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Abstract 

Grafting of CoII(NCCH3)2Cl2 onto mesoporous Ti-MCM-41 silica in acetonitrile solution 

affords binuclear Ti-O-CoII sites on the pore surface under complete replacement of the 

precursor ligands by interactions with anchored Ti centers and the silica surface. The CoII 

ligand field spectrum signals that the Co centers are anchored on the pore surface in 

tetrahedral coordination. FT-infrared action spectroscopy using ammonia gas adsorption 

reveals Co-O-Si bond modes at 831 and 762 cm-1. No Co oxide clusters are observed in 

the as-synthesized material. The bimetallic moieties feature an absorption extending from 

the UV into the visible to about 600 nm which is attributed to the TiIV-O-CoII    TiIII-O-

CoIII metal-to-metal charge-transfer (MMCT) transition. The chromophore is absent in 

MCM-41 containing Ti and Co centers isolated from each other; this material was 

synthesized by grafting CoII onto a Ti-MCM-41 sample with the Ti centers protected by a 

cyclopentadienyl ligand. The result indicates that the appearance of the charge-transfer 

absorption requires that the metal centers are linked by an oxo bridge, which is 

additionally supported by XANES spectroscopy. The MMCT chromophore of Ti-O-CoII 

units has sufficient oxidation power to serve as visible light electron pump for driving 

multi-electron transfer catalysts of demanding uphill reactions such as water oxidation. 
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1. Introduction 

Robust, inert mesoporous solids such as silica offer opportunities for arranging 

and coupling polynuclear metal oxide units for photosynthetic transformations such as 

carbon dioxide reduction and water oxidation. The pore surface chemistry of silanol-rich 

silica materials like MCM-41 is suitable for assembling and covalent anchoring of 

polynuclear moieties. Equally importantly, the very high surface area of the support 

allows to accommodate photocatalytic sites at sufficient density so that catalytic rates are 

able to keep up with the solar flux, and nanostructured features of the support offer ways 

to separate catalytic reduction from oxidation sites. We have recently assembled 

binuclear units of type Ti-O-CuI, Ti-O-SnII, Zr-O-CuI in the 30 A pores of MCM-41.1,2  

These units are covalently anchored on the silica pore surface and possess a metal-to-

metal charge-transfer (MMCT) absorption with a tail extending into the visible spectral 

region. In the case of the material with anchored Zr-O-CuI groups, excitation of the 

MMCT transition led to the reduction of CO2 gas loaded into the mesopores to CO by a 

single photon process under concurrent oxidation of CuI to CuII.2 Also in the pores of 

MCM-41, water oxidation to O2 was demonstrated by driving an Ir oxide nanocluster 

catalyst by an O-CrVI ligand-to-metal charge-transfer (LMCT) pump under visible light.3  

 

In order to couple the H2O oxidation and the CO2 half reactions and thereby close 

the photosynthetic cycle, the next step is to replace the O-CrVI LMCT chromophore by a 

binuclear MMCT electron pump. The reason is that the free choice of partner metals of 

heterobinuclear units affords precise tuning of the redox energetics, which is necessary in 

order to couple the two half reactions and minimize overpotentials while maximizing the 
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visible absorption properties of the charge transfer chromophore. Specifically, the redox 

potential of the donor center of the MMCT unit (i.e. the metal center pulling electrons 

from the multi-electron transfer catalyst for water oxidation) needs to be in the range 1.3-

1.8 V, which is dictated by the minimal potential for driving a multi-electron water 

oxidation catalyst (1.23 V)4. Donor metals like CuI, SnII used so far1 do not have this 

property; these d10 and s2 metals were selected in our previous studies in order to 

facilitate the detection and identification of MMCT absorption of all-inorganic, binuclear 

units. For driving water oxidation catalysts, the first row transition metal CoIII is 

sufficiently oxidizing (Eo = 1.8 V)5. Therefore, photo-excitation of the charge-transfer 

unit TiIV-O-CoII    TiIII-O-CoIII would generate Co in an oxidation state that is 

energetically capable of driving a water oxidation catalyst.  

 

 In this paper, we report a synthetic procedure for the preparation of binuclear 

TiOCo sites on the surface of mesoporous silica MCM-41. Optical and FT-IR 

spectroscopy revealed a visible absorption tail of the MMCT unit and furnished evidence 

for covalent anchoring of the Co center.   

