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Abstract 

A number of (semi-)analytical solutions are available to drawdown analysis and leakage 

estimation of shallow aquifer-aquitard systems. These solutions assume that the systems 

are laterally infinite. When a large-scale pumping from (or injection into) an aquifer-

aquitard system of lower specific storativity occurs, induced pressure perturbation (or 

hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We 

developed semi-analytical solutions to address the induced pressure perturbation and 

vertical leakage in a “laterally bounded” system consisting of an aquifer and an 

overlying/underlying aquitard. A one-dimensional radial flow equation for the aquifer 

was coupled with a one-dimensional vertical flow equation for the aquitard, with a no-

flow condition imposed on the outer radial boundary. Analytical solutions were obtained 

for (1) the Laplace-transform hydraulic head drawdown/rise in the aquifer and in the 

aquitard, (2) the Laplace-transform rate and volume of leakage through the aquifer-

aquitard interface integrated up to an arbitrary radial distance, (3) the transformed total 

leakage rate and volume for the entire interface, and (4) the transformed horizontal flux at 

any radius. The total leakage rate and volume depend only on the hydrogeologic 

properties and thicknesses of the aquifer and aquitard, as well as the duration of pumping 

or injection. It was proven that the total leakage rate and volume are independent of the 

aquifer’s radial extent and wellbore radius. The derived analytical solutions for bounded 

systems are the generalized solutions of infinite systems. Laplace-transform solutions 

were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate, 

leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of 

the aquifer-aquitard system, as well as injection/pumping scenarios. Application to a 

large-scale injection-and-storage problem in a bounded system was demonstrated. 

Key words: analytical solution, pressure perturbation, leakage, groundwater flow, 

pumping test 
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1. Introduction 

A number of analytical or semi-analytical solutions have been developed in the past 

decades for analyzing drawdown induced by pumping from a permeable aquifer, which is 

underlain and/or overlain by aquitards. More recent solutions differ from earlier work by 

making less restrictive assumptions on flow conditions in the aquitard, representing more 

realistic aquitards, and achieving more accurate model prediction (Theis, 1935; Hantush 

and Jacob, 1955; Hantush, 1960; Neuman and Witherspoon, 1969; Moench, 1985; Cheng 

and Morohunfola, 1993; Ramakrishnan and Kuchuk, 1993). For example, Hantush (1960) 

accounted for the storage of the aquitards, assumed to be negligible by Hantush and 

Jacob (1955), and for the leakage through the aquitards from neighboring aquifers into 

the pumped aquifer, assumed to be negligible by Theis (1935). Moench (1985) developed 

a semi-analytical solution for drawdown in both the aquifer and the aquitards, by taking 

into account the wellbore storage and skin effect of a large-diameter pumping well. Using 

pumping tests, these analytical or semi-analytical solutions have been extensively applied 

to calibrating the hydrogeologic properties of aquifers and aquitards.  

In addition, the applications of these analytical solutions have been extended to analyze 

pumping-induced leakage into the pumped aquifer from the aquitards and through the 

aquitards from neighboring aquifers (Hantush, 1964; Cheng and Morohunfola, 1993; 

Butler and Tsou, 2003; Zhan and Bian, 2006; Konikow and Neuzil, 2007). For example, 

Zhan and Bian (2006) presented a semi-analytical solution for the leakage rate and 

volume over the entire time domain, with closed-form analytical solutions for late steady-

state conditions, by focusing on the leakage through aquitards of no storativity. In reality, 

however, depletion of storage in low-permeability aquitards is the source of much of the 

groundwater produced from many confined aquifer systems (Konikow and Neuzil, 2007). 

