometric shape of the cavern. ... 603
562. Sonar images of cavern WH-117, showing the basic geometry of the cavern. 604
563. Sonar images of cavern WH-117, showing the basic geometry of the cavern. 605
564. Sonar images of cavern WH-117, showing the geometry of the cavern colored by measured radius. .. 606
565. Sonar images of cavern WH-117, showing the geometry of the cavern colored by measured radius. .. 607
566. Sonar images of cavern WH-117, showing the geometry of the cavern colored by centered radius. .. 608
567. Sonar images of cavern WH-117, showing the geometry of the cavern colored by centered radius. .. 609
568. Sonar images of cavern WH-117, showing the geometry of the cavern colored by average radius. .. 610
569. Sonar images of cavern WH-117, showing the geometry of the cavern colored by average radius. ... 611
570. Sonar images of cavern WH-117, showing the geometry of the cavern colored by minimum radius. .. 612
571. Sonar images of cavern WH-117, showing the geometry of the cavern colored by minimum radius. .. 613
572. Sonar images of cavern WH-117, showing the geometry of the cavern colored by maximum radius. ... 614
573. Sonar images of cavern WH-117, showing the geometry of the cavern colored by maximum radius. ... 615
574. Sonar images of cavern WH-117, showing the geometry of the cavern colored by radius standard deviation. ... 616
575. Sonar images of cavern WH-117, showing the geometry of the cavern colored by radius standard deviation. ... 617
576. Sonar images of cavern WH-117, showing the geometry of the cavern colored by out-of-round distance. ... 618
577. Sonar images of cavern WH-117, showing the geometry of the cavern colored by out-of-round distance. ... 619
578. Sonar images of cavern WH-117, showing the geometry of the cavern colored by out-of-round ratio. ... 620
579. Sonar images of cavern WH-117, showing the geometry of the cavern colored by out-of-round ratio. ... 621
580. Sonar images of cavern WH-117, showing the geometry of the cavern colored by overall out-of-round ratio. ... 622
581. Sonar images of cavern WH-117, showing the geometry of the cavern colored by overall out-of-round ratio. ... 623
582. Sonar images of cavern WH-117, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. ... 624
583. Sonar images of cavern WH-117, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. ... 625
584. Sonar images of cavern WH-117, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 626
585. Sonar images of cavern WH-117, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. 627
586. Sonar image of cavern WH-117, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of March 2004. 628
587. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. ... 630
588. Perspective view of the entire cavern field at the West Hackberry SPR site from the northeast. .. 631

589. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. .. 632

590. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. .. 633

591. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. .. 634

592. Perspective view of the entire cavern field at the West Hackberry SPR site from the northeast. .. 635

593. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. .. 636

594. Perspective view of the entire cavern field at the West Hackberry SPR site from the northeast. .. 637

595. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. .. 638

596. Perspective view of the entire cavern field at the West Hackberry SPR site from the northeast. .. 639

Tables

1. Dates of West Hackberry Sonar Surveys Presented in Atlas 54
Introduction

This sonar atlas is intended to provide a comprehensive, “snapshot” view of the cavern geometry for all oil-storage caverns currently constituting the four active sites of the U.S. Strategic Petroleum Reserve (SPR). The atlas presents visual images of the most current (as of August 2007) downhole sonar surveys, which have been rendered in three-dimensional view, using three-dimensional geological computer modeling. Images are presented both for each cavern, individually, and for the cavern field, as a whole, at each SPR site. An index map showing the locations of the four active SPR sites, located along the Gulf Coast of Texas and Louisiana, is presented in figure 1. As described below, this volume 4 focuses on caverns at the West Hackberry SPR facility.

The rationale underlying the compilation of this sonar atlas is two-fold. First, a single, comprehensive “view” or “picture” of all of the SPR caverns does not exist. Thus, it may be useful to have such a compendium, for broad-scale general reference across the Strategic Petroleum Reserve Project. Second, the leaching of large underground-storage caverns may be conceptualized as a large-scale geologic “test” of the enclosing salt mass at a particular location within the salt-dome structure. Although the details of cavern geometry will change with ongoing storage operations, the effects of the major geological influences present within the salt stock, will be reflected in the overall cavern geometry. Thus, it may be possible to infer a meaningful amount of information regarding the internal structure of the salt dome from examining the cavern geometry.

This report is organized as follows. We present a very brief overview of the sonar imaging technique. As downhole sonar surveys are the fundamental raw data upon which this sonar atlas is constructed, it is important that some of the physics and limitations of the sonar surveying process

Figure 1. Index map showing the locations of the four active Strategic Petroleum Reserve sites along the Gulf Coast of Texas and Louisiana.
be understood. We then present the rationale and formulation of the various geometrical “attributes”, which we compute for each sonar survey, and which are intended to enhance visualization of likely important geologic features, above and beyond the simple three-dimensional geometric form of the sonar results.

After presenting the methodology underlying the visual images that form the bulk of the atlas, we present the visualizations, themselves. For each of the four active, SPR sites — Bayou Choc-taw (La.), Big Hill (Tex.), Bryan Mound (Tex.) and West Hackberry (La.) (fig. 1) — we first present results for each cavern individually. The visual presentations follow a more-or-less uniform format, in order to facilitate comparisons between caverns. We then present visualizations of the overall cavern field, for each of these sites. Again, the presentation format is intended to be consistent across the four sites.

Because of the large number of images generated for each cavern, this sonar atlas is presented in four separate physical volumes. Volume 1 contains images for sonar surveys obtained at the Bayou Choctaw SPR site, in central southern Louisiana. Volume 2 of the sonar atlas contains images for the Big Hill SPR site, which is located in extreme southeastern Texas. Volume 3 contains images from the Bryan Mound SPR site, also located in southeastern Texas, but to the west of the Big Hill site. Finally, Volume 4 presents the sonar images derived from surveys conducted at the West Hackberry SPR facility. West Hackberry is located in extreme southwestern Louisiana.

In keeping with the concept of an atlas, this multi-volume report is limited to presenting the objective sonar images, themselves. No interpretation or discussion of the cavern shapes is included.

Methodology

Sonar Surveying

The downhole sonar surveys, upon which this sonar atlas are based, make use of focused and directionally oriented acoustic signals to determine the distances from the sonar tool to the cavern wall. Knowing the velocity of sound in the particular medium within the cavern (usually oil or brine), the two-way travel time of the acoustical signal may then be post-processed to represent a distance. The apparent spatial position of the nominal reflecting point on the cavern-wall surface may then be computed using simple geometrical relationships. The survey tool is rotated through 360 degrees, obtaining radial time-distance measurements at specified angular increments. The resulting (large) collection of reflecting points, in three-dimensional space, is then modeled, using appropriate software, to display a geometric representation of the full three-dimensional cavern. A conceptual representation of the initial, in-the-field, portion of this surveying process is presented in figure 2.