 

 

2.  Experimental Section 

2.1 Synthesis of Materials 

Siliceous MCM-41 sieve was prepared using previously described hydrothermal 

synthesis method,1 except that the aging time in the autoclave at 110 °C was increased 

from previous 2 days to 3 days in order to assure complete silica condensation. The 
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grafting of Ti centers was conducted according to the titanocene dichloride method of 

Maschmeyer et al.6, and standard Schlenk method was use throughout. Briefly, calcined 

MCM-41 powder (1.8 g) was dehydrated in a Schlenk tube at 250 °C under vacuum for 4 

h. Titanocene dichloride (76.5 mg) was added under N2 flow at RT. Following evacuation 

for 30 min, dichloromethane (80 mL) was vacuum distilled into the Schlenk tube. The 

suspension was stirred for 1h at RT to assure complete dissolution and diffusion of the 

TiCp2Cl2 into the silica mesopores. The base TEA (tetraethylamine, 0.8 mL) was added 

dropwise under nitrogen flow and the reaction continued under stirring for 5 h at RT. 

Over this period, the color of the suspension turned from red to pale yellow. The solution 

was filtered and the powder washed thoroughly with dichloromethane. The colorless 

filtrate confirmed that most of the TiCp2Cl2 was grafted onto MCM-41. Calcination of 

thus obtained pale yellow as-synthesized Ti-MCM-41 powder under flow of oxygen at 

550 °C for 5h (preceded by ramp-up from RT to 550 °C over a period of 5 h) resulted in 

white, template free Ti-MCM-41 powder. Characterization by DRS, XANES and XRD 

confirmed grafting of Ti as isolated tetrahedral Ti centers. The Ti/Si ratio was 0.74 % per 

ICP analysis.  

 

The bimetallic TiCoII-MCM-41 was synthesized as follows. CoCl2 (43.2 mg) was 

directly dissolved in acetonitrile (50 mL) in a Schlenk tube by stirring for 12 h at RT 

under nitrogen atmosphere (all subsequent operations were also conducted under N2 

flow). The solution was added to freshly calcined and dehydrated Ti-MCM-41 powder (1 

g) in another Schlenk tube and stirred for 1h at RT, followed by addition of TEA (1 mL) 

and further stirring for 3 h at RT. The colorless supernatant indicated quantitative uptake 
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of CoII into the silica pores. After filtration and washing with excess CH3CN a pale blue 

powder was obtained. A typical Co/Ti ratio was 1.5 according to ICP analysis. For the 

synthesis of monometallic CoII-MCM-41 (Co/Si = 1.5%), the same grafting procedure 

was used with calcined MCM-41 as starting material. Spectroscopic studies were 

conducted on TiCoII or CoII-MCM-41 materials after heating at 350 °C under vacuum, or 

following calcination at 350 °C or 550 °C. The absence of significant changes in the 

XRD patterns of CoII-MCM-41 and TiCoII-MCM-41 compared to parent MCM-41 and 

Ti-MCM-41 indicated no loss of long-range ordering upon Ti and Co grafting 

(Supporting Information, Figure S2).7,8  

 

For the preparation of a bimetallic sieve in which the Ti and Co are kept isolated, 

the as-synthesized Ti-MCM-41 sieve with the capping cyclopentadienyl ligand still 

attached to the grafted Ti centers was used. As a result, it is expected that subsequent 

anchoring of CoII according to the method described above would not result in significant 

attachment of CoII at Ti sites, but mainly to the surface silanol groups as in CoII-MCM-

41. For the synthesis of this material, the as-synthesized Ti-MCM-41 powder was 

dehydrated under vacuum at 150 °C and the other procedures are the same as described 

above for the synthesis of TiCoII-MCM-41. Removal of the cyclopentadienyl from the 

final Ti-CoII-MCM-41 product was accomplished by calcination at 350 °C or 550 °C. 

XRD measurements confirmed retention of the mesoporous long range ordering (Figure 

S2).7 A typical Co/Ti ratio of the material was 1.2 according to ICP analysis.  
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The species formed upon dissolving CoCl2 in acetonitrile is believed to be the 

tetrahedral complex CoII(NCCH3)2Cl2.9 Therefore, this is very likely the species that 

reacts with the SiOH or TiOH groups on the pore surface. In order to test this assumption, 

CoII(NCCH3)2 Cl2 was prepared according to literature procedure.9 Cobalt dichloride (50 

mg) was dissolved in acetonitrile (50 mL) in a Schlenk tube as described above. Removal 

of the solvent by evacuation at RT and recrystallization of the solid product in diethyl 

ether/acetonitrile (4:1) solution gave a blue powder. UV-visible spectrum (CoII (d-d) 

peaks at 571, 614, 690 nm) and IR spectrum (Nujol, CH3CN ligand absorptions at 2312, 

2285 cm-1) agreed well with the literature data.7,9 The CoII-MCM-41 was also synthesized 

using this isolated CoII(NCCH3)2Cl2 complex as cobalt precursor following the same 

procedure as described above. The optical and infrared spectra of the resulting material 

were the same as those of CoII-MCM-41 prepared by directly dissolving CoCl2 in 

CH3CN, consistent with Co(NCCH3)2Cl2 being the species that reacts with the silica 

surface. 