In deep sedimentary rock, high-permeability aquifers are often overlain and/or underlain 

by much thicker lower-permeability aquitards or seals, which may have a high capacity 

for storage and attenuating pressure perturbation (or hydraulic head drawdown) induced 

in the pumped aquifer. Similar to pumping for water supply, injection into deep aquifers 

often has importance to isolation of environmental wastes. 
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One limitation of the existing (semi-)analytical solutions stems from the assumption that 

the pumped/injected aquifer is generally of infinite areal extent. This assumption may 

limit direct applications of the models to large-scale pumping and injection problems. For 

example, industrial-scale injection of carbon dioxide (CO2) into deep sedimentary 

formations is currently studied as a means of mitigating greenhouse gas effects and 

climate change. Injection of large amount of CO2 (millions of metric tonnes) results in 

pressure perturbation (or hydraulic head rise) propagating as far as 100 km away from the 

injection zone (e.g., Birkholzer et al., 2008), significantly larger than the extent of the 

developed CO2 plume. (This large-scale impact on pressure perturbation out of the 

injected fluid plume) is beyond the analysis of pumping tests in many text books 

(Vukovic and Soro, 1992; Batu, 1998; Cheng, 2000).) Such pressure-perturbation 

propagation may thus encounter the formation’s lateral boundaries. Numerical 

simulations may be employed to predict the injection-induced pressure perturbation in 

laterally bounded aquifers and the leakage into overlying/underlying aquitards and 

neighboring aquifers (e.g., Zhou et al., 2008). Alternatively, pressure perturbation and 

leakage in a bounded system may be obtained using image well theory with the existing 

solutions of infinite aquifers (Earlougher, 1977; Streltsova, 1988; Butler and Tsou, 2003). 

However, considering that the horizontal area of a bounded aquifer is an infinitesimal 

fraction of the infinite solution domain, a very large number of image wells may be 

needed to calculate pressure perturbation and leakage in the bounded aquifer. A simpler 

(semi-)analytical solution (if possible) is needed for a laterally bounded aquifer-aquitard 

system. 

Butler and Tsou (2003) demonstrated that the total leakage rate integrated over the entire 

aquifer-aquitard interface may be scale invariant (i.e., independent of the radial extent of 

a bounded aquifer), provided that the hydrogeological and other geometric parameters 

and injection/pumping rate are the same. They proved this phenomenon using an infinite 

number of image wells and the existing Hantush-Jacob solution for infinite aquifers. 

Zhan and Bian (2006) employed the scale-invariance of total leakage rate to extend 

applications of their semi-analytical solutions for infinite aquifers to finite-size aquifers 

with lateral impervious boundaries. However, the question arises whether the scale 

invariance is applicable for any kind of hydrogeologic and geometric conditions in the 
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aquifer and wellbore radius. A completely general proof of the scale-invariant 

phenomenon of total leakage rate is also much needed, demonstrated using an analytical 

solution. 

This paper aims at (1) developing semi-analytical solutions for injection- (or pumping-) 

induced pressure perturbation and leakage in a laterally bounded aquifer with an 

overlying/underlying aquitard, and (2) a general proof of the scale invariance in the total 

leakage rate between the aquifer and aquitard.  

We coupled a one-dimensional radial flow equation for the aquifer with a one-

dimensional vertical flow equation for the aquitard, using the continuity of pressure and 

flow rate at their interface. Applying Laplace transforms to the governing flow equations 

and their initial and boundary conditions in dimensionless form, we obtained the 

analytical solutions to the Laplace-transformed pressure perturbation (i.e., hydraulic head 

drawdown/rise) in the aquifer and the aquitard, as well as the rate and volume of leakage 

through the aquifer-aquitard interface. Using these solutions, we proved that the total 

leakage rate and volume are independent of the radial extent of the aquifer and wellbore 

radius. It was also demonstrated that the derived semi-analytical solutions are generalized 

solutions for infinite aquifers. The Laplace transforms of pressure perturbation, and 

leakage rate and volume were inverted numerically to obtain their counterparts in the real 

time domain, with an application to large-scale injection and storage. 

2.  Solutions for a Laterally Bounded Aquifer-Aquitard System 

For simplification, the following development of the semi-analytical solutions was 

demonstrated for the aquifer-aquitard system with an underlying impervious layer (see 

Figure 1)—although an underlying aquitard of different hydrogeologic properties and 

boundary conditions at its bottom can be easily added. In this case, the pressure 

perturbation is caused by injection of a given volumetric rate of native fluid into the 

aquifer, but the solutions are really applicable to pumping-induced drawdown as well. 