As shown in the conceptual view of figure 2, the sonar tool is lowered into the cavern through a well via a wireline. The sonar signal, idealized here as a very narrow, linear beam, is transmitted from the tool, reflected from a nominal point on the wall of the cavern, and received back by a receiver, also located on the downhole tool. The uphole equipment multiplies the elapsed time from transmission to reception of the reflected signal by the velocity of the signal and divides by two, to yield the straight-line distance from the tool to the cavern wall.
As the majority of the sonar measurements in a typical underground storage cavern are taken in the horizontal plane (transmitted and reflected beams in fig. 2), much of the computation is simple two-dimensional trigonometry. The basic geometry of the calculations necessary to reduce the nominal straight-line distance to an actual spatial position is illustrated in figure 3.

The x-coordinate of the nominal reflection point, with respect to the position of the sonar tool, is computed using the cosine of the angle of the direction of the sonar beam (θ), whereas the y-coordinate is computed, similarly, using the sine of that angle. Adding these x- and y-coordinate increments to the x- and y-coordinates of the well through which the survey tool was lowered into the cavern, and appending the depth/elevation of the tool within the cavern, yields an x-y-z triplet associated with the particular direction (azimuth) of the sonar measurement.

Near the top and bottom of a cavern, the sonar measurements are typically taken with the direction of the sonar beam inclined in the vertical plane. This is done, not only to prevent possible collision between the tool and the cavern roof or floor, but also to enable the sonar beam to be incident upon the reflecting surface as close to 90 degrees as possible.

This geometric arrangement requires three-dimensional trigonometry to compensate for the angle of inclination. However, the computations are simple, and involve merely multiplying the two-dimensional result by the cosine or sine (x and y, respectively) of the angle of inclination (ϕ). “Up” is taken as a positive angle, whereas “down” is taken as negative. For inclined measurements, the z-coordinate of the reflecting point is computed from the depth of the tool plus-or-minus the depth increment attributable to the angle of inclination. This geometry is shown schematically in figure 4.
Figure 3. Geometry assumed in reducing the nominal, measured sonar distances to cavern geometry (coordinates of the reflecting point).

Figure 4. Geometry assumed in reducing inclined sonar distances to cavern geometry (coordinates of reflecting point).
Computation of the x-, y-, and z-coordinates, as performed in generating the cavern geometries shown in this report, are summarized as equations (1) through (3), below.

\begin{align*}
 x_{(i,j)} &= X_{\text{collar}} + D \cos \phi_{(i,j)} \cos \theta_{(i,j)} \\
 y_{(i,j)} &= Y_{\text{collar}} + D \cos \phi_{(i,j)} \sin \theta_{(i,j)} \\
 z_{(i,j)} &= Z_{\text{collar}} - Z_{(j)} + D \sin \phi_{(i,j)}
\end{align*}

where:
- j indicates a particular depth for a set of circumferential measurements,
- i indicates a particular azimuthal angle within that sweep of measurements,
- θ indicates the trigonometric equivalent azimuthal angle of the measurement, and
- ϕ indicates the angle of inclination of the measurement.

D is the fundamental, measured two-way transit time converted to distance.

X_{collar}, Y_{collar}, and Z_{collar} are the spatial and elevation coordinates of the well collar, or more properly, the x- and y-coordinates of the casing shoe. The casing shoe is the actual point from which the sonar tool hangs inside the larger cavern. However, for most SPR caverns, the absolute horizontal difference between collar and shoe locations is minimal.

In practice, the idealized conditions and mechanisms outlined above may be far from reality. The sonar “beam” is, in fact, nowhere near a zero-width linear entity, traveling in a straight line from source to wall to receiver. The beam is more properly a waveform, that expands radially outward from the sonar-tool transmitter. Neither is the cavern wall a flat surface oriented precisely at 90 degrees to the path of travel of the sonar signal.

To complicate matters further, the velocity of the acoustical signal is not necessarily well known, nor even constant along the path of travel. This latter issue of non-constant velocity is of particular concern when making inclined sonar distance measurements. Some of these real-world problems, which combine to make the two-way travel time, and subsequently the distance measurements, uncertain to varying degrees, are illustrated in figures 5 and 6.

In figure 5, the sonar signal is shown as a wavefront, expanding radially away from the source. The signal becomes both weaker (and potentially less recognizable) with distance traveled, and wider. The increase in width of the beam means that reflections may be generated from portions of the cavern wall not directly in the intended (nominal) path of the beam. The position of the nominal reflecting point will be estimated incorrectly, as a result.

In this illustration, the time (= distance) values, associated with the “oblique reflection path” or the “shorter travel-time reflection path”, would be used in association with the azimuthal angle of the “nominal sonar beam”. Thus, the computed radial distance, along that assumed, nominal path, will be shorter than the actual distance, in that direction, to the cavern wall. In reality, any number of off-nominal reflection geometries may be present for a given sonar survey.

Figure 6 shows yet-another confounding issue affecting sonar measurements conducted using inclined signals, particularly those made near an interface between fluids of differing composition.
— and hence of differing velocities. Here, in the figure, an upward-directed sonar pulse passes first through a layer of brine, and then through a layer of oil, on its way to being reflected and passing through the oil and brine, again, in reverse order. Because of the differing velocities of sound in these two fluids, the waveform is refracted at the interface, and thus the signal impinges on the cavern wall in a geometry not captured by the idealized computations of figure 4. Both the actual distance and the angular position of the reflecting point are affected by the differing velocities of sound in the two media.

Three-dimensional Computer Visualization

The geometric calculations, outlined above as equations (1) through (3), produce a large number of spatially distributed points in three-dimensional space. Although merely displaying the collection of computed reflecting points would convey some information, visualization of the cavern geometry is facilitated by converting the assortment of points to a surface. The visualization software used by Sandia, performs this conversion through use of a finite-element-like mesh.

Because the sonar measurements are recorded and reported in a known order, and because the number of measurements for each 360-degree sweep of the cavern at a given depth level is constant, it is a relatively simple matter to list the mesh nodes and, more importantly, to describe the connectivity among the set of nodal coordinates. The result of processing the resulting 2-D surface mesh in three-dimensions is illustrated in figure 7.