 

Chemicals: cetyltrimethyl ammonium bromide, ammonium hydroxide (30%), 

tetraethyl orthosilicate, bis(cyclopentadienyl) titanium dichloride (titanocene dichloride, 

TiCp2Cl2), cobalt dichloride (anhydrous), Co(II) oxide, Co(II) hydroxide, Co(II,III) oxide 

(Co3O4), pyridine (anhydrous) were obtained from Aldrich and used as received. Diethyl 

ether was distilled over sodium and benzophenone; acetonitrile was distilled over CaH2; 

dichloromethane was dried over 4Å molecular sieve activated at 400 °C; triethylamine (TEA) 

was dried over sodium. Ammonia (anhydrous) was obtained form Matheson Gas Inc. 
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2.2 Spectroscopy and Characterization 

Optical spectra were measured on a Shimadzu model UV-2100 spectrometer 

equipped with an integrating sphere model ISR260. For measurement of mesoporous silica 

samples, the powder was pressed into a self-sustaining pellet and mounted in a home-built 

vacuum cell for diffuse reflectance measurements.10 Barium sulfate was used as reference.  

FT-IR spectra were recorded on a Bruker model IFS66V spectrometer equipped with 

LN2 cooled MCT detectors Kolmar model KMPV8-1-J2 (8 μ bandgap), Infrared Associates 

(25 μ bandgap), or a DTGS detector (for 600-400 cm-1 region). Pressed self-sustaining pellets 

of mesoporous silica powder (5 mg) were mounted in a transmission infrared vacuum cell 

equipped with KBr windows. The loading of the infrared cell was done under N2 atmosphere.  

X-ray absorption near-edge structure (XANES) spectra of Ti-K edge were recorded at 

beamline 9.3.1 at the Advanced Light Source. The beamline is equipped with a Si(111) 

double-crystal scanning monochromator and operated at 1.9 GeV with beam current in the 

range of 200-400 mA. Measurements were conducted in the fluorescence mode using a Si 

photodiode detector (Hamamatsu S2744-08). The samples (ca. 20mg and 12 mm diameter) in 

the form of self-supporting wafers were evacuated at RT at 2×10-7 Torr for 2 h prior to the 

measurements. The Ti K-edge spectra were recorded at RT with sampling intervals of 0.2 eV 

and recording time of 2 sec per data point. 

The powder XRD measurements were performed on a Siemens model D500 

diffractometer equipped with Ni-filtered Cu-Kα radiation source (λ = 1.5406 Ǻ). An 

accelerating voltage of 40 kV and a current of 30 mA were used for the X-ray setup. The 

textural uniformity of the MCM-41 materials was recorded for 2θ value over the range from 
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1.5° to 8° with a step size of 0.02° and a scanning rate of 1°/min. The XRD patterns of cobalt 

hydroxide, cobalt oxides, as well as the CoII-MCM-41, TiCoII-MCM-41 and Ti-CoII-MCM-

41 samples were also recorded over the range of 20° to 80° with a step size of 0.2° and 

scanning rate of 5°/min to probe for the presence of crystalline Co oxide clusters.   

 

 

 3.  Results and Discussion 

3.1 Single CoII Centers Anchored in MCM-41 

Established post-synthesis loading methods of CoII onto mesoporous silica result 

in extensive formation of Co oxide clusters, particularly when using aqueous solutions of 

the Co precursor.11,12 In order to achieve anchoring of isolated CoII centers while 

minimizing the formation of Co oxide clusters, we have explored a CoII grafting method 

using nonaqueous solutions of CoII complexes featuring labile acetonitrile ligands. 

