Coupling Correction and Beam Dynamics at Ultralow Vertical Emittance in the ALS

PDF Version Also Available for Download.

Description

For synchrotron light sources and for damping rings of linear colliders it is important to be able to minimize the vertical emittance and to correct the spurious vertical dispersion. This allows one to maximize the brightness and/or the luminosity. A commonly used tool to measure the skew error distribution is the analysis of orbit response matrices using codes like LOCO. Using the new Matlab version of LOCO and 18 newly installed power supplies for individual skew quadrupoles at the ALS the emittance ratio could be reduced below 0.1% at 1.9 GeV yielding a vertical emittance of about 5 pm. At ... continued below

Creation Information

Steier, Christoph; Robin, D.; Wolski, A.; Portmann, G.; Safranek, J. & /LBL, Berkeley /SLAC March 17, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

For synchrotron light sources and for damping rings of linear colliders it is important to be able to minimize the vertical emittance and to correct the spurious vertical dispersion. This allows one to maximize the brightness and/or the luminosity. A commonly used tool to measure the skew error distribution is the analysis of orbit response matrices using codes like LOCO. Using the new Matlab version of LOCO and 18 newly installed power supplies for individual skew quadrupoles at the ALS the emittance ratio could be reduced below 0.1% at 1.9 GeV yielding a vertical emittance of about 5 pm. At those very low emittances, additional effects like intra beam scattering become more important, potentially limiting the minimum emittance for machine like the damping rings of linear colliders.

Source

  • Journal Name: Conf.Proc.C030512:3213,2003; Conference: Particle Accelerator Conference (PAC 03) 12-16 May 2003, Portland, Oregon

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13171
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 925785
  • Archival Resource Key: ark:/67531/metadc897350

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 17, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 9, 2016, 7:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Steier, Christoph; Robin, D.; Wolski, A.; Portmann, G.; Safranek, J. & /LBL, Berkeley /SLAC. Coupling Correction and Beam Dynamics at Ultralow Vertical Emittance in the ALS, article, March 17, 2008; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc897350/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.