The system consists of an aquifer of a radial extent Br  and an overlying aquitard. The 

aquifer and aquitard are both assumed to be homogeneous and isotropic, with constant 

thicknesses B  and 'B , respectively. The injection at a constant volumetric rate, Q , 
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occurs in the injection zone or the well of a radius wr . This injection leads to pressure rise 

in the region near the injection zone in the aquifer, and the pressure perturbation then 

propagates laterally away from the injection zone towards the impervious lateral 

boundary located at radius Br . The pressure perturbation propagates vertically through 

the aquitard to the top boundary of the aquitard, where either a condition of zero pressure 

perturbation (Case 1) or no flow (Case 2) is assumed. The pressure-perturbation 

propagation also leads to leakage of native fluid from the aquifer into the aquitard and 

through the aquitard into the overlying aquifer in Case 1. It is assumed that the aquifer’s 

hydraulic conductivity is significantly higher than the aquitard’s conductivity so that the 

groundwater flow in the aquifer is one-dimensional, radial, and horizontal and that the 

groundwater flow in the aquitard is one-dimensional and vertical. It is assumed that the 

native fluid and the injected fluid are of the same fluid properties (i.e., density and 

viscosity), constant for the entire injection period, even though the fluid compressibility 

is included in the specific storage parameter. 

2.1. Hydraulic Head Rise 

The governing equation for the one-dimensional radial flow in the aquifer is written as 

(Bear, 1972; Moench, 1985): 
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where ),( trhh =  is the hydraulic head in the aquifer, r  is the radial distance from the 

injection-zone center, t  is time, sS  is the specific storativity of the aquifer, K  is the 

hydraulic conductivity of the aquifer, ),(' trq  is the specific discharge rate through the 

aquifer-aquitard interface (positive for leakage from the aquifer), 'w  is the scaled 

discharge rate per unit KB , 'K  is the hydraulic conductivity of the aquitard, 

),,('' tzrhh =  is the hydraulic head in the aquitard, and z  is the vertical coordinate 

upward from the aquifer-aquitard interface ( 0=z ). 
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The boundary conditions at the edge of the injection zone (or wellbore) and the outer 

radial boundary are written as follows, respectively: 

Q
r
hKBrw =
∂
∂

− π2  at wrr =             (1c) 

0=
∂
∂

r
h  at Brr =       (1d) 

The initial condition is 

)(),( rhtrh i=  at 0=t        (1e) 

where )(rhi  is the initial hydraulic head. 

The one-dimensional vertical flow through the aquitard is written as: 
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where sS '  is the specific storativity of the aquitard. The boundary conditions at the top 

and bottom of the aquitard are written as follows: 

),(),,(' trhtzrh =  at 0=z , 0≥t     (2b) 

and 
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where ),(' zrh i  is the specified initial condition of hydraulic head in the aquitard. 

Equation (2b) implies continuity in the hydraulic head at the aquifer-aquitard interface. 

Case 1 denotes the condition of no change in hydraulic head with time at the aquitard top, 

while Case 2 denotes the no-flow condition at the aquitard top. 

The governing equations and their associated initial and boundary conditions in 

Equations (1) and (2) can be written in a dimensionless form using: 
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where Dh , Dh' , Dt , Dr , Dz , and Dw' are the dimensionless variables for hydraulic head 

rise in the aquifer, hydraulic head rise in the aquitard, time, radial distance, vertical 

coordinate, and the scaled discharge rate, respectively. Introduction of these 

dimensionless variables into Equation (1) leads to the governing equation and its 

associated initial and boundary conditions written in the dimensionless form: 
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)( Brr wDw ≡  is the dimensionless injection-zone radius, )( Brr BDB ≡  is the 

dimensionless radial extent of the aquifer, )(rhDi  is the dimensionless initial hydraulic 

head rise, and  λ  is a leakage parameter. 

Similarly, the governing equation and its associated initial and boundary conditions, 

Equation (2), for the aquitard can be written in the dimensionless form: 
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with the following initial and boundary conditions: 

),(),,(' DDDDDDD trhtzrh =  at 0=Dz  and 0≥Dt    (5b) 
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where  

BSBS ss ''=σ .      (5e) 

By applying the Laplace transform to Equation (5), the subsidiary differential equations 

are obtained, with boundary conditions as follows: 
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where 

λσpm = ,       (6d) 

p is the Laplace variable, and a  denotes the Laplace-transform of variable a. 

