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1 INTRODUCTION

Since the formulation of poroelasticity (Biot(1941)) and its refor-
mulation (Rice & Cleary(1976)), there have been many efforts to
solve the coupled system of equations. Perhaps because of the com-
plexity of the governing equations, most of the work has been di-
rected towards finding numerical solutions. For example, Lewis
and co-workers published early papers (Lewis & Schrefler(1978);
Lewis et al.(1991)Lewis, Schrefler, & Simoni) concerned with
finite-element methods for computing consolidation, subsidence,
and examining the importance of coupling. Other early work dealt
with flow in a deformable fractured medium (Narasimhan & With-
erspoon(1976); Noorishad et al.(1984)Noorishad, Tsang, & With-
erspoon). This effort eventually evolved into a general numeri-
cal approach for modeling fluid flow and deformation (Rutqvist
et al.(2002)Rutqvist, Wu, Tsang, & Bodvarsson). As a result of
this and other work, numerous coupled, computer-based algo-
rithms have emerged, typically falling into one of three categories:
one-way coupling, loose coupling, and full coupling (Minkoff
et al.(2003)Minkoff, Stone, Bryant, Peszynska, & Wheeler). In
one-way coupling the fluid flow is modeled using a conventional
numerical simulator and the resulting change in fluid pressures sim-
ply drives the deformation. In loosely coupled modeling distinct
geomechanical and fluid flow simulators are run for a sequence of
time steps and at the conclusion of each step information is passed
between the simulators. In full coupling, the fluid flow and ge-
omechanics equations are solved simultaneously at each time step
(Lewis & Sukirman(1993); Lewis & Ghafouri(1997); Gutierrez &
Lewis(2002)).

One disadvantage of a purely numerical approach to solving
the governing equations of poroelasticity is that it is not clear how
the various parameters interact and influence the solution. Ana-
lytic solutions have an advantage in that respect; the relationship
between the medium and fluid properties is clear from the form of
the solution. Unfortunately, analytic solutions are only available for
highly idealized conditions, such as a uniform (Rudnicki(1986)) or
one-dimensional (Simon et al.(1984)Simon, Zienkiewicz, & Paul;
Gajo & Mongiovi(1995); Wang & Kumpel(2003)) medium. In
this paper I derive an asymptotic, semi-analytic solution for cou-
pled deformation and flow. The approach is similar to trajectory-

or ray-based methods used to model elastic and electromagnetic
wave propagation (Aki & Richards(1980); Kline & Kay(1979);
Kravtsov & Orlov(1990); Keller & Lewis(1995)) and, more re-
cently, diffusive propagation (Virieux et al.(1994)Virieux, Flores-
Luna, & Gibert; Vasco et al.(2000)Vasco, Karasaki, & Keers;
Shapiro et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner;
Vasco(2007)). The asymptotic solution is valid in the presence of
smoothly-varying, heterogeneous flow properties. The situation I
ammodeling is that of a formation with heterogeneous flow proper-
ties and uniform mechanical properties. The boundaries of the layer
may vary arbitrary and can define discontinuities in both flow and
mechanical properties. Thus, using the techniques presented here,
it is possible to model a stack of irregular layers with differing me-
chanical properties. Within each layer the hydraulic conductivity
and porosity can vary smoothly but with an arbitrarily large magni-
tude. The advantages of this approach are that it produces explicit,
semi-analytic expressions for the arrival time and amplitude of the
Biot slow and fast waves, expressions which are valid in a medium
with heterogeneous properties. As shown here, the semi-analytic
expressions provide insight into the nature of pressure and defor-
mation signals recorded at an observation point. Finally, the tech-
nique requires considerably fewer computer resources than does a
fully numerical treatment.

2 METHODOLOGY

2.1 The Governing Equations

There are many situations in which the mechanical properties of a
formation are assumed to be described by an average value. That is,
the mechanical properties are thought to relatively constant within
a given formation. It is often true that, when compared to the varia-
tion in hydraulic conductivity which can change by orders of mag-
nitude, elastic properties are much less variable within a given for-
mation, of the order of a few tens of percent or so. In addition,
it is often necessary to characterize the elastic properties by a re-
stricted number of parameters. Typically, there are only a few mea-
surements of the mechanical properties of any given formation. I
will therefore assume that the mechanical properties are constant
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for each geologic unit while allowing the flow properties, such as
porosity and hydraulic conductivity, to vary within the unit.

The equations governing the space (x) and time (t) varia-
tion of the solid matrix displacement vector u(x, t) and the pore
fluid pressure pf (x, t) in a medium with constant elastic moduli
and spatially varying flow properties are (Biot(1956); Wang(2000);
Showalter(2000); Pride(2005))

(λ+ 2µ)∇∇ · u − µ∇×∇× u − α∇pf = 0

C
∂pf

∂t
+ α

∂(∇ · u)

∂t
−∇ · (k∇pf ) = q (1)

where λ and µ are Lamé coefficients (Aki & Richards(1980)), in
particular µ is the shear modulus, α is the dimensionless coeffi-
cient of effective stress, C is the bulk compressibility introduced
by (Biot(1941)), k is the hydraulic conductivity, and q is the fluid
volume injection rate (de Marsily(1986)). Taking the Laplace trans-
form of these equations, I may work in the s-domain, where s
is a complex variable and the Laplace transforms of u(x, t) and
pf (x, t) are denoted by U(x, s) and P (x, s), respectively. In the
s-domain the system of equations (1) becomes

(λ+ 2µ)∇∇ · U − µ∇×∇× U − α∇P = 0

CP + α∇ · U −∇ · (K∇P ) = Q. (2)

where

K = −k
s

(3)

andQ is the Laplace transform of q divided by s. The first equation
provides an expression for the pressure gradient, ∇P , in terms of
the displacement components

∇P = Υ∇∇ · U −Ψ∇×∇×U (4)

where I have defined the coefficients

Υ =
λ+ 2µ
α

, (5)

and

Ψ =
µ
α

. (6)

Taking the gradient of the second equation of the system (2), I ar-
rive at an equation in terms of the pressure gradient and the com-
ponents of displacement

∇P + ∇
(
C−1α∇ · U

)
−∇

[
C−1∇ · (K∇P )

]
= Q (7)

where Q = ∇(C−1Q). Substituting the expression for the pres-
sure gradient ∇P , equation (4), into equation (7) results in a set of
three equations for the three components of displacement

Υ∇∇ · U −Ψ∇×∇×U + ∇
(
C−1α∇ · U

)

−∇
{
C−1∇ · K [Υ∇∇ · U −Ψ∇×∇× U]

}
= Q. (8)

This is the basic equation that I shall treat using an asymp-
totic approach known as the method of multiple scales (Anile
et al.(1993)Anile, Hunter, Pantano, & Russo). The results of this
analysis are presented in the following sub-sections. The details of
the derivation are contained in the Appendices of this paper.

2.2 An Asymptotic Solution for the Displacement of the Solid

In this study I am assuming that the heterogeneity is smoothly-
varying between given boundaries. That is, the asymptotic tech-
nique described below requires that the flow properties K and C
vary over a scale-length which is large compared to the scale-length
of a propagating elastic displacement. That is, if the length-scale
of the variation in flow properties is L, and the length-scale over
which the elastic displacement increases from zero to observable
value is l, then the scale-length ratio ε = l/L is much smaller
than 1. This assumption is compatible with solving the inverse
problem in which one is trying to infer smoothly-varying hetero-
geneity from a limited number of measurements (Parker(1994)). I
should also point out that the methodology does allow for discrete
changes at known interfaces, as do general ray methods (Kravtsov
& Orlov(1990)). Some of the issues associated with propagating
the displacement field across a known interface are discribed in the
final sub-section.