In part (a) of this illustration, each horizontal ring of line intersections (the nodes) represents a single nominal reflection point. The nodes in the illustration have been connected by lines to aid
visualization of these zero-size objects. The lines also indicate the connectivity among the nodes, which is essential for generating an actual surface for visualization [fig. 7(b)].

Cavern Attributes

In addition to the basic geometry of a cavern, Sandia has developed a set of attributes — or computed quantities derived from the basic distance-measurement data. Using the computer, the values of these attributes may be mapped onto the geometric outline of the cavern using various colors. Part (b) of figure 7 repeats the same mesh from part (a). However, in this view, the quadrilateral cells, between each set of four reflecting-point nodes, have been filled in, and they are colored by their subsea elevation.

Through judicious selection of the specific attributes computed, and by manipulation of the color scale applied to mapping those attributes onto the cavern “shell”, it is possible to highlight departures from the idealized cylindrical shape of a carefully constructed SPR-type cavern. Such departures may be related either to the leaching history of the cavern (including small-scale leaching associated with oil movements) or to the solubility of the salt itself. It is this latter characteristic that is believed to allow interpretation of geological features within the salt stock. Ultimately, understanding the internal structure of the SPR salt domes is one of the major justifications for this atlas.

The attributes we use are of four basic types. The first type is simply the elevation of the surface at each nodal location. The second type of attribute are several values directly related to the radius of the cavern. There are two different “radius values” (described below), as well as the min-
imum, average, and maximum radii observed at any given depth level. The third type of attribute values are those related explicitly to deviations from symmetry. The computation of these various attributes is presented below. The final type of attribute values involve the relationship of a base cavern to other caverns within the cavern field.

Elevation

The elevation attribute is not particularly revealing of anything specifically related to the geometry of an individual cavern. However, it is an exceedingly simple value to associate with the spatial position of each node (which, by definition, includes the elevation). As a mapped attribute, it is useful when comparing the spatial positioning of more than one cavern in a view, as it directly highlights differences in vertical position among a set of geometric (cavern) objects. Figure 8 illustrates such a comparison of vertical positions for two caverns.

Cavern Radius

The radius attribute is defined simply as the measured distance from the sonar-surveying tool to the “apparent reflection point” of the cavern wall. The radial distance, R, is simply

$$ R_{(i,j)} \equiv Distance_{(i,j)} \quad (4) $$
where i indicates the particular azimuthal direction (measured from 0 degrees = north), for depth station j.

The number of azimuthal distances surveyed, for a particular sonar run, may vary from a minimum of eight (8) (for very old surveys, only) to a (known) maximum of 128. The actual number of radii is dependent upon both the age of the survey and the survey operator. Unless specified otherwise, the azimuthal survey directions are assumed to be evenly distributed over 360 degrees.

Note that we assume that the sonar reflection is from a “point” on the surface of the cavern wall, and that the wall at that point is virtually normal to the path of the incident sonar beam. Similarly, the sonar signal is assumed to travel as a single ray. In fact, the sonar beam is a wavefront, expanding outward with distance, and the reflecting surface may have a substantially more complicated geometry than that of a plane (i.e., fig. 5). Presumably most of the influence of these confounding factors have been incorporated, to a greater or a lesser extent, into the signal processing algorithms used by the sonar operator. A full discussion of these influences, as well as of the different orientation- and depth-control methods, employed by the survey operator, is beyond the scope of this report.

Figure 8. Two arbitrary caverns, located at different vertical positions, showing the elevation attribute. No scale.
Centered Radius

The radius attribute, just described, is that distance value directly reported by the underlying sonar survey of the cavern. As such, the distance to the cavern wall from the sonar tool is affected by the positioning of the well, through which the tool is lowered into the cavern, with respect to the outline of the cavern itself. If the well collar, or more specifically, the casing shoe, from where the sonar tool hangs on its supporting wireline cable, is offset significantly with respect to the “center” of the cavern, the “radial” distances will vary markedly from one side of the cavern to the other, simply by virtue of the offset origin for the survey. The conceptual diagram of figures 2 and 3 show such an offset. To reduce the impact of such external influences, not directly related to the geometry of the cavern itself, we define what is termed the centered radius attribute.

The centered radius is computed by first finding the bounding coordinates of the overall cavern. After the \(x \), \(y \), and \(z \) coordinates of each apparent reflecting point on the cavern margin have been computed, the minimum and maximum \(x \) and \(y \) values, \(X_{\text{min}}, X_{\text{max}}; Y_{\text{min}}, Y_{\text{max}} \), are identified, for the set of readings at each individual depth station. The averages of these maximum and minimum coordinate values are then taken, by definition, to represent the horizontal center of the cavern at this depth. Thus:

\[
X_{\text{cen}}(j) = \frac{X_{\text{max}}(j) - X_{\text{min}}(j)}{2} \tag{5}
\]

\[
Y_{\text{cen}}(j) = \frac{Y_{\text{max}}(j) - Y_{\text{min}}(j)}{2} \tag{6}
\]

Using this defined center as the basis, it is then a simple matter to iterate through the list of reflection points, and to compute the “centered radial” distances from this constant \(x-y \) position, for each depth station, using the Pythagorean theorem. Thus:

\[
R_{\text{centered}}(i,j) = \sqrt{(X_{(i,j)} - X_{\text{cen}}(j))^2 - (Y_{(i,j)} - Y_{\text{cen}}(j))^2} \tag{7}
\]

Figure 9 presents a comparison of the differences between the direct “radial” distance measurement and the equivalent centered radius distances for the same cavern. The cavern has been specifically selected, based on its markedly off-center access well.

Minimum Radius, Maximum Radius, and Average Radius

The minimum- \((R_{\text{min}})\), maximum- \((R_{\text{max}})\), and average-radius \((\bar{R})\) attributes are defined on a depth-by-depth basis, over the \(j \) depth stations surveyed. These values are computed simply as the minimum, maximum, and arithmetic average of the \(N_{\text{radii}} \) distance measurements reported by the sonar surveying tool at each individual depth station. Accordingly, these attribute values are constant for each surveyed depth level, \(j \).

\[
R_{\text{min}}(j) = \text{Min}(R_{(i,j)}), \tag{8}
\]
Figure 9. Comparison of the radius (left) and centered radius (right) attributes for a cavern for which the access well (x), through which the cavern was surveyed, is particularly off center. (a) Top view; (b) perspective view. No scale.
The overall average cavern radius, across the entire vertical height of the cavern, may also be computed, as:

$$R_{max(j)} = \text{Max}(R_{(i,j)})$$

and

$$\bar{R}_{(j)} = \frac{\sum_{i=1}^{N_{\text{radii}}} R_{(i,j)}}{N_{\text{radii}}}$$

(10)

This latter value is constant for each cavern. Thus, it is useful essentially when comparing more than one individual cavern, as within a cavern field. A simple example is shown in figure 10.