Following Moench (1985), one obtains the solutions to ),,(' pzrh DDD  for the aquitard:  
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Therefore, the hydraulic head rise in the aquitard, ),,(' pzrh DDD , in the Laplace domain 

depends on the solution of the transformed head rise in the aquifer, ),( prh DD . The 

Laplace transform of the dimensionless scaled discharge rate, ),(' prw DD , in Equation 

(4b) is written as: 
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Using Equation (8), the Laplace transform of the governing equation and its associated 

boundary conditions for the aquifer in the dimensionless form, Eq. (4), is obtained as 

follows: 
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The general solution to Equation (9a) is given by the modified Bessel functions 

(Abramowitz and Stegun, 1972): 

)()(),( 0201 xrKAxrIAprh DDDD += ,    (10a) 

where  

fpx += ,        (10b) 

0I  is the modified Bessel function of the first kind and zero order, and 0K  is the 

modified Bessel function of the second kind and zero order. The two coefficients, 1A  and 



 11

2A , are determined using the two boundary conditions in Equations (9b) and (9c). 

Recalling that )()( 10 yKyyK −=∂∂  and )()( 10 yIyyI =∂∂  leads to the solution of the 

Laplace-transform head rise in the aquifer: 
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where 1I  is the modified Bessel function of the first kind and first order, and 1K  is the 

modified Bessel function of second kind and first order. The derived solution in Equation 

(11) differs with all previous solutions in that there is one extra term in the numerator of 

the right-hand side, reflecting the effect of the no-flow condition at the outer radial 

boundary. The physical interpretation of this solution is given in Section 4. 

2.2. Leakage through the Aquifer-Aquitard Interface 

When the hydraulic conductivity contrast ( '/ KK ) is larger than 100 (Zhan and Bian, 

2006), the essentially horizontal flow in the aquifer changes into vertical flow in the 

aquitard at the aquifer-aquitard interface, obeying the law of refraction of streamlines 

(Zhou et al., 2001). From the definition of the vertical leakage rate integrated up to an 

arbitrary radius ( Rr ): 
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one obtains the dimensionless leakage rate in the time and Laplace domains: 
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where the dimensionless variables: Brr RDR /=  and QvvD /Γ=Γ  are introduced. 

Inserting the solution of ),( prh DD  from Equation (11) into Equation (12c), and recalling 

)()( 10 yyKdyyyK −=∫  and )()( 10 yyIdyyyI =∫  (Abramowitz and Stegun, 1972) 

leads to  
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The accumulative volume of water, ),( trV Rv , leaking through the aquifer-aquitard 

interface within the radius of Rr  from the edge of the injection zone is defined as the 

integrated leakage from 0 to time t  (Zhan and Bian, 2006). Similarly, one obtains 

ττ drtrV
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0
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where the dimensionless leakage volume: ),(),( 2 trV
QBS

KtrV Rv
s

DDRvD =  is introducted.   

2.3. Total Horizontal Flux 

On the basis of the definition of the total horizontal flux, ),( trhΓ , across the thickness of 

the aquifer at radius r and time t: 

r
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one can easily obtain 
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where ),( trqh  is the horizontal specific discharge in the aquifer, and 

),( DDhD trΓ ( QhΓ≡ ) is the dimensionless total horizontal flux through the aquifer at 

dimensionless radius Dr .  

Similar to the dimensionless accumulative volume of water, ),( DDRvD trV , leaking 

through the aquifer-aquitard interface, the dimensionless accumulative volume of water 

),( DDhD trV migrating through the entire aquifer thickness from 0 to time t  is obtained as: 

),(1),( DDRhDDDRhD tr
p

trV Γ=      (15d) 

In summary, for a laterally bounded aquifer-aquitard system, Equations (7), (11), (13), 

(14c), (15c) and (15d) give the analytical solutions to the Laplace transforms of the 

hydraulic head rise in the aquitard, the hydraulic head rise in the aquifer, the leakage 

through the aquifer-aquitard interface, the accumulative leakage volume, and the total 

horizontal flux and the accumulative water volume through the aquifer thickness in their 

dimensionless form, respectively. Note that using Equations (13) and (15c) we can 

calculate the dimensionless storage rate of the injected fluid within the aquifer (with a 

radius of Dr ): ),(),(1),( DDhDDDvDDDsD trtrtr Γ−Γ−=Γ . 