If I consider equation (8) in slow coordinates X, which are
defined in reference to the scale ratio ε, X = εx, an expression
containing terms of various orders in ε results [equation (A7) in
Appendix A]. An asymptotic solution is a power series in ε

U(X,ϕ) = e−ϕ
∞∑

n=0

εnUn(X), (9)

where ϕ(X) is the local phase (Kline & Kay(1979)). Substituting
the power series (9) into equation (A7) results in an expression with
an infinite number of terms of various orders in ε. Because I am
assuming that the heterogeneity is smoothly varying with respect to
the variation across the displacement front, ε $ 1, and the lowest
order terms in ε are the most important. In the following two sub-
sections I consider terms of the two most significant orders: ε0 and
ε1.

2.2.1 Terms of Order ε0 ∼ 1: An Equation for the ’Phase’

Considering the terms of lowest order, ε0, produces the equation
(
Γ + C−1KΥp2

)
pp · U0 −Ψp × p × U0 = 0 (10)

where I have defined the vector

p = ∇ϕ, (11)

the coefficient

Γ = Υ + C−1α, (12)

and used the fact that

∂lU
∂ϕl

= (−1)lU (13)

which follows from the particular form of the solution (9). I can
write equation (10) as a matrix equation

[(
Γ + C−1KΥp2

)
pp · I−Ψp × (p × I)

]
U0 = 0 (14)

which, upon defining

η =
Γ
Ψ

(15)

and

Ω =
C−1KΥ

Ψ
, (16)
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I may write as
[(
η +Ωp2

)
p(p · I) − p × (p × I)

]
U0 = 0. (17)

Noting that

p(p · I) = p × (p × I) + p2I (18)

and after some re-arranging, I may write equation (17) as
[
(p2 − Λ)I − ppT

]
U0 = 0 (19)

where

Λ =
(Ωp2 + η)p2

η −Ωp2 − 1
. (20)

For a non-zero vector U0 equation (19) can only be satisfied if
the determinant of the coefficient matrix vanishes. Expanding the
determinant produces the polynomial (Kravtsov & Orlov(1990))

Λ(p2 − Λ)2 = 0 (21)

which has solutions if Λ = 0 or if p2 −Λ = 0. From equation (20)
I find that the condition, Λ = 0, implies that either

Ωp2 + η = 0 (22)

or p2 = 0. The first root implies that

p · p = − η
Ω

. (23a)

while the second root is equivalent to

p · p = 0 (23b)

As discussed below, the second root implies an infinite propagation
velocity from the source to the observation point, an artifact from
neglecting second derivatives in Biot’s equations (Biot(1962)). This
root corresponds to the ’fast’ seismic response, in this case an in-
stantaneous response, associated with Biot’s equations (Biot(1956);
Biot(1962)). The root corresponding to equation (23a) is the
Biot slow wave which is associated with fluid pressure diffusion
(Pride(2005)).

The root Ωp2 + η = 0 and the Biot slow wave
In what follows I will derive an expression for the Biot slow

wave, later I discuss the nature of the fast wave, also know as the ’P-
wave’ response (Pride(2005)). After some manipulation, and taking
note of the definition (11), equation (23a) may be written

∇ϕ ·∇ϕ =

(
C
k

+
α2

λ+ 2µ
1
k

)
s, (24)

a partial differential equation for the function ϕ(X), the equiv-
alent of the Eikonal equation (Aki & Richards(1980); Kravtsov
& Orlov(1990); Anile et al.(1993)Anile, Hunter, Pantano, &
Russo). For hyperbolic wave propagation, the right-hand-side of
the Eikonal equation represents the square of the slowness (the
inverse of the magnitude of velocity). The same is also true for
diffusive propagation (Virieux et al.(1994)Virieux, Flores-Luna,
& Gibert; Vasco et al.(2000)Vasco, Karasaki, & Keers; Shapiro
et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner), where the
arrival time is carefully defined, as discussed below. If I denote the
total velocity magnitude by v, equation (24) provides an expression
for the total velocity

1
v2

=
C
k

s +
α2

λ+ 2µ
s
k

. (25)

Vasco et al. (2000) noted that the velocity associated with the

propagation of a fluid pressure disturbance in a non-deformable
medium, vf , satisfies

1
vf

2
=

C
k

s. (26)

Thus, the right-hand-side of equation (25) represents a modified
propagation velocity, with the modification induced by the defor-
mation of the medium. Indeed, the modification of the velocity due
to the deformation of the solid matrix, vs, given by,

1
vs

2
=

α2

λ+ 2µ
s
k

(27)

depends upon both the elastic parameters and the Darcy conductiv-
ity. If I denote the fluid, solid, and total slownesses (inverse veloc-
ities), by ςf , ςs, and ς , respectively, then the total slowness is the
sum

ς2 =
C
k

s +
α2

λ+ 2µ
s
k

= ςf
2 + ςs

2. (28)

Thus, the deformation slows down the propagation of a distur-
bance in a porous medium as compared to propagation in a non-
deformable medium. It can be shown directly that

C
k

+
α2

λ+ 2µ
1
k

=
1
D

(29)

where D is the hydraulic diffusivity (Wang & Kumpel(2003)),
which is related to the Darcy or hydraulic conductivity k

D =
2
9

(1 − ν)(1 + νu)2µB2

(1 − νu)(νu − ν) k (30)

where ν is Poisson’s ratio and νu is the undrained Poisson’s
ratio, B is Skemption’s ratio (Rice & Cleary(1976); Wang &
Kumpel(2003)).

The nonlinear, scalar partial differential equation (24), the
Eikonal equation, is equivalent to a system of ordinary dif-
ferential equations, the bi-characteristic equations (Courant &
Hilbert(1962); Kravtsov & Orlov(1990)). The bi-characteristic
equations define the solution along a trajectory through the
medium, the ray pathX(r), which is defined by

dX
dr

=
p
ς

(31)

dp
dr

= ∇ς

where ς is the total slowness, defined in equation (28), and r sig-
nifies the distance along the ray path, The system of ordinary
differential equations (31) can be solved using a numerical tech-
nique such as a shooting method coupled to a globally conver-
gent Newton-Raphson algorithm (Press et al.(1992)Press, Teukol-
sky, Vetterling, & Flannery). Writing equation (24) in ray coordi-
nates I have

dϕ
dr

= ς (32)

which may be integrated to give

ϕ =

∫

X

ςdr (33)

or

ϕ =
√

s

∫

X

√
C
k

+
α2

λ+ 2µ
1
k

dr, (34)



4 D. W. Vasco

where the integral is over the raypath from a given source to an
observation point. If I define the integral

τ =

∫

X

√
C
k

+
α2

λ+ 2µ
1
k

dr, (35)

equation (34) may be written in a more compact fashion

ϕ =
√

sτ. (36)

As will be shown below the quantity τ is related to the ’arrival time’
of the displacement disturbance. I will refer to it as the ’phase’
associated with the propagating displacement front. Others call τ
the ’pseudo-phase’ because it is not completely equivalent to the
phase of a propagating wave (He et al.(2006)He, Datta-Gupta, &
Vasco).

As an illustration of the computation of trajectories consider
a quadratic depth variation of hydraulic conductivity (Figure 1).
The trajectories are computed using equations (31) for disturbances
leaving the source at various directions or take-off angles. The ray
paths curve in response to the spatial variation in hydraulic conduc-
tivity, bending towards regions of higher conductivity. A the trajec-
tories corresponding to a two-dimensional conductivity distribution
are shown in Figure 2. Again, the ray paths curve in response to the
lateral variations in k. It may be shown that the geometry of the ray
path is such that the total integral expression for ϕ, equation (34),
is minimized (Kline & Kay(1979); Kravtsov & Orlov(1990)).

Equation (22), the condition for the vanishing of the determi-
nant, can be used to better understand the nature of the displace-
ment vector U0 associated with the root Λ = 0. Using equation
(22) in the vector-matrix expression (17) results in

[p × (p × I)]U0 = 0. (37)

This system of equations is satisfied if p × U0 vanishes which is
equivalent to

U0(X) = U0(X)p̂ (38)

where U0(X) is a scalar magnitude which depends upon position
and p̂ is a unit vector in the direction of p. Thus, the vector U0

is proportional to slowness vector p. From equation (38) I find
that the displacement vector lies along the tangent to the trajectory
X(r). In other words, the vectorU0 corresponding to the condition
Λ = 0, is a longitudinal displacement along the trajectory.