Radius Standard Deviation

It may be instructive to investigate the degree to which the individual radial distance measurements, at any particular depth level, vary among each other. This variation provides one measure of cavern asymmetry, or deviation from a pure cylindrical form. A very simple, and relatively intuitive, measure of this consistence of cavern size is the radius standard deviation. This attribute is computed on a depth-by-depth basis.

We use the standard computational formula for a standard deviation, which avoids the need to compute the average radius, at each depth station, separately from, and prior to, computing the deviations of the individual values from that average. Thus:

$$Rsdev_{(j)} = \left[\frac{\sum_{i=1}^{N_{\text{radii}}} R_{(i,j)}^2 - \left(\sum_{i=1}^{N_{\text{radii}}} R_{(i,j)} \right)^2 / (N_{\text{radii}})}{N_{\text{radii}} - 1} \right]^{1/2}$$

(12)

Out-of-Round Distance and Ratios

A somewhat more-involved cavern-geometry attribute is the so-called out-of-round distance, here indicated ΔR. This radial attribute is intended to highlight geometrical irregularities over the
Because any particular cavern, at a given depth, may be markedly large or smaller in diameter than at another depth, we may also evaluate the departures from “roundness” with respect to the average radius of the cavern at the same depth. The value, through which this type of deviation from symmetry is evaluated, is termed the out-of-round ratio, \(\Delta R_{ratio} \). This value is computed simply as the quotient of the actual out-of-round distances \(\Delta R_{(i,j)} \), and the average radius at that depth.

\[
\Delta R_{(i,j)} = R_{centered(i,j)} - \bar{R}_{(j)}
\]

(13)
A separate measure of the overall out-of-round ratio for the entire cavern is computed using the individual out-of-round-distance deviations and the overall average diameter of the entire cavern. Thus:

\[
\Delta R_{ratio_{(j)}} = \frac{\Delta R_{i,j}}{R_{(j)}}
\]

(14)

\[
\Delta R_{overall_{(i,j)}} = \frac{\Delta R_{(i,j)}}{R_{cavern}}
\]

(15)

Figure 11 presents illustrations of the several out-of-round attributes. In this illustration, we present the out-of-round distance, in feet, in part (a) and the out-of-round ratio, as a fraction, in part (b). Recall that equation (14) computes the out-of-round ratio by dividing the out-of-round distances [fig. 11(a)] by the average cavern radius at that depth level, thus normalizing the deviations.

The overall out-of-round ratio, also a fraction, is shown in part (c) of the figure. Note that the color scales appear identical in parts (a) and (c), as the only difference between these two cavern attributes involves division of the individual deviation distances, part (a), by a constant. However, as the magnitudes of the attributes are significantly different, the two attributes provide different perspectives on how much the cavern departs from the idealized cylindrical form.

Part (d) of figure 11 presents a top view of this same cavern. The approximate orientation of the perspective views is shown by the arrow (from the northwest).

Pillar-to-Diameter Ratios and Minimum Inter-cavern Distances

Another, entirely different class of attributes may also be defined, which examine the geometrical relationship of one cavern to its neighbors. This class of cavern-relationship attributes are an expansion of more conventional assessments of cavern spacings and of their impact on cavern stability.

Conventionally, one way of examining the relationship between any given cavern and its nearest neighbors, which are usually the caverns of greatest interest, is through the so-called pillar-to-diameter ratio. The pillar-to-diameter ratio, P/D, is defined as the quotient of the minimum thickness of the pillar(s) of salt, separating the cavern of interest from adjacent caverns, divided by the “diameter” of that cavern. This ideal relationship is illustrated in figure 12. As the idealized form of an oil-storage cavern is a right-circular cylinder, it is quite easy to determine the two input values required for P/D from a map view of the caverns.

In practice, even carefully leached underground storage caverns depart from the idealized cylindrical form. Historically, this real-world condition has been acknowledged by using a measure of the average diameter of the cavern of interest as the denominator of the P/D ratio. The most straightforward method of deriving the average cavern diameter — conceptualized as the diameter of a cylindrical cavern of equivalent volume — is to extract that equivalent diameter by solving the algebraic expression for the volume of a cylinder \(V = \pi r^2 h \) for radius, and multiplying the radius by 2 to find the diameter.
Figure 11. Examples of the three out-of-round attributes described in the text.
(a) Out-of-round distance; (b) out-of-round ratio; (c) overall out-of-round ratio. (d) Top (map) view of
cavern, showing approximate direction of perspective views (arrow). Note that whereas the color mapping
is nearly identical, the scale values are markedly different. See text for discussion.
However, whereas this approach to determining an average diameter works well for relatively well-formed caverns, usually leached specifically for storage purposes, the average-diameter methodology has increasingly severe limitations as the form of the cavern departs from that of a cylinder. As many SPR storage caverns are converted brine caverns, there are a wide variety of departures from the idealized cavern shape. For some caverns, the average cavern diameter, based upon equivalent volumes, simply is not an acceptable measure of cavern geometry.

Although there is no real substitute for a full 3-D geomechanical analysis for examining cavern stability, related to neighboring caverns, in detail, it is possible to use downhole sonar measurements to compute a “pillar-to-diameter ratio” in three dimensions. The 3-D P/D ratio thus becomes an attribute, which may be mapped onto the geometric form of the cavern, just as we have described for the more directly derived sonar attributes.

The 3-D P/D ratio attribute is thus defined as the minimum distance from each mesh node, on the cavern of interest, to any of the mesh nodes describing any of the neighboring caverns, divided by the average cavern diameter at the depth of the particular mesh node. This may be written, in terms of the nomenclature we have been using above, as:

\[
[P/D]_{i,j,k^*} = \frac{\text{MIN} \left[\text{Dist} \left[(x_1, y_1, z_1), (x_2, y_2, z_2) \right] \right]}{2 \bar{R}_{j,k^*}}
\]

where \(k^*\) indicates the cavern of interest, and \(\text{Dist}[...]\) is shorthand for the computed (Pythagorean) distance between the mesh node described by indices \(i\) and \(j\) on the base cavern.

Figure 12. Geometrical relationships involved in the standard computation of the pillar-to-diameter ratio. Note that P:D for cavern A > P:D for cavern B. No scale.
and all the other mesh nodes on caverns \(k2 = 1\) to \(Ncavern\) neighboring caverns. As implied by equation (16), the calculation of 3-D P/D is complex and computationally intensive.

