0.351 micron Laser Beam propagation in High-temperature Plasmas

PDF Version Also Available for Download.

Description

A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (T{sub e} = 3.5 keV), dense (n{sub e} = 5 x 10{sup 20}cm{sup -3}), long-scale length (L {approx} 2 mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than ... continued below

Physical Description

PDF-file: 20 pages; size: 1 Mbytes

Creation Information

Froula, D.; Divol, L.; Meezan, N.; Ross, J.; Berger, R. L.; Michel, P. et al. December 10, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 31 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (T{sub e} = 3.5 keV), dense (n{sub e} = 5 x 10{sup 20}cm{sup -3}), long-scale length (L {approx} 2 mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I < 2 x 10{sup 15} W-cm{sup -2}. The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. A plasma length scaling is also investigated extending our measurements to 4-mm long high-temperature plasmas. At intensities I < 5 x 10{sup 14} W-cm{sup -2}, greater than 80% of the energy in the laser is transmitted through a 5-mm long, high-temperature (T{sub e} > 2.5 keV) high-density (n{sub e} = 5 x 10{sup 20} w-cm{sup -3}) plasma. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R=10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (n{sub e} = 10{sup 21} cm{sup -3}) in these targets, the inner beam ignition hohlraum conditions are accessed. In this case, stimulated Raman scattering dominates the backscattering processes and we show that scattering is small for gains less than 20 which can be achieved through proper choice of the laser beam intensity. The first three-dimensional (3D) simulations of a high power 0.351 {micro}m laser beam propagating through a high-temperature hohlraum plasma are also reported. We show that 3D linear kinetic modeling of Stimulated Brillouin scattering reproduces quantitatively the experimental measurements, provided it is coupled to detailed hydrodynamics simulation and a realistic description of the laser beam from its millimeter-size envelop down to the micron scale speckles. These simulations accurately predict the strong reduction of SBS measured when polarization smoothing is used.

Physical Description

PDF-file: 20 pages; size: 1 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LLNL-TR-400070
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/924004 | External Link
  • Office of Scientific & Technical Information Report Number: 924004
  • Archival Resource Key: ark:/67531/metadc897677

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 10, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 21, 2016, 2:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 31

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Froula, D.; Divol, L.; Meezan, N.; Ross, J.; Berger, R. L.; Michel, P. et al. 0.351 micron Laser Beam propagation in High-temperature Plasmas, report, December 10, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc897677/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.