The root p2 = 0 and the Biot fast wave
The root p2 = 0, a consequence of the vanishing ofΛ in equa-

tion (21), is an artifact due to the fact that second derivatives are
neglected in equation (1). That is, a complete formulation of Biot’s
equations would include second derivatives (Pride(2005)). They are
neglected in the case of quasi-static poroelastic deformation be-
cause they are small for slow displacements and pressure changes.
However, neglecting the second derivatives results in some non-
physical behaviour, such as an infinite propagation velocity for the
fast wave. In reality, the fast wave travels at the speed of a wave in
the elastic solid (Pride(2005)). The most satisfactory remedy to the
difficulties associated with the root p2 = 0 is to include the sec-
ond derivatives in the formulation. This will be the topic of a future
study of asymptotic solutions for poroelastic propagation.

Another approach is to attack the equation

p · p = 0 (39)

directly which requires consideration of a complex vector p

p = pr + ipi (40)

where pr and pi are the real and imaginary components of p.

This is equivalent to complex ray tracing which is used to model
the propagation of evanesant waves (Choudhary & Felsen(1973);
Felsen(1976)). The complex equation (39) is equivalent to the two
real equations

pr · pr − pi · pi = 0 (41)

pr · pi = 0 (42)

which implies that |pr| = |pi| and that pr is perpendicular to
pi, respectively. Correspondingly, I can write the function ϕ as a
complex number

ϕ = ϕr + iϕi (43)

where pr = ∇ϕr and and pi = ∇ϕi. The exponential factor in
the asymptotic expression (9) is given by

e−ϕ = e−ϕr e−iϕi (44)

and decays the least when ϕr vanishes and ϕi increases along the
path from the source to the observation point.

The approach I adopt involves completing the quasi-static
equations by including a second derivative term

αε
∂2u
∂t2

+ (λ+ 2µ)∇∇ · u − µ∇×∇× u − α∇pf = 0 (45)

where ε is a small number. This approach has the advantage that it
does not require computing a complex eikonal ϕ nor does it involve
the full complexity of the complete Biot’s equations (Pride(2005)).
It is an approximate technique that will provide some insight into
the nature of the Biot fast wave. The addition of the second deriva-
tive term may be thought of as considering the equation in a
projective space where the zero of the equation lies at infinity
(Kendig(1977)). Utilizing a complex projective space allows one
the unify hyperbolic, parabolic, and elliptic equations. Due to the
modification of the governing equation (45), the expression for the
pressure gradient, equation (4), becomes

∇P = Υ∇∇ · U −Ψ∇×∇× U + εs2U (46)

with corresponding modifications to the displacement equation (8).
Applying the method of multiple scales to the modified dis-

placement equation leads to perturbed asymptotic expressions. For
example, to lowest order, ε0 I arrive at the matrix equation

εs2U0 +
(
Γ + C−1Kεs2 + C−1KΥp2

)
pp · U0

−Ψp × p ×U0 = 0. (47)

If I consider the displacement in the longitudinal direction, as in
equation (38), and I define

η′ =
Γ + C−1εs2

Ψ
(48)

the matrix equation (47) can be written as
[
εs2 + (η′ + Ωp2)p2

]
I · U0p̂ = 0. (49)

The equation has a non-trivial solution when the determinant of the
matrix vanishes, or when

εs2 + (η′ +Ωp2)p2 = 0, (50)

a quadratic equation in p2. The solutions of the quadratic equation
(50) are given by

p2 =
−η′ ±

√
(η′)2 − 4Ωεs2

2Ω
(51)
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or, if I define,

γ =
η′

Ω
(52)

and

ε′ =
4ε
Ωγ2

(53)

equation (51) may be written as

p · p = γ
1 ±

√
1 − ε′s2

2
. (54)

Note that when ε′ vanishes equation (54) gives the two solutions,
p2 = 0 and p2 = −η/ω associated with the vanishing of Λ [see
equation (20)].

Because ε is assumed to be small, I can expand the square
root in equation (54) as a power series and retain terms of zero- and
first-order in ε. The result is the expression

p · p = s
[
g±

1 − εg±
2s − εg±

3s
2
]

(55)

where

g±
1 =

1
k

(
C +

α2

λ+ 2µ

)(
1 ± 1

2

)
, (56)

g±
2 = ±µ

α
, (57)

and

g±
3 = − 1

k

(
α

λ+ 2µ

)(
1 ± 1

2

)
(58)

where the plus corresponds to the diffusive Biot slow wave, and the
minus corresponds to the elastic Biot fast wave. As in the previous
sub-section, I can consider equation (55) in ray coordinates, given
by the ordinary differential equations (31). Expressions similar to
equations (32) and (33) result and I may write the phase ϕ as

ϕ =
√

s

∫

X

√
g±

1 − εg±
2s − εg±

3s
2dr. (59)

Because I am interested in the Biot fast wave, I consider the nega-
tive root and the terms g±

1 and g±
3s

2 vanish [see equations (56)
and (58)]. Thus, the phase function ϕ is given by

ϕ = s

∫

X

√
εµ
α

dr (60)

which I may write as

ϕ = sτf (61)

where

τf =

∫

X

√
εµ
α

dr. (62)

Note that the phase field for the fast wave depends upon the ratio
of µ to α and is not a function of the hydraulic conductivity k.
Thus, the trajectories associated with the fast wave only depend on
the elastic properties. Because I am assuming homogeneous elastic
properties within the region of interest, the trajectories are straight
lines from the source to the observation point. As shown below, the
straight line trajectories may be deflected at an interface between
media with different elastic properties.

2.2.2 Terms of Order ε: An Equation for the Amplitude of the
Biot Slow Wave

In this sub-section I consider the amplitude equation associated
with the Biot slow wave. As noted above, there is an additional
mode of propagation, the Biot fast wave which travels in the man-
ner of an elastic wave. I shall not present a derivation of this mode
of propagation in this paper. Because the treatment of the fast wave,
encapsulated in equation (45), is approximate, a perturbation of the
quasi-static equation, a detailed derivation is not warrented in this
paper. Rather, I shall present a more detailed account in a future pa-
per in which the full Biot equations are considered. For the calcula-
tions presented in the Applications section below, the fast wave was
treated simply as an elastic wave propagating in a uniform medium.

As shown in Appendix A, considering terms of order ε pro-
duces the expression

Γ∇(p · U0) + Γp(∇ · U0)

−Ψ∇× (p × U0) −Ψp × (∇× U0)

+∇C−1αp · U0 + ∇C−1KΥp2 (p · U0)

+C−1Υpp ·∇K (p · U0) (63)

−C−1Ψp∇K · (p × p × U0)

+C−1Υ∇Kp2 (p · U0)

+C−1ΥK∇
(
p2p · U0

)

+C−1ΥKp∇ · (pp · U0)

+C−1ΥKpp ·∇ (p · U0)

+C−1ΥKpp2 (∇ · U0) = 0.