This three-dimensional pillar-to-diameter relationship is illustrated in figure 13. As suggested by the numerous dashed arrows, the pillar distances, \(P\), from each particular point under consideration on the sonar mesh constituting the base cavern, must be computed to each and every (relevant) point on the sonar mesh constituting each neighboring cavern. The minimum pillar distance, \(P_{min}\), is then selected and divided by the average diameter, “D”, associated with the current point of interest. Once this three-dimensional P:D value has been computed and stored, the search moves to the next point of consideration on the sonar mesh of the base cavern, and the process is repeated.

Snider and Stein (2006) and Rudeen and Snider (2007) have developed computer algorithms that minimize the computations necessary to find \(P_{min}\), by screening the mesh(es) describing the nearest-neighboring caverns to eliminate grid nodes that cannot possibly be related to the minimum distance between the two cavern walls. Examples of such screened-out mesh nodes include points on the backside of the neighboring cavern, or nodes near the base of the neighbor cavern when examining nodes near the top of the cavern of interest.

The resulting computer program [Rudeen and Snider (2007)], implementing these sorting, searching, and computing algorithms, makes practical the use of the three-dimensional pillar-to-diameter as a mappable attribute for this atlas. We present illustrations of cavern geometries showing both the minimum distance, in absolute terms, and as the P/D ratio.

Figure 13. Conceptual illustration of the concepts underlying the definition and calculation of the three-dimensional pillar-to-diameter ratio.
Note that the minimum distance, P_{min}, will be the same for any two specific nodes involved on caverns “A” and “B”, whether comparing cavern “A” to cavern “B”, or vice versa. However, the P/D values associated with those two nodes will almost certainly be different. The divisor for one node, say on cavern “A,” will be the average diameter at its depth, whereas the divisor for the ratio associated with the other node will be the average diameter for the other cavern, “B” [equation (16)].

Results: The Sonar Atlas

The West Hackberry cavern field is shown in map view in figure 14. The dates of the most recent available sonar surveys, which are used in this report, are given in table 1.

Table 1: Dates of West Hackberry Sonar Surveys Presented in Atlas

<table>
<thead>
<tr>
<th>Cavern</th>
<th>Sonar Date</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH-6</td>
<td>12-Aug-1982</td>
<td>Dowell</td>
</tr>
<tr>
<td>WH-7</td>
<td>25-May-2005</td>
<td>Socon Cavity Control</td>
</tr>
<tr>
<td>WH-8</td>
<td>11-Sep-2003</td>
<td>Sonarwire, Inc.</td>
</tr>
<tr>
<td>WH-9</td>
<td>26-May-1977</td>
<td>Dowell</td>
</tr>
<tr>
<td>WH-101</td>
<td>26-Sep-2006</td>
<td>Socon Cavity Control</td>
</tr>
<tr>
<td>WH-102</td>
<td>22-Aug-1983</td>
<td>Sonarwire, Inc.</td>
</tr>
<tr>
<td>WH-103</td>
<td>27-Aug-2000</td>
<td>Sonarwire, Inc.</td>
</tr>
<tr>
<td>WH-104</td>
<td>11-Jul-2000</td>
<td>Sonarwire, Inc.</td>
</tr>
<tr>
<td>WH-105</td>
<td>2-Aug-2000</td>
<td>Sonarwire, Inc.</td>
</tr>
<tr>
<td>WH-109</td>
<td>3-Apr-2006</td>
<td>Socon Cavity Control</td>
</tr>
<tr>
<td>WH-111</td>
<td>24-Apr-2006</td>
<td>Socon Cavity Control</td>
</tr>
<tr>
<td>WH-112</td>
<td>7-Jul-2006</td>
<td>Socon Cavity Control</td>
</tr>
<tr>
<td>WH-113</td>
<td>4-Nov-2000</td>
<td>Sonarwire, Inc.</td>
</tr>
<tr>
<td>WH-114</td>
<td>31-Jul-2006</td>
<td>Socon Cavity Control</td>
</tr>
<tr>
<td>WH-115</td>
<td>17-Aug-2006</td>
<td>Socon Cavity Control</td>
</tr>
<tr>
<td>WH-117</td>
<td>29-Mar-2004</td>
<td>Socon Cavity Control</td>
</tr>
</tbody>
</table>

Cavern Geometry

The actual images showing the geometry of the various caverns are presented below. A consistent presentation format has been adopted. The intention of this format is to facilitate comparisons between and among the different caverns and the different attributes for each cavern.

First, a top (map) view of the cavern is presented at the beginning of each cavern section. Second, we present (1) the measured radius, (2) the centered radius, (3) the averaged radius, (4) the minimum radius, and (5) the maximum radius. Next, we present the various measures of depa-
ture from the idealized cylindrical form: (6) the radius standard deviation, (7) the out-of-round distance, (8) the out-of-round ratio, and (9) the overall out-of-round ratio. Finally, we present the measures of each cavern in relationship to the other caverns in the field. The first part of this relationship involves (10) the distance from each point of the external surface of the cavern to the closest point on any neighboring cavern. The second part of this relationship involves (12) the three-dimensional pillar-to-diameter ratio.

Each of these computed cavern attributes is presented from four quadrants of the compass: southwest, southeast, northeast, and northwest. The angle of inclination of the perspective views is constant at from 20 degrees above the horizontal. After reviewing many, many sonar images, these view angles appear to capture the overall image of the caverns in a fairly satisfactory manner, for a static, printed format.

Some brief comments on the presentation, itself, are appropriate. The spatial axes shown for each sonar image are generated by the computer modeling program. As such, there is only minimal control over the positioning of the axis labels and the coordinate values. As the cavern views, described in the preceding paragraph, rotate through 360 degrees, the labels rotate also. Thus in some images, the labels will be “reversed”. They are always shown “properly” from the south.

Some clipping of the various images has also been necessary to fit the various images into the page format of this report. This effect has been minimized. However, where the choice was
between a larger image of the cavern, proper, and including the entire image (especially axis labels) in the visible portion of the figure, we opted for the larger cavern image. Mental compensation for these two unavoidable visualization artifacts should be fairly easy and intuitive.

Velocity of Sound

One of the “cavern” attributes contained in some sonar survey files is the measured velocity of sound, as recorded by the sonar tool during its vertical transit of the cavern. We present, as the final image in each cavern set, a horizontal view showing this measured velocity. The view is from due south.

Note that the velocity profile is a function of the fill state of the cavern at the time of the survey. Note, also, that the velocity profile is not provided by all sonar vendors. The result is that we are unable to present a meaningful illustration of this type for a number of the caverns.