CoII(NCCH3)2Cl2 in acetonitrile was exposed to calcined, dehydrated MCM-41 powders 

under rigorous exclusion of moisture. Grafting was accelerated by addition of TEA (at 

2% concentration) in order to activate the surface silanol groups. Figure 1, trace (a) 

shows the diffuse reflectance spectrum of the resulting CoII-MCM-41 powder following 

evacuation at RT. The visible absorption with maxima at 545, 610, and 673 nm is 

characteristic of ligand field transitions (4A2(F) → 4T1(P)) of tetrahedral CoII,13 and is 

very different from the d-d spectrum of octahedral CoII.14  Spectra of octahedral and 

tetrahedral CoII in aqueous and acetonitrile solution, respectively are given in Figure S1 

of the Supporting Information.7 FT-IR spectra of as-synthesized CoII-MCM-41 material 

after evacuation are presented in Figure 2, trace a, and show bands at 2987, 2954, 2889, 
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1477, 1460, 1394, and 733 cm-1. The spectrum agrees well with that of TEA loaded into 

MCM-41. The sharp peak at 3745 cm-1 is due to free SiOH groups on the mesopore 

surface, while the broad absorption at 3400 cm-1 is due to residual traces of water. No 

physisorbed acetonitrile1 or residual CH3CN ligands bound to CoII were observed. The 

latter have intense, characteristic C≡N stretch absorption at 2312 and 2285 cm-1 when 

coordinated to CoII.9 Absence of these bands indicates that no unreacted precursor 

remains in the silica pores, and that acetonitrile ligands are displaced completely upon 

grafting of the CoII precursor onto the silica pore surface at room temperature, 

presumably by forming Co-O-Si linkages or coordination of CoII to siloxane oxygen.   

Removal of the residual TEA (and HCl) was accomplished by calcination in air or 

under oxygen gas flow. As can be seen from Figure 2, trace b, the corresponding infrared 

bands completely disappear when calcining the as-synthesized material for 5 h at 350 °C. 

No new absorptions are detected in the region 4000-500 cm-1. Comparison of the noise 

level of the infrared spectrum for the CoII-MCM-41 sample calcined at 350 °C with the 

intensity of the 669 and 583 cm-1 peaks of the mechanical mixture Co3O4/MCM-41 

allowed us to conclude that at most 10 percent of the Co present in CoII-MCM-41 is 

engaged in Co3O4 cluster formation. The more sensitive DRS spectrum of CoII-MCM-41 

calcined at 350 °C reveals the presence of small amount of Co3O4 clusters by a shoulder 

at 760 nm (Figure 1, trace b). From the height of the shoulder, we estimate that about 14 

percent of the Co present in CoII-MCM-41 is converted to Co3O4 clusters. No formation 

of clusters is observed when heating to 350 °C in vacuum; however, traces of TEA were 

found to remain in the pores under these conditions. Calcination at the substantially 

higher temperature of 550 oC did result in growth of infrared bands at 669 and 583 cm-1 
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(Figure 2, trace c). They coincide with those of authentic spectra of Co3O4 mechanically 

mixed with MCM-41 particles (Figure S3)7 and literature data.15,16 The Co3O4
 cluster 

formation upon calcination at 550 oC could also be observed in the XRD spectra (see 

Figure S2B (2θ = 31.2, 36.7, 59.4, 65.2o).7,11 

Grafted CoII centers prepared by the method described above proved stable in 

aqueous solution. After repeated washing with water, a small blue shift of the visible 

ligand field peaks by 10-15 nm was observed, but no significant loss of intensity or 

change from tetrahedral coordination was noted (Figure 1, trace c). 

From inspection of the 1000-500 cm-1 infrared region of Co-MCM-41, it is not 

obvious whether modes associated with Co-O-Si linkages absorb in this region. Detection 

of these modes tends to be challenging because the corresponding bands are typically 

tens of cm-1 wide and may overlap with silica lattice absorptions; the asymmetric SiO2 

stretch extends from 1270 – 970 cm-1, the symmetric SiO2 stretch from 820 - 780 cm-1. 

Nevertheless, we have found recently that metal-oxygen bond modes can be identified by 

action spectroscopy.1,2 In the case of Co-MCM-41, exposure of the sieve to NH3 gas 

resulted in changes of the CoII coordination that revealed bands associated with Co-O-Si 

linkages. Figure 3a shows the difference spectrum of Co-MCM-41 after (minus before) 

exposure of the pellet to 3 Torr NH3 and subsequent evacuation for 1 h at RT. 