This is a rather complicated equation for the components of the dis-
placement vectorU0. Some simplifications follow if I consider the
longitudinal mode of propagation associated with the root Λ = 0
which was described in the previous sub-section. This particular
form of the displacement vector represents deformation in the di-
rection of the vector p, as given by equation (38). As shown in
Appendix B, if I assume the form (38) for U0(X) and project the
vector equation onto the unit vector in the direction of p, a single
equation for scalar quantity U0(X) results. Because of the first set
of ray equations (31), projection of the gradient operator may be
written as a derivative along the trajectoryX(r). Thus, I can write
equation (63) as an ordinary differential equation for the scalar am-
plitude U0(X) as a function of distance along the trajectoryX(r)

dU0

dr
+ -U0 = 0 (64)

where

- = R∇∇ · p̂ + RC−1
dC−1

dr
+ Rk

dk
dr

, (65)

R∇ =
Γ + 2kΠ2ΥC−1

2Γ− 3kΠ2ΥC−1
, (66)

RC−1 =
αΠ + kΠ3Υ− 1

2C2Π−1k−1

2ΓΠ− 3kΠ3ΥC−1
, (67)
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Rk =
2Π2ΥC−1 − 1

2k−1

2Γ − 3kΠ2ΥC−1
, (68)

and

Π =

√
C
k

+
α2

λ+ 2µ
1
k

. (69)

Note that the first term in (65) is related to the divergence of the
trajectories, geometrical spreading, while the latter two terms are
related to the heterogeneity. In particular, the derivatives of C−1

and k vanish in a medium with constant flow properties.
Because the coefficient - in equation (64) can be thought of

as a function of the distance along the trajectory r, the differential
equation can be solved directly. The explicit solution of this ordi-
nary differential equation is

U0(X) = A0 exp

[
−

∫

X(r)

-dr

]
(70)

and A0 is a constant of integration which is determined by the
source amplitude. Defining

χ =

∫

X(r)

-dr (71)

I can write equation (70) as

U0(X) = A0e
−χ. (72)

The solution (72) signifies exponential decay along the trajectory
in which the rate of decay depends upon the geometrical spreading
of the trajectories and upon the rate of change of the flow properties
along X(r). The exact dependence of this decay upon the proper-
ties of the medium is encapsulated in the coefficients R∇, RC−1 ,
and Rk.

2.3 Construction and Interpretation of the Zeroth-Order
Displacement Field Associated with the Biot Slow Wave

A physical interpretation of the function ϕ, a quantity sometimes
refered to as the pseudo-phase (Virieux et al.(1994)Virieux, Flores-
Luna, & Gibert), follows if I consider the zeroth-order solution for
the displacement of the solid phase

U(X,ϕ) = e−ϕU0(X) (73)

[see equation (9)]. Making use of equations (34) and (38), equation
(73) becomes

U(X,ϕ) = e−
√

sτU0(X)p̂. (74)

Substituting the expression for U0(X), equation (72), I arrive at the
solution in the s domain

U(X,ϕ) = A0e
−χe−

√
sτ p̂. (75)

The inverse Laplace transform of (75) gives the time-domain ex-
pression (Spiegel(1990))

u(X, t) = A0p̂e−χ τ

2
√
πt3

e−τ2/4tH(t) (76)

where H(t) is the step-function, which is zero for negative values
and unity for positive values. A similar solution was described by
(Virieux et al.(1994)Virieux, Flores-Luna, & Gibert) in relation to
diffusive electromagnetic imaging and by (Vasco et al.(2000)Vasco,
Karasaki, & Keers; Shapiro et al.(2002)Shapiro, Rothert, Rath,

& Rindschwentner) for pressure propagation. For a general time-
varying source the solution will be a convolution of equation (76)
with the source-time function, which I will denote by q(t)

u(X, t) = A0p̂e−χ τ

2
√
πt3

e−τ2/4tH(t) ∗ q(t) (77)

where ∗ denotes a temporal convolution (Bracewell(1978)).
Note that (77) is the solution associated with a delta-function

source. For diffusive processes it is more common to employ a step-
function source in which energy or mass is introduced into the sub-
surface at a constant rate following the activation of the source.
Because the step-function results from integrating a delta-function
source, I can derive the solution associated with a step-function
source by simply integrating (77) with respect to time. The result-
ing solution is

u(X, t) = A0p̂e−χ

∫ t

0

τ

2
√
πu3

e−τ2/4udu (78)

or

u(X, t) = A0p̂e−χerfc

(
τ

2
√

t

)
(79)

where erfc is the complimentary error function (Spiegel(1990)).
Note that in a homogeneous medium, equation (79) agrees with
the results of (Rudnicki(1986)) for early times. It is similar in form
a generalization of the (Theis(1935)) solution for transient pres-
sure variations due to fluid withdrawal (Vasco et al.(2000)Vasco,
Karasaki, & Keers).

As shown by (Virieux et al.(1994)Virieux, Flores-Luna, &
Gibert), one may interpret the quantity τ in terms of an ’arrival
time’. Specifically, consider the time associated with the arrival of
the peak of the pulse in equation (77). Alternatively, if working with
a step-function source, consider the time associated with the arrival
peak of the time derivative of the expression (79), the steepest slope
(Vasco et al.(2000)Vasco, Karasaki, & Keers). Differentiate the ex-
pression (77) for u(X, t) with respect to t

∂u(X, t)

∂t
= A0p̂e−χ τ

2
√
π

e−τ2/4t

[
− 3

2
√

t5
+

τ 2

4
√

t7

]
(80)

which has a zero when the quantity in square brackets vanishes, i.e.
when

t =
τ 2

6
. (81)

Thus, the phase τ is given by

τ =
√

6Tpeak (82)

where Tpeak denotes the time at which (80) vanishes. This coin-
cides with the peak of the derivative of the longitudinal solid dis-
placement. Thus, the ’phase’, τ (X), is proportional to the square
root of the time at which the longitudinal deformation is a maxi-
mum.

2.4 Construction of the Zeroth-Order Displacement Field
Associated with the Biot Fast Wave

Using the asymptotic representation, equation (9), I can also con-
struct the displacement field associated with the Biot fast wave. The
zeroth-order solution takes the form

U(X,ϕ) = e−sτf U0(X)p̂ (83)
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where τf is given by the integral (62). Taking the inverse Laplace
transform (Spiegel(1990)) produces the time-domain expression

u(X, t) = U0(X)δ(t − τf )p̂ (84)

which is a time-shifted delta function. Thus, unlike the slow wave,
the Biot fast wave is not of a diffusive nature. Rather, it has the char-
acter of a propagating elastic wave. Notice that, due to the nature
of the source term Q in equation (2), which is the input pressure
source divided by s, the time integral of the original source-time
pressure function is used to calculate the displacement.

2.5 On the Use of a Numerical Simulator to Construct the
Trajectory X(r) Associated with the Biot Slow Wave

The preceding considerations provide a method for constructing
an asymptotic solution from the output of a numerical simula-
tor. Such constructions prove useful in solving inverse problems,
as outlined in (Vasco et al.(2000)Vasco, Karasaki, & Keers) and
(Vasco & Finsterle(2004)). That is, the asymptotic solution pro-
vide semi-analytic expressions for model parameter sensitivities re-
quired for the inversion of field data. The basic idea is to use the
pressure-deformation history from a numerical simulator to com-
pute τ and hence p, and then numerically integrate the first set of
differential equations in (31) to find the trajectories X(r). Given
the trajectories and the phase, one can construct the displacement
field from equations (77) or (79), depending on the nature of the
source-time function. The sensitivities to changes in flow prop-
erties can be obtained from either a perturbation approach (He
et al.(2006)He, Datta-Gupta, & Vasco) or a Born technique (Vasco
et al.(2000)Vasco, Karasaki, & Keers).

In detail, I first model the pressure change and deformation us-
ing a numerical simulator. From the simulator output I compute the
arrival time Tpeak by either estimating the arrival time of the peak
[equation (77)] or the time at which the slope is greatest [equa-
tion (79)]. From the distribution of Tpeak over the simulation grid I
compute p from the gradient of τ or equivalently ϕ [see equations
(35) and (36)]. Given p, the trajectories are found by integrating
the first set of equations (31) numerically. The trajectories are ob-
tained numerically by stepping down the gradient of τ (X), starting
at an observation point. The formal procedure we use, a second-
order Runge-Kutta technique, is known as Heun’s method. Heun’s
method is quite simple and can be implemented in approximately
twenty to thirty lines of computer code. In essence, Heun’s method
improves upon an Euler iteration by computing the gradient at an
intermediate point. That is, after the i-th step along the trajectory
we take an intermediate step based upon equation (31)

X̂i = Xi −
p(Xi)
ς(Xi)

δr (85)

where p = ∇τ . The (i+1)-th step is simply the average of the
gradients atXi and the intermediate point X̂i

Xi+1 = Xi −
δr
2

[
p(Xi)

ς(Xi)
+

p(X̂i)

ς(X̂i)

]
. (86)

I should emphasize that, while I am computing the trajectory nu-
merically, based upon equation (31), I do not solve the two-point
boundary value problem itself. Rather, I let the reservoir simula-
tor determine the distribution of τ (x)which satisfies the initial and
boundary conditions. If I were to actually determine both τ (r) and
X(r) I must solve either the coupled set of differential equations
(31) by numerical integration or solve the Eikonal equation us-
ing a technique such as the fast marching method (Sethian(1999)).