The Interactive Sonar Atlas

Additional details and greater insight into the cavern geometries may be gained through use of the digital images, included on the compact disk contained in the pocket at the back of this report volume. These digital files contain the same set of cavern attributes as the printed illustrations. The user may step through the various display attributes one at a time.

However, the format of the files allows the user to view and manipulate each image, as may be desired. The cavern models may be rotated to view the images from any desired direction, using the mouse. Additionally, the images may be panned across the computer screen, and zoomed in or out to any desired magnification. Finally, the user may print any particular view, or save the image to a digital image file for later use. The cavern identification, as well as the visible attribute, are indicated on the screen, in order to ensure positive identification of the particular view.

Installation instructions for the visualization software are included in the Appendix. The appendix also contains more detailed instructions for using the visualization software and manipulating the viewer.

The viewer is proprietary software of C Tech Development Co. (www.ctech.com). However, the software may also be used in “unlicensed” mode. In unlicensed mode, only files that have been written containing a special binary code are viewable. Other files cannot be loaded or viewed. In essence, then, the “license” is portable with the model files, themselves. Sandia National Laboratories is able to write these binary codes into each and every model file, thus facilitating use of such models by anyone, without the need to purchase a separate license for the player, itself.
The West Hackberry SPR Site

Cavern WH-6

Figure 1. Map view sonar image of cavern WH-6, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-6, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 3. Sonar images of cavern WH-6, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 4. Sonar images of cavern WH-6, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 5. Sonar images of cavern WH-6, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 6. Sonar images of cavern WH-6, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 7. Sonar images of cavern WH-6, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 8. Sonar images of cavern WH-6, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 9. Sonar images of cavern WH-6, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 10. Sonar images of cavern WH-6, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 11. Sonar images of cavern WH-6, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 12. Sonar images of cavern WH-6, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 13. Sonar images of cavern WH-6, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 14. Sonar images of cavern WH-6, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 15. Sonar images of cavern WH-6, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 16. Sonar images of cavern WH-6, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 17. Sonar images of cavern WH-6, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 18. Sonar images of cavern WH-6, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 19. Sonar images of cavern WH-6, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 20. Sonar images of cavern WH-6, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 21. Sonar images of cavern WH-6, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 0°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 22. Sonar images of cavern WH-6, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 23. Sonar images of cavern WH-6, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 24. Sonar images of cavern WH-6, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 10°; (b) azimuth 150°, elevation 10°.
Figure 25. Sonar images of cavern WH-6, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 10°; (b) azimuth 300°, elevation 10°.
Figure 26. Sonar image of cavern WH-6, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of August 1982. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-7, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-7, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-7, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-7, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-7, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-7, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-7, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-7, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-7, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-7, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-7, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-7, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-7, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-7, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-7, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-7, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-7, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-7, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-7, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-7, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-7, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-7, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-7, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-7, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-7, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
No Sonic Velocity Data Available

Figure 26. Sonar image of cavern WH-7, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of May 2005. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-8, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-8, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-8, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-8, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-8, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-8, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-8, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-8, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-8, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-8, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-8, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-8, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-8, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-8, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-8, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-8, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-8, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-8, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-8, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-8, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-8, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-8, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-8, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-8, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-8, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
No Sonic Velocity Data Available

Figure 26. Sonar image of cavern WH-8, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of September 2003. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-9, showing the geometric shape geometry of the cavern. The "open" center is an artifact of the surveying technique. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-9, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-9, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-9, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-9, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-9, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-9, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-9, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-9, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-9, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-9, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-9, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-9, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-9, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-9, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-9, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-9, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-9, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-9, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-9, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-9, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-9, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-9, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-9, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-9, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-9, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of May 1977. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-11, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-11, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-11, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-11, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-11, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-11, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-11, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-11, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-11, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-11, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-11, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-11, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-11, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-11, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-11, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-11, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-11, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-11, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-11, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-11, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-11, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-11, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-11, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-11, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-11, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-11, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of May 2003. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-101, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-101, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-101, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-101, showing the geometry of the cavern colored by measured radius azimuth. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-101, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-101, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-101, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-101, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-101, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-101, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-101, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-101, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-101, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-101, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-101, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-101, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-101, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-101, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-101, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-101, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 165°, elevation 20°.
Figure 21. Sonar images of cavern WH-101, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-101, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-101, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-101, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-101, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
No Sonic Velocity Data Available

Figure 26. Sonar image of cavern WH-101, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of September 2006. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-102, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-102, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-102, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-102, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-102, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-102, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-102, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-102, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-102, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-102, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-102, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-102, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-102, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-102, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-102, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-102, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-102, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-102, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-102, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-102, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-102, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-102, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-102, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-102, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-102, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
No Sonic Velocity Data Available

Figure 26. Sonar image of cavern WH-102, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of September 2006. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-103, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-103, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-103, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-103, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-103, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-103, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-103, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-103, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-103, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-103, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-103, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-103, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-103, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-103, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-103, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-103, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-103, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-103, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-103, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-103, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-103, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-103, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-103, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-103, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-103, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-103, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of August 2000. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-104, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-104, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-104, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-104, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-104, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-104, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-104, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-104, showing the geometry of the cavern colored by average radius. View from (a) azimuth View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-104, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-104, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-104, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-104, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-104, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-104, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-104, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-104, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-104, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-104, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-104, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-104, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-104, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-104, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-104, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-104, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-104, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-104, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of July 2000. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-105, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-105, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-105, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-105, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-105, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-105, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-105, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-105, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-105, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-105, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-105, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-105, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-105, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-105, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-105, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-105, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-105, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-105, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-105, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-105, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-105, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-105, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-105, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-105, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-105, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-105, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of August 2000. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-106, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-106, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-106, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-106, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-106, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-106, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-106, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-106, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-106, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-106, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-106, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-106, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-106, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-106, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-106, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-106, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-106, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-106, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-106, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-106, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-106, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-106, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-106, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-106, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-106, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-106, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of June 2000. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-107, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-107, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-107, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-107, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-107, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-107, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-107, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-107, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-107, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-107, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-107, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-107, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-107, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-107, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-107, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-107, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-107, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-107, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-107, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-107, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-107, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-107, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-107, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-107, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-107, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-107, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of November 1999. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-108, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-108, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-108, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-108, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-108, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-108, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-108, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-108, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-108, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-108, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-108, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-108, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-108, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-108, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-108, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-108, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-108, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-108, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-108, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-108, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-108, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-108, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-108, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-108, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-108, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-108, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of April 2003. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-109, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-109, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-109, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-109, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-109, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-109, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-109, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-109, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-109, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-109, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-109, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-109, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-109, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-109, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-109, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-109, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-109, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-109, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-109, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-109, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-109, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-109, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-109, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-109, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-109, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
No Sonic Velocity Data Available