2.4. Special Cases of the Bounded-System Solutions 

The “laterally bounded” aquifer-aquitard system with a finite radial extent can be 

considered as a generalized case of a “laterally infinite” aquifer-aquitard system when the 

“hypothetical” impervious boundary is located far away from the pressure-perturbation 

region. Setting ∞→DBr  in Equations (11), (13), (14c), and (15c) and recalling 

0)(1 =∞K  results in the solutions for an infinite aquifer-aquitard system: 
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Equation (16a) for a “laterally infinite” aquifer-aquitard system is identical to the solution 

given by Moench (1985) in his Equation (25), when the wellbore storage and skin effect 

are assumed to be negligible. Equations (7) and (16) can be used to calculate the Laplace 

transforms of hydraulic head rise in the aquifer and the aquitard, the rate of leakage 

through the aquifer-aquitard interface, the accumulative leakage volume, and the total 

horizontal flux, respectively, for a “laterally infinite” aquifer-aquitard system. 

Now we proceed to compare our solutions with other existing solutions given by Hantush 

and Jacob (1955) and Hantush (1960) for drawdown analysis, and given by Zhan and 

Bian (2006) for estimating leakage rate. When the pumping well has an infinitesimal 

radius (i.e., 0→wr ), the drawdown solution from Equation (16a), by recalling 
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y
, is as follows: 
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and in the case of sufficiently large storage in the aquitard, we obtain  
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Note that for an aquitard with no storage and impervious boundary at the top, the solution 

in Equation (17a) with Equation (17b) for Case 2 is exactly the same as the Theis solution 

in the Laplace domain (Theis, 1935). The solution in Equation (17a) with Equation (17b) 

for Case 1 is identical to the solution given by Hantush and Jacob (1955). The solutions 

in Equation (17a) with Equation (17c) for both cases are the same as the solutions of 

Hantush (1960), although Hantush gave approximate analytical solutions for early and 

late times. 

Under the assumptions of (1) an infinitesimal injection-zone radius and (2) no aquitard 

storage, Equation (16b) becomes: 

[ ])()(1),( 12 xrKxr
px

fpr DRDRDRvD −=Γ ,     (18) 

with 2λ=f  and 2λ+= px . Note that Equation (18) is identical to the leakage 

solutions given by Zhan and Bian (2006) in their Equation (11).  

In summary, the derived analytical solutions in the Laplace domain for a laterally 

bounded aquifer-aquitard system are generalized solutions to the existing analytical or 

semi-analytical solutions for a laterally infinite system. When the injection rate is very 

large and the system’s specific storativity (or pore compressibility) is relatively small, the 

existing solutions for infinite aquifers may not be applicable, because pressure 

perturbation encounters the aquifer’s lateral boundary. The new solutions derived in this 

paper are applicable to both laterally bounded and infinite systems.  

3. Scale Invariance of Total Leakage Rate and Volume 

3.1. Scale-Invariant Total Leakage Rate and Volume 

For a laterally bounded aquifer-aquitard system, the total leakage rate )(tT  ( ),( trBvΓ≡ ) 

is defined as the leakage rate integrated from the edge of the injection zone (or wellbore) 

(i.e., wrr =  and DwD rr = ) to the outer radial boundary (i.e., BR rr =  and DBDR rr = ) 

(Butler and Tsou, 2003; Zhan and Bian, 2006). By definition, the Laplace transform, 

)( pTD , of the dimensionless total leakage rate is obtained as: 
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D

r

r DDDBvDDBvDD drwrprtrpT DB

Dw
∫=Γ=Γ= '

2
1),(),()( .   (19) 