Both procedures require more extensive coding, although there are
packages of programs and efficient algorithms to accomplish these
tasks (Press et al.(1992)Press, Teukolsky, Vetterling, & Flannery;
Sethian(1999)).

2.6 Propagation Across a Discontinuity

The asymptotic solution is based upon the assumption that the
medium is smoothly varying, in a sense made precise in Appendix
A. However, discontinuities are often present in the subsurface and
will influence the fluid pressure and deformation fields at depth. As
in ray methods, (Aki & Richards(1980); Kravtsov & Orlov(1990)),
it is possible to account for discontinuities in material properties
by including them as boundary conditions (Keller & Lewis(1995)).
The boundary conditions I consider apply to the transient quan-
tities in the pressure and deformation fields and do not apply to
steady-state properties, as modeled using streamlines in fluid flow
(Bear(1972); de Marsily(1986)).

The boundary conditions are based upon the continuity of the
transient disturbance and its normal derivative across the disconti-
nuity (Keller & Lewis(1995)). For the derivation that follows I shall
work in the transform domain, where the displacement in the solid
is given by equation (75). I shall consider two media, labeled by
the subscripts 1 and 2, separated by an interface I. The boundary
conditions across I are

U1(X,ϕ) = U2(X,ϕ) (87)

and
∂U1

∂n
=
∂U2

∂n
(88)

where n is in the direction of the normal vector to the interface, n̂,
and the equations only hold on the interface. In general, in addition
to the incident front there will be a reflected and a transmitted front.
The amplitudes of the incident, transmitted, and reflected front are
denoted by Ui, Ut, and Ur , respectively. From equation (87) I
have

Ut(X,ϕ) = Ui(X,ϕ) + Ur(X,ϕ). (89)

Substituting the asymptotic form of the solution (75) for each field
quantity in equation (89) I arrive at the constraint

τi(X) = τr(X) = τt(X)

for X on the interface I. It follows that the derivative of the func-
tions τi, τr , and τt in any direction of the tangent plane of the sur-
face are equal. Because of equation (36) I can relate the spatical
derivatives of τ to derivatives of ϕ and thus to the components of
p, because of equation (11). Thus, the continuity of the derivatives
of p in the tangent directions of I may be written as

pr × n̂ = pi × n̂ (90)

and

pt × n̂ = pi × n̂ (91)

where n̂ is the normal to the interface I. Taking the norm of equa-
tions (90) and (91), using the definition of the magnitude of the
vector cross product, and making use of the Eikonal equation (23a)
or (24) gives

sin θr = sin θi (92)

and
√
γ1 sin θi =

√
γ2 sin θt (93)
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where

γl =
Cl

kl
+

αl
2

λl + 2µl

1
kl

(94)

for l = 1, 2. Given the incidence angle θi I can use equation (93) to
find the angle associated with the refracted front. An example of the
bending of a trajectory across a sharp interface is given in Figure 3.
In response to a decrease in hydraulic conductivity, the trajectory
bends. The change in angle, governed by equation (93), is such that
the total phase integral, equation (33), is minimized (Kravtsov &
Orlov(1990)).

The preceding relationship between incident, reflected, and
transmitted take-off angle, equations (92) and (93) can be combined
with a two-point ray-tracing technique (Press et al.(1992)Press,
Teukolsky, Vetterling, & Flannery) in order to compute trajectories
in a medium with discontinuities. First, the ray is traced through
the upper-most medium until it encounters an interface. When the
interface is encountered I use equation (93) along with the value of
θi and the properties above (γ1) and below (γ2) the discontinuity
to refract the trajectory as it crosses the boundary. Thus, I compute
the angle, θt, at which the transmitted field trajectory leaves the
discontinuity. Then the raytracing proceeds in the second medium
using a ray-tracing technique and the new angle θt. The procedure
continues across all relevant interfaces until the observation point is
reached. Thus, a raytracing routine may be used to compute X(r)
with a finite number of adjustments, one for each discontinuity.

Once the ray is found, the amplitude is calculated using the
solution of the amplitude equation (72), and accounting for the con-
tinuity of the components of U across the interface. For example,
the continuity of the displacement field across the interface leads to
the equation

Ui + Ur = Ut (95)

(Aki & Richards(1980)). This equation, coupled with relationships
between pi, pr, pt, ,Ui,Ur,Ut, and the properties on each side of
the interface lead to reflection and transmission coefficients associ-
ated with the discontinuity (Aki & Richards(1980)). The reflection
and transmission coefficients are used to modify the field ampli-
tudes as the waves encounter the interface. That is, they are multi-
plication factors which are applied to the incident field amplitude
in order to calculate the transmitted and reflected field amplitudes.

In summary, the presence of a discontinuity does not fun-
damentally alter the process of computing the trajectory in a
medium with continuous changes in flow properties. I still employ
a standard technique, such as a Newton-Raphson routine (Press
et al.(1992)Press, Teukolsky, Vetterling, & Flannery), to conduct
two-point raytracing. The discontinuity induces a refraction of the
ray as it crosses the interface. This refraction is computed using
(93) and incorporated into the routine for computing the trajectory.
Similarly, a trajectory associated with the reflected wave may be
calculated using equation (92) and the two-point raytracing rou-
tine. The amplitudes are still determined by solving the amplitude
equation (64), in the regions separated by the interface. The discon-
tinuity itself gives rise to a partitioning of energy which is governed
by equation (95) and described by reflection and transmission co-
efficients. The computation of reflection and transmission coeffi-
cients is straight-forward and has been discussed elsewhere (Aki
& Richards(1980)). Because the main focus of this paper is the
propagation of pressure and displacement wavefields in smoothly
varying media, I shall not discuss the computation of reflection and
transmission coefficients any further.

3 APPLICATIONS

In this section I implement the expressions presented above
in order to calculate pressure and displacement fields due to
fluid injection in homogeneous and heterogeneous whole spaces.
The results are compared to both analytic (Rudnicki(1986);
Wang & Kumpel(2003)) and numerical computations (Masson
et al.(2006)Masson, Pride, & Nihei) in order to assess the utility
and accuracy of the asymptotic approach. I begin this section with
some observations concerning the calculation of the full poroelastic
response due to fluid injection.

3.1 Calculation of the Full Transient Disturbance Induced by
Fluid Injection

As noted in the Methodology section, there are two modes of prop-
agation in a poroelastic medium, the Biot fast and slow waves. Both
modes are longitudinal displacements of the solid matrix but with
differing velocities. A question arises as to how these two modes
are generated and synthesized to form the response at a receiver.
The answer to this question requires consideration of the mechan-
ics of poroelastic deformation due to the injection of fluid. As fluid
is injected at a well, the fluid pressure increases, deforming the
solid matrix near the wellbore. This deformation propagates out-
ward as an elastic disturbance from the region of greatest pressure
change to the surrounding medium. That is, the elastic medium re-
sponds to the fluid volume change due to injection. According to
the quasi-static governing equations (1), the response of the elastic
medium is instantaneous. However, for the full poroelastic govern-
ing equations, containing second order partial derivatives in time,
the response propagates with the elastic wave speed of the medium
(Pride(2005)). With time, the region of greatest pressure change
migrates away from the wellbore and propagates through the fluid
component of the medium. As the fluid pressure disturbance propa-
gates through the medium it induces deformation within the elastic
matrix.