Absorbance growth at 3365, 3287, 3222, and 3194 cm-1 is attributed to NH stretch 

vibrations, while bands at 1619 and 1452 cm-1 are in a region where NH bending modes 

absorb.17 More specifically, the strong peaks at 3365, 3287 and 1619 cm-1 are very close 

to  the asymmetric and symmetric stretch and bending modes of ammine ligands of NiII 
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centers grafted onto MCM-41.18 Therefore, we assign the 3 bands to NH3 coordinated to 

CoII anchored on the pore surface. The weak absorptions at 3222, 3194, and 1452 cm-1 

are commonly associated with NH4
+.19-22 The formation of Co-NH3 ligands is 

accompanied by absorbance loss at 831 and 762 cm-1 as can been seen from Figure 3, 

trace a. No such negative features were observed when exposing ammonia to neat MCM-

41. We propose assignment of the 831 and 762 cm-1 bands to Co-O modes of Co-O-Si 

linkages that are replaced by Co-NH3 bonds upon loading of NH3 gas. The absorptions, 

which are in the same spectral region where the symmetric CoO stretching mode of CoO4 

tetrahedra absorb (790 cm-1),23 furnish evidence for covalent anchoring of the Co centers 

on the silica pore surface.  

 

3.2 Binuclear TiOCo Sites in MCM-41  

Binuclear TiOCoII sites were assembled by loading the Co(NCCH3)2Cl2 precursor 

into calcined Ti-MCM-41 sieve as described in the Sect. 2. We anticipate preferential 

reaction of the precursor with TiOH groups because of the higher acidity of titanol 

compared to silanol groups as indicated by a red shift of the OH stretch mode.24,25 This 

may result in a higher proportion of bimetallic sites relative to isolated CoII centers than 

predicted by the relative abundance of TiOH and SiOH groups. Infrared spectra of the as-

synthesized sample did not exhibit any residual CH3CN ligands. As in the case of Co-

MCM-41, heating under oxygen flow at 350 oC removed TEA completely (Figure 2, 

trace d). Comparison of the TiCoII-MCM-41 infrared spectrum with that of CoII-MCM-41 

(Figure 2, trace b) shows a 10 cm-1 red shift of the 975 cm-1 silica band upon Ti 
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anchoring, and a shoulder at 945 cm-1 that is not present in the monometallic Co material. 

Both bands are attributed to Si-O stretch vibrations of silica moieties perturbed by the 

presence of Ti centers.1,26-28 The NH3 action difference spectrum, trace b of Figure 3, 

shows depletion at 830 and 760 cm-1 assigned to Co-O modes of anchored Co centers (the 

peaks of the two depletion bands varied by a few cm-1 from sample to sample, which 

prevented us from discerning small shifts due to the presence of Ti). These depletions 

were absent when conducting the NH3 adsorption experiment with (Co-free) Ti-MCM-

41, as can be seen from Figure 3, trace d. In this case, only weak bands due to NH3 

coordinated to Ti (3399, 3292, 1608 cm-1) and ammonium ions (1658, 1452 cm-1) were 

observed, in agreement with literature.29 No Co oxide clusters were detected for this 

bimetallic material in the infrared even upon calcination at 550 oC.  

Figure 4 shows UV-Visible diffuse reflectance spectra of the resulting TiCoII-

MCM-41 materials after heating under vacuum at 350 oC (panel A) or upon calcination at 

550 oC (panel B). In each case, the spectrum of the correspondingly treated CoII-MCM-

41 sample and the superposition of the Ti-MCM-41 and CoII-MCM-41 spectra are shown 

for comparison (the Ti-MCM-41 spectrum has no optical absorption at λ>330 nm). The 

TiCoII-MCM-41 sieve exhibits a continuous absorption tail extending from the UV to 

around 600 nm in the red that is not present in the monometallic Co material. We 

attribute the new absorption to the TiIV/CoII  TiIII/CoIII MMCT transition. The relative 

intensity change of the peaks of the CoII(d-d) absorption profile upon treatment at 550oC 

compared to 350oC is typical for high temperature treatment of sieves containing 

tetrahedral CoII centers.30 While no Co3O4 cluster formation was detected by DRS for 

TiCoII-MCM-41 subjected to heating at 350 oC under vacuum (Figure 4A), a shoulder is 
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observed at 760 nm for TiCoII-MCM-41 calcined at 550 oC (Figure 4B). However, the 

band is much smaller than for the monometallic CoII-MCM-41 sieve, in agreement with 

the much lower yield of Co3O4 measured by XRD, shown in Figure S2B.  

