Frontier HED Science accessible on NIF

PDF Version Also Available for Download.

Description

With the advent of high-energy-density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch pulsed-power facilities, millimeter-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. With the commissioning of the NIF laser facility in the very near future, regimes experimentally accessible will be pushed to even higher densities and pressures. This is enabling the emergence of a new class of experimental science, wherein the properties of matter and the processes that occur under the most extreme physical conditions can be examined in the laboratory. Areas particularly suitable to laboratory astrophysics include the study ... continued below

Physical Description

PDF-file: 11 pages; size: 1 Mbytes

Creation Information

Remington, B A; Ho, D D & Ilinskij, A September 24, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

With the advent of high-energy-density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch pulsed-power facilities, millimeter-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. With the commissioning of the NIF laser facility in the very near future, regimes experimentally accessible will be pushed to even higher densities and pressures. This is enabling the emergence of a new class of experimental science, wherein the properties of matter and the processes that occur under the most extreme physical conditions can be examined in the laboratory. Areas particularly suitable to laboratory astrophysics include the study of opacities relevant to stellar interiors, equations of state relevant to planetary interiors, strong shock-driven nonlinear hydrodynamics and radiative dynamics relevant to supernova explosions and subsequent evolution, protostellar jets and high Mach number flows, radiatively driven molecular clouds, nonlinear photoevaporation front dynamics, and photoionized plasmas relevant to accretion disks around compact objects such as black holes and neutron stars. In the area of materials science and condensed matter physics, material properties such as phase, elastic coefficients such as shear modulus, Peierls stress, and transport coefficients such as thermal diffusivity can be accessed at considerably higher densities and pressure than any existing data. In the field of nonlinear optical phenomena, NIF will be an unparalleled setting for studying the nonlinear interactions of a ''statistical ensemble'' of 100 high power beams in large volumes of plasma. In the area of nuclear physics, nuclear reaction rates in dense, highly screened plasmas and on ignition implosions, reactions from excited nuclear states via multi-hit reactions should be possible. A selection from this frontier HED science accessible on NIF will be presented.

Physical Description

PDF-file: 11 pages; size: 1 Mbytes

Source

  • Presented at: Fifth International Conference on Inertial Fusion Sciences and Applications, Kobe, Japan, Sep 09 - Sep 14, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-235762
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 922104
  • Archival Resource Key: ark:/67531/metadc897401

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 24, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 28, 2016, 6:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Remington, B A; Ho, D D & Ilinskij, A. Frontier HED Science accessible on NIF, article, September 24, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc897401/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.