The relationship of these physical considerations to the math-
ematical expressions derived above may be summarized by the di-
agram in Figure 4. A slow wave, signified by the solid line in Fig-
ure 4, propagates from the wellbore source to a particular receiver.
For a delta-function source-time function, the propagation from the
source location to a point a distance r along the trajectory, X(r),
is given by equation (77). At the point X(r) the pressure-induced
displacement is propagated outward to the receiver location as an
elastic disturbance. In essence, the pore-pressure induced displace-
ment ’sheds’ elastic deformation as it propagates. Because the elas-
tic properties of the formation are uniform the elastic trajectories
are straight-lines, as shown in Figure 4. Thus, the total solid phase
displacement at the receiver is a summation over all the pressure-
induced deformation along the trajectory, accounting for the elastic
propagation from point of generation, X(r), to the receiver. The
effect of the elastic propagation is contained in the time-domain ex-
pression for the Biot fast wave, equation (84). The total solid phase
displacement is an integral over the Biot slow wave path from the
source atX0 to the receiver atXf

u(Xf , t) =

∫ Xf

X0

Ue(Xr,Xf )A0p̂e−χr τr

2
√
πt3

e−τr
2/4tH(t)dr.

(96)
In this expression I have assumed instantaneous propagation of the
fast wave from a position on the trajectory Xr to the receiver and
the effects of the fast propagation are contained in the amplitude
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term Ue(Xr,Xf ). The quantities τr and χr are the diffusive phase
and amplitude terms for propagation fromX0 toXr. For point r of
the trajectory of the Biot slow wave there will be a corresponding
total trajectory which travels along the slow wave trajectory to the
pointX(r) and then travels along the Biot fast wave trajectory from
X(r) toXf , as in Figure 4.

3.2 Homogeneous Whole Space Solution

As a first application I consider the displacement and pressure
changes due to injection of a fluid volume into a homogeneous
poroelastic whole space. The source-time function q(t) is a step-
function, as shown in Figure 5. The medium is characterized by the
elastic parameters λ =5.91 GPa, µ =0.45 GPa, α =0.83 and by
a constant hydraulic conductivity of 1.00 × 10−12 and porosity of
0.33.

The asymptotic solution was calculated using a two-point ray-
tracing code, the numerical implementation of a solver for the sys-
tem of equations (31) (Press et al.(1992)Press, Teukolsky, Vetter-
ling, & Flannery). In addition, the phase and amplitude terms τ and
χ were computed using the expressions (35) and (71). The com-
plete solution for the Biot slow wave is given by equation (79). This
quantity gives the pressure induced deformation associated with the
slow wave and was used to compute the pressure response. The
displacement was computed using the temporal integral of the ex-
pression (96). The time integration is necessary because the source
is a step function and equation (96) is the response due to a delta
function source.

For comparison, I implemented the analytic expres-
sions derived by (Rudnicki(1986)), as presented in (Wang &
Kumpel(2003)) for the displacement

u(X, t) =
q0(1 + νu)B

24π(1 − νu)D
X −Xs

R
F (ξ), (97)

and the pressure

p(X, t) =
q0

4πk
1
R

erfc(
ξ
2
) (98)

induced by a step function source located at pointXs, where

ξ =
R√
Dt

(99)

and

F (ξ) = erfc(
ξ
2
) +

2
ξ2

erf(
ξ
2
) − 2

ξ
√
π

exp(− ξ
2

4
). (100)

In these expressions q0 is the flow rate, νu is the undrained Pois-
son’s ratio, B is Skempton’s coefficient (Skempton(1954)), D is
the hydraulic diffusivity, R is the distance from the source to the
receiver, and k is the hydraulic conductivity. These parameters
can be derived from λ, µ, α, C, and k, as shown in (Wang &
Kumpel(2003)).

In addition to the analytic solution of (Rudnicki(1986)), I also
calculated pressure changes and solid matrix displacements us-
ing a finite-difference code (Masson et al.(2006)Masson, Pride,
& Nihei). The code uses an explicit time stepping, staggered-
grid finite difference method for solving Biot’s equations in the
low-frequency limit (for frequencies less then 10 kHz). The for-
mulation is not entirely equivalent to the quasi-static solution
treated in (Rudnicki(1986)) and presented here because (Masson
et al.(2006)Masson, Pride, & Nihei) consider the low-frequency
’seismic limit’ of the poroelastic governing equations. Thus, their
approach incorporates inertial terms, in particular they include

second-order time derivatives. To this end, additional parameters,
such as fluid viscosity, and fluid and solid densities, are present.
These parameters are not found in the quasi-static governing equa-
tions (1) treated here. The finite-difference code incorporates rigor-
ous stability conditions and has been compared to exact analytical
solutions for both fast and slow waves. Three pressure-difference
fields from the numerical calculation are shown in Figure 6. Be-
cause the source is a step function in time, by differencing the pres-
sure I can generated a pressure field which is similar to that gen-
erated by a delta function source. The pressure difference is more
closely related to a propagating disturbance or wave front, as is ev-
ident in Figure 6. As noted above, from the pressure history I can
compute the quantity τ , using equation (82) and the distribution of
the arrival time of the peak slope of the transient pressure curve.
The arrival time of the peak slope is shown in Figure 7, along with
the trajectory obtained by solving the ray equations (31).

In Figure 8 I compare the asymptotic, the analytic, and the nu-
meric solutions for a receiver located five meters from the source,
indicated by the unfilled star in Figures 6 and 7. The solutions have
been normalized so that the peak amplitudes of the curves corre-
spond to a value of 1. In general, there is excellent agreement be-
tween the different methods. This is encouraging because these are
very different approaches for calculating pressures and displace-
ments. Note that the pressure change at the receiver is close to
zero for early times and gradually increases after about 0.5 sec-
onds. In contrast, the longitudinal displacement of the solid matrix
increases roughly linearly from the start of injection and gradually
approaches a constant vallue. This difference is explained by the
generation of elastic displacement at the injection point due to the
pressure change. As noted above, the induced displacement propa-
gates from the region of greatest pressure change to the observation
point as an elastic wave, a Biot fast wave. As indicated by equation
(84), this mode of propagation is non-diffusive and only decays
in amplitude because of geometrical spreading. Thus, deformation
associated with early injection is observed at the receiver almost
instantaneously, with an amplitude decrease characteristic of elas-
tic wave propagation. Over time the displacement increases as the
pressure change propagates away from the well and deformation
accumulates in the whole space. The rate of increase slows over
time because the amplitude of the diffusive wave decreases signifi-
cantly away from the well (Figure 6). Thus, the asymptotic solution
provides insight into the nature of the displacement variations of the
solid phase.

3.3 Heterogeneous Whole Space Solution

I also consider a smoothly-varying, heterogeneous distribution of
hydraulic conductivity, as shown in Figure 9. The variation in k is
characterized by the formula

k =
50k0

1 + Y
(101)

where Y = X + Z is sum of the distance along theX and Z axes.
The pressure differences for three different times, 1s, 3s and 10s,
are shown in Figure 10. The outwardly propagating disturbance is
no longer rotationally symmetric, though it is symmetric about a
line 45o from the X-axis, due to the symmetry of the conductiv-
ity distribution. The resulting travel time distribution is asymmetric
as well, though the phase deviations are more subtle (Figure 11)
than are the wavefield amplitudes. The trajectory from the source
to the receiver does deviate from a straight line, due to the hetero-
geneous distribution of k. Because of the heterogeneity, an analytic
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solution is not possible and I only compare the trajectory-based
asymptotic solution to a numerical finite-difference solution (Mas-
son et al.(2006)Masson, Pride, & Nihei). The numeric and asymp-
totic pressure and solid phase displacements are shown in Figure
12. The general characteristics are similar to the solutions in the ho-
mogeneous medium. That is, the pressure at the observation point
increases very slowly at first while the solid displacement seems to
vary almost linearly after the onset of fluid injection. As mentioned
above, the difference behaviour is best explained by the differences
in the modes of propagation. That is, the pressure propagates as
a diffusive disturbance while the displacement of the solid phase
travels in the manner of an elastic waves, arriving at the observation
point almost instantaneously and with much less amplitude decay
with distance. Though there is good overall agreement between the
numeric and the asymptotic calculations there are differences in
detail. These deviations are most likely due to the differences in
formulation. For example, the numeric solution contains additional
parameters, such as fluid viscosity, fluid density, and solid den-
sity associated with the second-order time derivatives of the fluid
and solid displacements (Masson et al.(2006)Masson, Pride, & Ni-
hei). Also, there are approximations in the numeric solution due to
discretization and the presence of grid with boundaries at a finite
difference from the observation point. Given these differences the
agreement between the two solutions is deemed acceptable.