Figure 26. Sonar image of cavern WH-109, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of April 2006. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-110, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-110, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-110, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-110, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-110, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-110, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-110, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-110, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-110, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-110, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-110, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-110, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-110, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-110, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-110, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-110, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-110, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-110, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-110, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-110, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-110, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-110, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-110, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-110, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-110, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-110, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of May 2003. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-111, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-111, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-111, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-111, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-111, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-111, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-111, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-111, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-111, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-111, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-111, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-111, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-111, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-111, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-111, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-111, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-111, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-111, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-111, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-111, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-111, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-111, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-111, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-111, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-111, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-111, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of April 2006. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-112, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-112, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-112, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-112, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-112, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-112, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-112, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-112, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-112, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-112, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-112, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-112, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-112, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-112, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-112, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-112, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-112, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-112, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-112, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-112, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-112, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-112, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-112, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-112, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-112, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
No Sonic Velocity Data Available

Figure 26. Sonar image of cavern WH-112, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of July 2006. View from due south, elevation zero.
Cavern WH-113

Figure 1. Map view sonar image of cavern WH-113, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-113, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-113, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-113, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-113, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-113, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-113, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-113, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-113, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-113, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-113, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-113, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-113, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.

SAND2007-6051 Cavern WH-113 511
Figure 14. Sonar images of cavern WH-113, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-113, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-113, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-113, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-113, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-113, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-113, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-113, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-113, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-113, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-113, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-113, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-113, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of November 2000. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-114, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-114, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-114, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-114, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-114, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-114, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-114, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-114, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-114, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-114, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-114, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-114, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-114, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-114, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-114, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-114, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-114, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-114, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-114, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-114, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-114, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-114, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-114, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-114, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-114, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
No Sonic Velocity Data Available

Figure 26. Sonar image of cavern WH-114, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of July 2006. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-115, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-115, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-115, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-115, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-115, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-115, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-115, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-115, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-115, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-115, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-115, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-115, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-115, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-115, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-115, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-115, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-115, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-115, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-115, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-115, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-115, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-115, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-115, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-115, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-115, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-115, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of August 2006. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-116, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-116, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-116, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-116, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-116, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-116, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-116, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-116, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-116, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-116, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-116, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-116, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-116, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-116, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-116, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-116, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-116, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-116, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-116, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-116, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-116, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-116, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-116, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-116, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-116, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-116, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of April 2000. View from due south, elevation zero.
Figure 1. Map view sonar image of cavern WH-117, showing the basic geometric shape of the cavern. Grid squares represent 150 ft.
Figure 2. Sonar images of cavern WH-117, showing the basic geometry of the cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 3. Sonar images of cavern WH-117, showing the basic geometry of the cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 4. Sonar images of cavern WH-117, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 5. Sonar images of cavern WH-117, showing the geometry of the cavern colored by measured radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 6. Sonar images of cavern WH-117, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 7. Sonar images of cavern WH-117, showing the geometry of the cavern colored by centered radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 8. Sonar images of cavern WH-117, showing the geometry of the cavern colored by average radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 9. Sonar images of cavern WH-117, showing the geometry of the cavern colored by average radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 10. Sonar images of cavern WH-117, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 11. Sonar images of cavern WH-117, showing the geometry of the cavern colored by minimum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 12. Sonar images of cavern WH-117, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 13. Sonar images of cavern WH-117, showing the geometry of the cavern colored by maximum radius. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 14. Sonar images of cavern WH-117, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 15. Sonar images of cavern WH-117, showing the geometry of the cavern colored by radius standard deviation. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 16. Sonar images of cavern WH-117, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 17. Sonar images of cavern WH-117, showing the geometry of the cavern colored by out-of-round distance. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 18. Sonar images of cavern WH-117, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 19. Sonar images of cavern WH-117, showing the geometry of the cavern colored by out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 20. Sonar images of cavern WH-117, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 21. Sonar images of cavern WH-117, showing the geometry of the cavern colored by overall out-of-round ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 22. Sonar images of cavern WH-117, showing the geometry of the cavern colored by the minimum distance to the nearest neighboring cavern. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 23. Sonar images of cavern WH-117, showing the geometry of the cavern colored by minimum distance to the nearest neighboring cavern. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 24. Sonar images of cavern WH-117, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 210°, elevation 20°; (b) azimuth 150°, elevation 20°.
Figure 25. Sonar images of cavern WH-117, showing the geometry of the cavern colored by three-dimensional pillar-to-diameter ratio. View from (a) azimuth 60°, elevation 20°; (b) azimuth 300°, elevation 20°.
Figure 26. Sonar image of cavern WH-117, showing the geometry of the cavern colored by the reported velocity of sound on the survey date of March 2004. View from due south, elevation zero.
The West Hackberry Cavern Field as a Whole

Figures 587 through 596 show the various caverns at the West Hackberry SPR site in relationship to one another. Only data components that are particularly relevant to the cavern field, itself, are presented in this section. These include cavern elevation (figs. 587 and 588), overall average cavern radius (figs. 589 and 590), and the cavern out-of-round distances (figs. 591 and 592). Also included are the minimum distances to adjoining caverns (figs. 593 and 594), and the three-dimensional pillar-to-diameter ratio (figs. 595 and 596).
Figure 1. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. Component shown is elevation.
Figure 2. Perspective view of the entire cavern field at the West Hackberry SPR site from the northeast. Component shown is elevation.
Selected Component:
Overall Average Radius

Figure 3. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. Component shown is overall average cavern radius.
Selected Component: Overall Average Radius

Figure 4. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. Component shown is overall average cavern radius.
Selected Component:
Out-of-Round

Figure 5. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. Component shown is the out-of-round distance.
Figure 6. Perspective view of the entire cavern field at the West Hackberry SPR site from the northeast. Component shown is the out-of-round distance.
Figure 7. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. Component shown is the minimum distance to the adjoining cavern(s).
Figure 8. Perspective view of the entire cavern field at the West Hackberry SPR site from the northeast. Component shown is the minimum distance to the adjoining cavern(s).
Figure 9. Perspective view of the entire cavern field at the West Hackberry SPR site from the southwest. Component shown is the three-dimensional pillar-to-diameter ratio.
Selected Component:
P/D Ratio

Figure 10. Perspective view of the entire cavern field at the West Hackberry SPR site from the northeast. Component shown is the three-dimensional pillar-to-diameter ratio.
REFERENCES

APPENDIX: INSTALLATION AND USE OF 4DIM PLAYER SOFTWARE
Introduction

This appendix describes a powerful means for examining a three-dimensional geologic model. The geological modeling software environment, collectively known as MVS (Mining Visualization System), developed by C Tech Development Corporation (www.ctech.com), includes a derivative model “type”, known as 4DIM files (for 4-Dimensional Interactive Model). 4DIM models are fully three-dimensional representations of selected model components, developed through the use of C Tech’s modeling software.