The assignment of the new UV-Visible absorption band to a TiIV/CoII  TiIII/CoIII 

charge transfer transition is further supported by comparison of the TiCo-MCM-41 

sample with an MCM-41 sieve containing Ti and Co centers that are deliberately kept 

separated. The material, denoted Ti-CoII-MCM-41, was prepared by exploiting the 

cyclopentadienyl capping ligand as a protective group against substitution of Co at the Ti 

center according to the procedure described in Sect. 2. As can be seen from Figure 5, the 

DRS of Ti-CoII-MCM-41, trace a, is almost the same as a superposition of the spectra of 

monometallic Ti-MCM-41 and CoII-MCM-41 (Figure 5, trace c) and does not show the 

continuous absorption tail of TiCoII-MCM-41 (Figure 5b). Yet, the presence of grafted Ti 

and Co centers in Ti-CoII-MCM-41 is clearly demonstrated by the Co-O-Si and Ti-O-Si 

bond modes detected in the infrared at 762, 831 and 934 cm-1 (Figure 3, trace c). 

Absorbance loss of Ti-perturbed silica modes at 934 cm-1, but not at 965 cm-1, suggests 

that only Ti sites that give rise to the 934 cm-1 band interact with ammonia. Clearly, the 

appearance of the MMCT absorption band requires a linkage between Ti and Co centers. 

The substitution reaction of the Co(NCCH3)2Cl2 at the TiOH center that results in the 

formation of the MMCT absorption suggests that the two metal centers are linked by an 

oxo bridge. Therefore, we assign the UV-Visible absorption tail to a TiIV-O-CoII  TiIII-

O-CoIII charge-transfer transition and conclude that the TiCoII-MCM-41 sieve has 

anchored TiOCo units along with isolated Co and Ti sites. 
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In order to investigate the possibility of a hydroxo rather than an oxo bridge 

between the anchored Ti and Co centers, a TiCoII-MCM-41 material calcined at 350 oC 

was exposed to 3 Torr pyridine gas. Pyridine is known to convert quantitatively to 

pyridinium upon exposure to Bronsted acid sites such as bridging hydroxyl groups, giving 

rise to a characteristic infrared band at 1545 cm-1.31 As can be seen from the FT-IR 

difference spectrum of Figure 6, trace b, no pyridinium is observed, just pyridine 

interacting with CoII. The latter acts as weak Lewis acid, giving rise to an absorption 

band at 1450 cm-1. We conclude that there is no evidence for the presence of Ti-O(H)-Co 

linkages. 

Comparison of Ti K-edge XANES spectra of TiCoII-MCM-41, CoII-MCM-41, 

and Ti-CoII-MCM-41 materials furnish additional evidence for a change of the 

coordination geometry in the case of the TiCoII units. Figure 7A shows the K-edge 

absorption spectra of the three samples, and Figure 7B the Ti A1-T2 pre-edge peak on an 

expanded scale (the peak at 4968 eV is taken as the origin of the energy scale). As 

previously observed for the case of TiCuI-MCM-411 and reported earlier as evidence for 

the distortion of tetrahedrally coordinated Ti,32 the intensity decrease and small but 

reproducible blue shift of 0.2 eV of the pre-edge peak is consistent with distortion of the 

Ti coordination from tetrahedral geometry due to formation of an oxo bridge to another 

metal center.  

There are precedents for Ti-O-CoII moieties in other solid environments. 

Eldewick and Howe23 have reported oxo-linked Ti-O-CoII centers in microporous 

titanosilica material of type ETS-10. The structure of ETS-10 comprises corner-sharing 
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SiO4 tetrahedra and TiO6 octahedra linked through bridging oxygens.33 In the bimetallic 

Co-ETS-10 sieve, the cobalt centers were found to isomorphically substitute Si sites 

adjacent to TiO6 octahedra based on EXAFS evidence.23 A visible absorption tail 

extending beyond 500 nm is observed, which is not present in monometallic ETS-10. 

Metal-to-metal charge-transfer TiIVOCoII    TiIIIOCoIII is the only conceivable 

assignment for the new absorption band. Furthermore, the color of many dense phase, 

mixed metal oxides have long been attributed to MMCT transitions. Specifically, CoII-

doped titanate MgTi2O5:CoII exhibits a strong continuous TiIVOCoII    TiIIIOCoIII 

absorption tail extending from the UV region to about 700 nm. The band is overlapped 

by, but clearly distinguishable from the CoII ligand field transitions.34,35
 

According to a theory first laid out by Hush, aside from the reorganization energy, 

the MMCT transition energy depends on the ionization energy of the divalent donor and 

the electron affinity of the acceptor metal center.36 As a consequence, other divalent 

transition metal ions oxo-bridged to TiIV are likely to give rise to MMCT transitions 

absorbing in the visible as well because their ionization potentials are relatively close to 

each other.37 In fact, a number of divalent first row transition metal titanates absorb in the 

visible.34,35,38 The monotonous increase of the onset of the MMCT absorption band for 