4 CONCLUSIONS

The asymptotic approach provides explicit, semi-analytic expres-
sions for the phase and amplitude of both the diffusive Biot slow
wave and the hyperbolic Biot fast wave, two solutions of the equa-
tions governing the response of a poroelastic medium to a pressure
source [equations (1)]. The diffusive slow wave decays rapidly as
it propagates while the fast wave decays in the manner of an elastic
wave. Thus, the fast wave generated by a rapid change in pressure,
will produce the most significant early time displacements at a re-
mote observation point. As the Biot slow wave propagates it gen-
erates or sheds elastic deformation in the form of Biot fast waves.
The total response is a summation over the Biot slow wave and the
accompanying Biot fast waves. This superposition of slow and fast
waves accounts for the rapid increase in longitudinal displacement
directly after the onset of pumping at a source well. In contrast, the
pressure response, which is primarily due to the Biot slow wave, is
gradual and begins after some time delay due to propagation from
the source to the receiver. I should note that the fast wave will also
generate a slow wave due to the coupling of pressure and deforma-
tion. However, in the situations considered here the accompanying
slow wave appears to be small enough to be neglected. In some
cases a propagating fast wave, a wave of elastic deformation, does
give rise to fluid pressure changes which are observable. For exam-
ple, deformation tied to a distance earthquake, propagating as an
elastic wave, has been observed to produce fluid pressure changes
and changes in micro-seismicity in quasi-stable geothermal regions
(Jónsson et al.(2003)Jónsson, Segall, Pedersen, & Björnsson).

The analysis and applications in this paper illustrate the utility
of asymptotic techniques in the study of coupled fields in compli-
cated settings. Typically, in geophysics asymptotic methods have
been limited to modeling high-frequency seismic and electromag-
netic wave progatation (Aki & Richards(1980)). It is not gener-
ally appreciated that asymptotic methods are applicable to a wide
range of equations, and can model behaviour ranging from diffusive
propagation to hyperbolic, wave-like propagation. The generality

of asymptotic techniques has been pointed out by others, particular
in the study of diffusive, dispersive, and non-linear systems (Jef-
frey & Taniuti(1964); Whitham(1974); Taniuti & K.(1983); Anile
et al.(1993)Anile, Hunter, Pantano, & Russo; Sachdev(2000)).

In geophysical and hydrological applications, asymptotic
methods have been used in a more general sense by a limited
number of investigators. One of the earliest known applications
was to electromagnetic propagation within the Earth (Virieux
et al.(1994)Virieux, Flores-Luna, & Gibert). This was followed
by applications to transient fluid pressure propagation in the sub-
surface (Vasco et al.(2000)Vasco, Karasaki, & Keers; Shapiro
et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner). Asymp-
totic methods have also been applied to governing equations of
mixed character, in which the propagation cannot necessarily
be classified as strictly wave-like or diffusive. For example, the
method of multiple scales has been used to model tracer trans-
port which can vary from hyperbolic to diffusive propagation, de-
pending on nature of the tracer and the flow conditions (Vasco &
Finsterle(2004)). This technique has also be used to model two-
phase flow in the sub-surface, a type of non-linear front propa-
gation which can vary in character from hyperbolic to diffusive
(Vasco(2004)). Recently, the method of multiple scales has been
used to model broadband electromagnetic wave propagation in the
Earth (Vasco(2007)). In that case complex raytracing was used to
model propagation that had characteristics of both hyperbolic and
diffusive propagation.
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5 APPENDIX A: THE METHOD OFMULTIPLE SCALES

In this Appendix I use the method of multiple scales to derive an
asymptotic solution to the governing equations. The solution is
valid when the heterogeneity is smoothly varying. If I denote the
scale of variation of the background properties by L and the mean
wavelength of propagating disturbance by l, then L ( l. The ra-
tio of scales is characterized by the parameter ε = l/L which is
assumed to be much smaller than 1.

I shall investigate disturbances for which the amplitude,
wavenumber and frequency vary slowly, at the scale-length of the
variation in background properties Lwhile the phase varies rapidly,
at the scale-length l. In the method of multiple scales one defines
slow variablesX in terms of the physical variables x by

Xi = εxi, (A1)

where ε = l/L. The displacement field is then written as a formal
power series expansion in ε

U(X,ϕ) = e−ϕ
∞∑

p=0

εpUp(X), (A2)

where ϕ(X) is the local phase. The series (A2) may be thought of
as a local plane wave expansion in the Laplace s domain.

Now U(X,ϕ) depends on x through the dependence of X
and ϕ. Thus, the spatial derivatives which appear in the vector dif-
ferential equation (8) may be rewritten in terms of the new vari-
ables. Specifically, the partial derivative with respect to xi may be
written

∂
∂xi

=
∂Xi

∂xi

∂
∂Xi

+
∂ϕ
∂Xi

∂
∂ϕ

= ε
∂
∂Xi

+
∂ϕ
∂Xi

∂
∂ϕ

. (A3)

The first step involves writing the differential operators in
equation (8) in terms of the slow variables, as in equations (A3).
Thus, the differential operators∇· and∇× in equation (8) become

∇x· = ε∇ · +∇ϕ · ∂
∂ϕ

(A4a)

∇x× = ε∇× +∇ϕ× ∂
∂ϕ

, (A4b)

respectively, where the subscript x signifies that the gradient is
computed with respect to the original variables xi.. Expressions
such as these are substituted into equation (8), which is re-written
in terms ofU(X,ϕ). For example, consider the first term in equa-
tion (8),∇x∇x · U,

∇x∇x · U = ∇x

[
ε∇ · U + ∇ϕ · ∂U

∂ϕ

]
. (A5)

Expanding the differential operator ∇x further, results in the ex-
pression

∇x∇x · U = ε2∇∇ · U + ε∇
(
∇ϕ · ∂U

∂ϕ

)

+ε∇ϕ
(
∇ · ∂U

∂ϕ

)
+ ∇ϕ

(
∇ϕ · ∂

2U
∂2ϕ

)
(A6)

which contains terms of various orders in ε. Carrying out the proce-
dure for all the differential operators in equation (8), retaining only

terms of order ε0 and ε1, results in the following expression

Γ∇ϕ
(
∇ϕ · ∂

2U
∂ϕ2

)
−Ψ∇ϕ×

(
∇ϕ× ∂2U

∂ϕ2

)

−C−1ΥK∇ϕ∇ϕ ·∇ϕ
(
∇ϕ · ∂

4U
∂ϕ4

)

+εΓ∇(∇ϕ · ∂U
∂ϕ

) + εΓ∇ϕ
(
∇ · ∂U

∂ϕ

)

−εΨ∇× (∇ϕ× ∂U
∂ϕ

) − εΨ∇ϕ× (∇× ∂U
∂ϕ

)

+ε∇C−1α∇ϕ · ∂U
∂ϕ

−ε∇C−1KΥ∇ϕ ·∇ϕ
(
∇ϕ · ∂

3U
∂ϕ3

)

−εC−1∇ϕΥ∇K ·∇ϕ
(
∇ϕ · ∂

3U
∂ϕ3

)

+εC−1Ψ∇ϕ∇K ·
(
∇ϕ×∇ϕ× ∂3U

∂ϕ3

)
(A7)

−εC−1∇KΥ∇ϕ ·∇ϕ
(
∇ϕ · ∂

3U
∂ϕ3

)

−εC−1KΥ∇
(
∇ϕ ·∇ϕ∇ϕ · ∂

3U
∂ϕ3

)

−εC−1KΥ∇ϕ∇ ·
(
∇ϕ∇ϕ · ∂

3U
∂ϕ3

)

−εC−1KΥ∇ϕ∇ϕ ·∇
(
∇ϕ · ∂

3U
∂ϕ3

)

−εC−1KΥ∇ϕ∇ϕ ·∇ϕ
(
∇ · ∂

3U
∂ϕ3

)
= 0.