The unique aspect of 4DIM models is that they are user manipulable. In contrast to a static still image or screen capture, the user may rotate, pan, and zoom in or out on any part of the model that is desired. The ability to rotate and change the viewing perspective of a three-dimensional model may be critical to understanding and conceptualizing detailed spatial relationships. Objects closer to the viewer behave in subtle, but importantly different, ways than objects located farther away. Such visual cues, obtained through on-screen interaction with a model, simply are not possible with any static view.

C Tech Development Corporation makes an “unlicensed” 4DIM viewer freely available over the internet. A “licensed” version is also available for purchase. Unlicensed, in this context, means that the player will not view all 4DIM files. A specially encoded 4DIM file is required in the “unlicensed” case. Only 4DIM models that have been created by the higher-end versions of C Tech software are capable of writing such model files. Functionally, a “license” is inserted, as binary code, into these files. 4DIM models generated by the lower-cost and more simplistic versions of C Tech’s software do not generate these encoded files.

Sandia National Laboratories licenses MVS, the top-end modeling software from C Tech Development Corporation. Accordingly all 4DIM files generated using MVS are encoded with the necessary portable-license key for use with the unlicensed version of the player.

Software Installation Instructions

The 4DIM player software currently runs on personal computers under the Microsoft Windows® operating system. The unlicensed version of the player may be downloaded over the internet from http://www.ctech.com. As the website changes episodically, some internal navigation of the site may be required to located the downloadable version. A functioning version of the unlicensed 4DIM player is included on the CD-R in the back of this report. Administrator privileges are required to install the 4DIM player. However, these privileges are not required for routine running of the software.

To install the 4DIM player, located the file, 4DIM_setup.exe, within the install subdirectory (folder) of the CD-R. Note that the .exe extension will not necessarily be visible if the Windows file manager option to “Hide file extensions for known file types” is checked. Double-click or otherwise open this file. The preferred installation location of a standard Windows PC is in a c:\4DIM directory (at the root level of the boot or system disk). This is the default location, and it may be changed as desired, so long as the caveat regarding not installing the software to a folder whose name contains a space, is observed. All defaults may simply be accepted during the installation process.

Software Operating Instructions

Once properly installed, the file extension “.4d” is associated by Windows with 4DIM model files and with the 4DIM player. Therefore, a 4DIM model may be viewed simply by navigating to the storage location of any .4d file and double-clicking on the relevant icon. The 4DM player may also be started via the Windows Start | Programs menu command structure, or by use of a desktop shortcut. In either
of these latter instances, in will be necessary to open a particular 4DIM model file using the player’s File | Open menu command. The remaining menu buttons operate in a manner consistent with standard Windows programs.

Once a .4d file is opened in the viewer, the visible model may be manipulated as follows.

1. To rotate the model, left-click and drag somewhere on the visible model.
2. To pan (shift) the model on the screen, right-click and drag somewhere on the model.
3. To zoom in, left click which holding down the Shift key, and move the mouse pointer upward on the screen. To zoom out, left-click while holding down the Shift key and move the mouse pointer downward on the screen. Zooming in either direction is toward/from the center of the screen, so it may be necessary to pan the model (see above) to maintain the desired position on the screen.
4. To specify the view from a particular direction, open the Az-El (azimuth and elevation) menu option at the top of the 4DIM player screen. This operation will bring up a separate window that will allow specification of the azimuth from which to view the model, the elevation above (+) or below (–) the horizon from which to view the model, and the scale factor which controls the magnification (zoom level) of the image. Either the radio buttons or the slider or the indicated type-in boxes may be used to specify the view. Use of the “RNC” menu option may also be necessary when a file is first opened.
5. If the view becomes hopelessly confused, or if the model disappears completely from the view, there are two ways to re-center the default view: (a) Use the “RNC” menu button at the top of the 4DIM player screen, or click on the multicolored button in the upper left of the Az-El window.

More than one interactive “model” may be contained in a 4DIM file. If this is the case, the slider bar at the bottom of the main player window will indicate “Current frame [xx of nn]”, where nn is the total number of individual model representations within the file. To step through the sequence of a multi-frame 4DIM file, simply click on the arrows at either end of the slider bar or left-click and drag on the slider itself.

Depending upon how a 4DIM file containing multiple model representations was constructed, the successive frames may constitute an animated sequence. To view such a sequence, use one or more of the eight arrow buttons at the bottom left of the main player window. It will most likely help to increase the “Delay (seconds)” setting on the bottom right of the main window from its default value of 0.0. This sets the time between successive images, and the value may be adjusted as desired to achieve an aesthetically pleasing progression of frames.

An important setting for 4DIM files generated by Sandia National Laboratories is the screen background. The default value is black. However, many sequences contained on the CD-R with this report are predicated upon a white background. Certain text and other objects may not be visible unless this setting is changed. To do so, issue the menu command “Settings | View | Background | Set to white”.

644 West Hackberry SPR Site SAND2007-6051
DISTRIBUTION:

U.S. Department of Energy (via CD-R only)
Strategic Petroleum Reserve Project Management Office
900 Commerce Road East
New Orleans, LA 70123

U.S. Department of Energy (3)
Strategic Petroleum Reserve Program Office
1000 Independence Avenue, SW
Washington, DC 20585
ATTN: D. Johnson, FE-421

Sandia Internal:

MS 0735 J. Merson, 6310 (electronic copy)
MS 1104 Margie Tatro, 6200 (electronic copy)
MS 0706 D.J. Borns, 6312 (electronic copy)
MS 0706 B.L. Ehgarter, 6312 (electronic copy)
MS 0706 B.L. Levin, 6312 (electronic copy)
MS 0706 Anna S. Lord, 6312 (electronic copy)
MS 0706 David L. Lord, 6312 (electronic copy)
MS 0706 D.E. Munson, 6312 (electronic copy)
MS 0706 C.A. Rautman, 6312 (electronic copy)
MS 0706 A.R. Sattler, 6312 (electronic copy)
MS 0706 S. Wallace, 6312 for SPR library (5)
MS 9018 Central Tech. Files, 8944 (electronic copy)
MS 0899 Technical Library, 9536 (electronic copy)