Mechanical and Electrical Properties of CdTe Tetrapods Studied byAtomic Force Microscopy

PDF Version Also Available for Download.

Description

The mechanical and electrical properties of CdTe tetrapod-shaped nanocrystals have been studied with atomic force microscopy. Tapping mode images of tetrapods deposited on silicon wafers revealed that they contact the surface with the ends of three arms. The length of these arms was found to be 130 {+-} 10 nm. A large fraction of the tetrapods had a shortened vertical arm as a result of fracture during sample preparation. Fracture also occurs when the applied load is a few nanonewtons. Compression experiments with the AFM tip indicate that tetrapods with the shortened vertical arm deform elastically when the applied force ... continued below

Creation Information

Fang, Liang; Park, Jeong Young; Cui, Yi; Alivisatos, Paul; Shcrier, Joshua; Lee, Byounghak et al. August 30, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The mechanical and electrical properties of CdTe tetrapod-shaped nanocrystals have been studied with atomic force microscopy. Tapping mode images of tetrapods deposited on silicon wafers revealed that they contact the surface with the ends of three arms. The length of these arms was found to be 130 {+-} 10 nm. A large fraction of the tetrapods had a shortened vertical arm as a result of fracture during sample preparation. Fracture also occurs when the applied load is a few nanonewtons. Compression experiments with the AFM tip indicate that tetrapods with the shortened vertical arm deform elastically when the applied force was less than 50 nN. Above 90 nN additional fracture events occurred that further shorted the vertical arm. Loads above 130 nN produced irreversible damage to the other arms as well. Current-voltage characteristics of tetrapods deposited on gold indicated semiconducting behavior with a current gap of {approx}2 eV at low loads (<50 nN) and a narrowing to about 1 eV at loads between 60 and 110 nN. Atomic calculation of the deformation suggests that the ends of the tetrapod arms are stuck during compression so that the deformations are due to bending modes. The reduction of the current gap is due to electrostatic effects, rather than strain deformation effects inside the tetrapod.

Source

  • Journal Name: Journal of Chemical Physics; Journal Volume: 127; Related Information: Journal Publication Date: 11/12/2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--62361
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1063/1.2786993 | External Link
  • Office of Scientific & Technical Information Report Number: 929041
  • Archival Resource Key: ark:/67531/metadc897391

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 30, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 3:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fang, Liang; Park, Jeong Young; Cui, Yi; Alivisatos, Paul; Shcrier, Joshua; Lee, Byounghak et al. Mechanical and Electrical Properties of CdTe Tetrapods Studied byAtomic Force Microscopy, article, August 30, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc897391/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.