Before I examine terms of order ε0 and ε1 in more detail, I rewrite
equation (A7) in terms of the slowness vector

p = ∇ϕ (A8)

and make use of the fact that the particular form of U(X,ϕ) in
equation (A2) leads to an expression for the partial derivatives of
U with respect to ϕ

∂lU
∂ϕl

= (−1)lU. (A9)

Thus, equation (A7) becomes

−Γp (p · U) + Ψp × (p × U)

−C−1ΥKp2p (p · U)

+εΓ∇(p · U) + εΓp(∇ · U)
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−εΨ∇× (p ×U) − εΨp × (∇× U)

+ε∇C−1αp · U + ε∇C−1KΥp2 (p · U)

+εC−1Υpp ·∇K (p · U) (A10)

−εC−1Ψp∇K · (p × p ×U)

+εC−1Υ∇Kp2 (p · U)

+εC−1ΥK∇
(
p2p · U

)

+εC−1ΥKp∇ · (pp · U)

+εC−1ΥKpp ·∇ (p · U)

+εC−1ΥKpp2 (∇ · U) = 0.

5.1 Terms of Order ε0

Taking the form ofU(X,ϕ), equation (A2), into account, one sees
that equation (A10) contains an infinite number of terms, each of
some particular order in ε. Because I am assuming that ε $ 1,
only terms of the lowest order in ε are important. After substituting
the power series representation (A2) I find that the terms of lowest
order in ε, those of order ε0 ∼ 1, are

(
Γ + C−1ΥKp2

)
pp · U0 −Ψp × (p × U0) = 0 (A11)

a linear equation for the components ofU0.

5.2 Terms of Order ε1

Next, I consider terms of order ε, which are obtained by substituting
the series representation (A2) into equation (A10). I assume that the
vectorU1 is parallel toU0 so that the terms containingU1 vanish,
due to equation (A11). Then, I am left with the equation

Γ∇(p · U0) + Γp(∇ · U0)

−Ψ∇× (p × U0) −Ψp × (∇×U0)

+∇C−1αp · U0 + ∇C−1KΥp2 (p · U0)

+C−1Υpp ·∇K (p · U0) (A12)

−C−1Ψp∇K · (p × p ×U0)

+C−1Υ∇Kp2 (p · U0)

+C−1ΥK∇
(
p2p · U0

)

+C−1ΥKp∇ · (pp · U0)

+C−1ΥKpp ·∇ (p · U0)

+C−1ΥKpp2 (∇ · U0) = 0.

6 APPENDIX B: CALCULATION OF THE AMPLITUDE
FUNCTION U0(X)

In this Appendix I derive the amplitude function for longitudinal
displacement, U0(X), presented in equation (38),

U0(X) = U0(X)p̂.

Substituting this form into the terms of order ε, equation (A12),
produces the equation

Γ∇(pU0) + Γp∇ · (U0p̂)

−Ψp ×∇× (U0p̂)

+∇C−1αpU0 + ∇C−1KΥp3U0

+C−1Υpp ·∇KpU0 (B1)

+C−1Υ∇Kp3U0

+C−1ΥK∇
(
p3U0

)

+C−1ΥKp∇ · (ppU0)

+C−1ΥKpp ·∇ (pU0)

+C−1ΥKpp2∇ · (U0p̂) = 0.

Because the vector p is determined from equation (24) or the sys-
tem (31), equation (B1) consists of three equations in a single un-
known, U0(X). I can reduce equation (B1) to a single equation
along the trajectory X(r) by taking the dot product with the unit
vector p̂. Upon projecting onto the vector p, Equation (B1) be-
comes

Γp̂ ·∇(pU0) + Γp∇ · (U0p̂)

+p̂ ·∇C−1αpU0 + p̂ ·∇C−1KΥp3U0

+2C−1Υp̂ ·∇Kp3U0

+C−1ΥKp̂ ·∇
(
p3U0

)

+C−1ΥKp∇ ·
(
p2U0p̂

)
(B2)

+C−1ΥKp2p̂ ·∇ (pU0)

+C−1ΥKp3∇ · (U0p̂) = 0.

Note that because of the first set of ray equations (31), the projec-
tions of the gradient operator may be written as a derivative along
the trajectoryX(r). Thus, I can write equation (B2) as an ordinary
differential equation

M
dU0

dr
+ NU0 = 0 (B3)

where

M =
(
2 + 3C−1Kp2

)
pΥ+ 2αC−1p (B4)

and

N = N∇∇ · p̂ + Np′
dp
dr

+ NC−1
dC−1

dr
+ NK

dK
dr

. (B5)
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where

N∇ = αC−1p +
(
1 + 2KpC−1

)
pΥ (B6)

Np′ = αC−1 +
(
1 + 6Kp2C−1

)
Υ (B7)

NC−1 =
(
α+ ΥKp2

)
p (B8)

NK = 2C−1Υp3 (B9)

The amplitude function appears to depend upon the transform vari-
able s because it appears in the expression for p, as given in equa-
tions (23a) and (24) and in the definition of K, equation (3). I ex-
amine this dependence in more detail by substituting the expression
(3) forK and an expression for p

p = Π
√

s (B10)

where

Π =

√
C
k

+
α2

λ+ 2µ
1
k

. (B11)

From this representation I can write
dp
dr

=
dΠ
dr

√
s (B12)

and substitute forK in the coefficients, (B6), (B7), (B8), and (B9),
rewriting N as the sum

N = N ′
∇∇ · p̂ + N ′

C−1
dC−1

dr
+ N ′

k
dk
dr

. (B13)

where

N ′
∇ =

(
ΓΠ + 2kΥΠ3C−1

)√
s (B14)

N ′
C−1 =

(
αΠ + ΥkΠ3 − 1

2
C2Π−1k−1

)√
s (B15)

N ′
k =

(
2ΥΠ3C−1 − 1

2
Πk−1

)√
s. (B16)

Similarly, I can rewriteM so that the dependence upon s is explicit

M =
(
2ΓΠ− 3kΠ3ΥC−1

)√
s. (B17)

Thus, all coefficients are proportional to
√

s and I can factor it
out of the differential equation (B3), eliminating the dependence
of U0(X) upon s. The explicit solution of the ordinary differential
equation (B3) is

U0(X) = A0 exp

[
−

∫

X

-dr

]
(B18)

where

- = R∇∇ · p̂ + RC−1
dC−1

dr
+ Rk

dk
dr

. (B19)

and A is the initial amplitude, a constant of integration which is
determined by the source and

R∇ =
Γ + 2kΥΠ2C−1

2Γ − 3kΠ2ΥC−1
(B20)

RC−1 =
αΠ + ΥkΠ3 − 1

2C2Π−1k−1

2ΓΠ− 3kΠ3ΥC−1
(B21)

Rk =
2ΥΠ2C−1 − 1

2k−1

2Γ − 3kΠ2ΥC−1
. (B22)

Note that the first term in (B19) is related to the divergence of the
trajectories, the geometrical spreading, while the latter two terms
are related to the heterogeneity. In particular, the derivatives ofC−1

and k vanish in a medium with constant flow properties.
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Figure 1. Two-dimensional illustration of the method used to quantify tra-
jectory divergence for computing amplitudes.


