Investigating Inflation in Type IIA

PDF Version Also Available for Download.

Description

We prove that inflation is forbidden in the most well understood class of semi-realistic type IIA string compactifications: Calabi-Yau compactifications with only standard NS-NS 3-form flux, R-R fluxes, D6-branes and O6-planes at large volume and small string coupling. With these ingredients, the first slow-roll parameter satisfies {epsilon} {ge} 27/13 whenever V > 0, ruling out both inflation (including brane/anti-brane inflation) and de Sitter vacua in this limit. Our proof is based on the dependence of the 4-dimensional potential on the volume and dilaton moduli in the presence of fluxes and branes. We also describe broader classes of IIA models which ... continued below

Physical Description

22 pages

Creation Information

Hertzberg, Mark P.; /MIT; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Taylor, Washington; Tegmark, Max et al. December 14, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We prove that inflation is forbidden in the most well understood class of semi-realistic type IIA string compactifications: Calabi-Yau compactifications with only standard NS-NS 3-form flux, R-R fluxes, D6-branes and O6-planes at large volume and small string coupling. With these ingredients, the first slow-roll parameter satisfies {epsilon} {ge} 27/13 whenever V > 0, ruling out both inflation (including brane/anti-brane inflation) and de Sitter vacua in this limit. Our proof is based on the dependence of the 4-dimensional potential on the volume and dilaton moduli in the presence of fluxes and branes. We also describe broader classes of IIA models which may include cosmologies with inflation and/or de Sitter vacua. The inclusion of extra ingredients, such as NS 5-branes and geometric or non-geometric NS-NS fluxes, evades the assumptions used in deriving the no-go theorem. We focus on NS 5-branes and outline how such ingredients may prove fruitful for cosmology, but we do not provide an explicit model. We contrast the results of our IIA analysis with the rather different situation in IIB.

Physical Description

22 pages

Source

  • Journal Name: Journal of High Energy Physics (JHEP)

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12999
  • Grant Number: AC02-76SF00515
  • DOI: 10.1088/1126-6708/2007/12/095 | External Link
  • Office of Scientific & Technical Information Report Number: 921008
  • Archival Resource Key: ark:/67531/metadc897270

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 14, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 29, 2016, 4:18 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hertzberg, Mark P.; /MIT; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Taylor, Washington; Tegmark, Max et al. Investigating Inflation in Type IIA, article, December 14, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc897270/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.