FeII, MnII, CoII, and NiII titanates from the near infrared to the green spectral region 

reflects the ordering of the ionization potentials of the metal centers.34 These observations 

on solid mixed metal oxides indicate that assembly of corresponding binuclear TiOMII 

moieties on silica mesopore surfaces may open up access to visible light-absorbing redox 

sites with tunable oxidation properties.  
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4. Conclusions 

In summary, a grafting method in non-aqueous media is reported that affords 

anchoring of single Co centers on the surface of silica mesopores in the absence of 

significant Co oxide cluster formation. The formation of binuclear Ti-O-Co units is 

evidenced by the observation of a TiIV-O-CoII    TiIII-O-CoIII charge-transfer 

chromophore extending throughout the visible to 600 nm, and infrared bands assigned to 

Co-O-Si linkages. A more detailed study of the coordination environment of each metal 

and the geometry of the oxo bridge by EXAFS is planned.  

The TiCoII-MCM-41 material reported here expands the range of mesoporous 

silicas featuring visible light absorbing MMCT units anchored on the pore surface in 

terms of coverage of the visible spectrum and accessible redox potentials. In particular, 

CoIII generated upon MMCT excitation of the Ti-O-CoII site is energetically capable of 

driving a multi-electron transfer catalyst for H2O oxidation.  

 

Acknowledgment 

This work was supported by the Director, Office of Science, Office of Basic Energy 

Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of 

Energy under Contract No. DE-AC03-76SF00098. 

 17



References 

1. W. Lin, H. Frei, J. Phys. Chem. B 109 (2005) 4929.  

2. W. Lin, H. Frei, J. Am. Chem. Soc. 127 (2005) 1610.   

3. R. Nakamura, H. Frei, J. Am. Chem. Soc. 128 (2006) 10668.  

4. J.P. Hoare, in: A.J. Bard, R. Parson, J. Jordan (Eds.), Standard Potentials in 

Aqueous Solution, Marcel  Dekker, New York, 1985, p. 65.  

5. N. Maki, N. Tanaka, in: A.J. Bard, R. Parson, J. Jordan (Eds.), Standard 

Potentials in Aqueous Solution, Marcel  Dekker, New York, 1985, p. 381.  

6. T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Nature 378 (1995) 159.  

7. Supporting Information 

8. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. 

Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. 

Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114 (1992) 10834.  

9. B.J. Hathaway, D.G. Holah, J. Chem. Soc. (1964) 2400.  

10. F. Blatter, F. Moreau, H. Frei, J. Phys. Chem. 98 (1994) 13403.  

11. J. Panpranot, S. Kaewkun, P. Praserthdam, J.L. Goodwin, Catal. Lett. 91 

(2003) 95.  

 18



12. Q. Tang, Q. Zhang, H. Wu, Y. Wang, J. Catal. 230 (2005) 384.  

13. A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd Ed., Elsevier, 

Amsterdam, 1984, p. 496.  

14. A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd Ed., Elsevier, 

Amsterdam, 1984, p. 480.  

15. S. Lim, D. Ciuparu, Y. Chen, L. Pfefferle, G.L. Haller, J. Phys. Chem. B 108 

(2004) 20095. 

16. G. Busca, R. Guidetti, V. Lorenzelli, J. Chem. Soc. Farad. Trans. 86 (1990) 

989.  

17. K. Schmidt, W. Hauswirth, A. Muller, J. Chem. Soc., Dalton Trans. (1975) 

2199.  

18. D. Bruhwiler, H. Frei, J. Phys. Chem. B 107 (2003) 8547.  

19. J.M. Fletcher, B.F. Greenfield, C.J. Hardy, D. Scargill, J.L. Woodhead, J. 

Chem. Soc. (1961) 2000.  

20. M.R. Basila, T.R. Kantner, J. Phys. Chem. 71 (1967) 467.  

21. K. Brodersen, H.J. Becher, Chem. Ber. 89 (1956) 1487.  

22. K. Niwa, H. Takahashi, K. Higasi, T. Kajiura, Bull. Chem. Soc. Jpn. 44 

(1971) 3010.  

 19



23. A. Eldewik, R.F. Howe, Microporous Mesoporous Mater. 48 (2001) 65.  

24. W. Lin, H.  Frei, J. Am. Chem. Soc. 124 (2002) 9292.  

25. M.S. Morey, S. O’Brien, S. Schwarz, G.D. Stucky, Chem. Mater. 12 (2000) 

898.  

26. W.S. Ahn, D.H. Lee, T.J. Kim, J.H. Kim, G. Seo, R. Ryoo, Appl. Catal. A: 

General 181 (1999) 39.  

27. M.E. Raimondi, E. Gianotti, L. Marchese, G. Martra, T. Maschmeyer, J.M. 

Seddon, S. Coluccia, J. Phys. Chem. B 104 (2000) 7102.  

28. M.S. Morey, J.D. Bryan, S. Schwarz, G.D. Stucky, Chem. Mater. 12 (2000) 

3435.  

29. Y. Hu, G. Martra, J. Zhang, S. Higashimoto, S. Coluccia, M. Anpo, J. Phys. 

Chem. B 110 (2006) 1680.  

30. K. Nakashiro, Y. Ono, Bull. Chem. Soc. Jpn. 66 (1993) 9.  

31. B. Kraushaar, W.G.M. Hoogervorst, R.R. Andrea, C.A. Emeis, W.H.J. Stork, 

J. Chem. Soc. Faraday. Trans. 87 (1991) 891.  

32. G. Sankar, J.M. Thomas, C.R.A. Catlow, C.M. Barker, D. Gleeson, N. 

Kaltsoyannis, J. Phys. Chem. B 105 (2001) 9028.  

 20



33. M.W. Andersen, O. Terasaki, T. Ohsuna, T.; A. Philippou, S.P. MacKay, A. 

Ferreira, J. Rocha, S. Lidin, Nature 367 (1994) 347. 

34. G. Blasse, G.J. Dirksen, Chem. Phys. Lett. 77 (1981) 9.  

35. G. Blasse, Structure and Bonding 76 (1991) 153.  

36. N.S. Hush, Prog. Inorg. Chem. 8 (1967) 391.  

37. D.R. Lide, CRC Handbook of Chemistry and Physics, 85th Ed., CRC Press, 

Boca Raton, 2004, p. 10-183.  

38. G. Blasse, P.H.M. De Korte, A. Mackor, J. Inorg. Nucl. Chem. 43 (1981) 

1499.  

 21



Figure Captions: 

 

Fig 1: DRS spectra of CoII-MCM-41: a) as-synthesized; b) calcined at 350 °C in air; c) 

after washing the as-synthesized sample with H2O. For comparison, the spectra were 

normalized according to the highest CoII d-d band at 650-670 nm.  

 

Fig 2: FTIR spectra of Co-MCM-41: a) as-synthesized; b) calcined in air at 350 °C; c) 

calcined in air at 550 °C. d) TiCo-MCM-41 calcined at 350 °C in air. The broad band at 

1650 cm-1 is due to overlapping silica combination and residual water absorption.  

  

Fig 3: FTIR difference spectra of NH3 adsorption (3 Torr, followed by 1 h evacuation) on 

a) CoII-MCM-41; b) TiCoII-MCM-41; c) Ti-CoII-MCM-41; and d) Ti-MCM-41. Prior to 

NH3 adsorption at room temperature, cobalt containing samples were calcined at 350 °C 

and Ti-MCM-41 at 550 °C in air. 

 

Fig 4: DRS spectra of A: 1) TiCoII-MCM-41; and 2) CoII-MCM-41, and 3) addition of 

the spectra of 2) CoII-MCM-41 and of calcined Ti-MCM-41. Both samples were heated at 

350 °C under vacuum. B: 1) TiCoII-MCM-41; 2) CoII-MCM-41; and 3) addition of the 

spectra of 2) CoII-MCM-41 and of calcined Ti-MCM-41. Both samples were calcined at 

550 °C in air.  

 

Fig 5: DRS spectra of calcined (550 °C) a) Ti-CoII-MCM-41and b) TiCoII-MCM-41; and 

c) addition spectrum of Ti-MCM-41 and CoII-MCM-41.  

 22



 

Fig 6: FTIR difference spectra of pyridine adsorption experiments on a) CoII-MCM-41 

and b) TiCoII-MCM-41. Both samples were calcined in air at 350 °C.  

 

Fig.7: XANES spectra of A: a) Ti-MCM-41; b) Ti-Co-MCM-41; c) TiCo-MCM-41. All 

samples were calcined at 350 oC in air. The absorption intensity was normalized for the 

total amount of Ti as measured by the height of the plateau between the K-edge and the 

onset of the EXAFS region. B: Pre-edge peaks of the 3 samples on expanded scale. The 

A1-T2 pre-edge peak at 4968 eV is taken as the origin of the energy scale.  
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Fig 3: 
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