Using Equations (13) and (14c) leads to the following dimensionless total leakage rate 

and volume in the Laplace domain: 

)(
)(

fpp
fpTD +

=       (20a) 

)(
),(

2 fpp
fprV DBvD +

=      (20b) 

As indicated in Equation (20), the dimensionless total leakage rate and volume in the 

Laplace domain, )( pTD  and ),( prV DBvD , are dependent only on f  and the p variable 

(representing time). From the parameter definitions in Equations (4f), (5e), and (6d), we 

know that the dimensionless total leakage rate and volume depend only on the 

hydrogeologic properties of the aquifer-aquitard system (i.e., λ  and σ  for the contrast of 

hydraulic conductivity and specific storativity between the aquifer and the aquitard), the 

thickness of the aquifer and the aquitard, and the time since injection starts. It is apparent 

that )( pTD  and ),( prV DBvD  are independent of the radial extent of the bounded aquifer-

aquitard system and of the radius of the injection zone. This indicates that the total 

leakage rate and volume in the real time domain is scale invariant. 

For an infinite system, setting ∞→DRr  in Equations (16b) and (16c) and recalling that 

0)(lim 1 =
∞→

yyK
y

 leads to an expression for the dimensionless total leakage rate and 

volume in the Laplace domain, which are exactly the same as Equations (20a) and (20b). 

As a result, a laterally infinite aquifer-aquitard system has the same total leakage rate 

and volume as a laterally bounded system, provided that the same pumping/injection rate 

is used. Equation (20) can be used to calculate the Laplace-transformed total leakage rate 

and volume for the entire aquifer-aquitard interface, for both a “laterally bounded” 

system and an infinite system. 
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3.2. Asymptotic Approximations 

The early-time and late-time asymptotic approximations for the total leakage rate can be 

obtained through the analytical inverse Laplace transforms of the approximations to 

Equation (20). Considering the fact that the hyperbolic tangent and cotangent in Equation 

(8) approach unity as their argument becomes large ( 0.3>m ) (Moench, 1985, Page 

1128), we can obtain the early-time approximation ( 2/11.0 λσ<Dt ): 

)(
)(

σλ
σλ
+

=
pp

pTD      (21) 

for Cases 1 and 2.  

Considering the fact that the hyperbolic tangent approaches the value of its argument and 

the hyperbolic cotangent approaches the inverse of its argument as their argument 

becomes small ( 316.0<m ), we can obtain the late-time approximations ( 2/10 λσ>Dt ): 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+

+
=

2Casein,
)1(

1Casein,
)(

)(

2

2

σ
σ

λ
λ

p

pp
pTD     (22) 

Analytical inversion of the Laplace transforms in Equation (22) results in: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+

−−
=

2Casein,
1

1Casein),exp(1
)(

2

σ
σ

λ D

DD

t
tT     (23) 

As shown in Equation (23), when the aquitard top is impervious to flow (i.e., Case 2), the 

total leakage rate through the aquifer-aquitard is 
''

''
)(

BSBS
BS

tT
ss

s
DD +

= . This indicates 

that )( DD tT  depends only on the ratio between the injected fluid stored in the aquitard 
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( '' BS s ) and the total injected fluid ( '' BSBS ss + ) stored in the entire aquifer-aquitard 

system. When the aquitard top is open to an infinite reservoir (i.e., Case 1), eventually the 

native fluid leaks (at the equivalent volumetric rate of injected fluid) out of the aquifer-

aquitard system through the aquitard top boundary (as well as through the aquifer-

aquitard interface), and a steady-state condition is reached for the entire system. The time 

needed to reach the steady-state condition depends on the hydrogeologic parameters σ  

and λ , as well as the injection rate. 

The scale invariance of the total leakage rate and volume has been mathematically proven 

in a general, but straightforward, way for a “laterally bounded” radial system. This proof 

is more general than that given by Butler and Tsou (2003), who used image well theory 

and numerical modeling to account for the total leakage of a finite-size rectangular 

aquifer with zero-radius of the injection zone. The scale-invariant phenomenon indicates 

that the total leakage rate and volume are independent of the radius of the injection zone 

and the lateral extent of the aquifer. They depend only on the hydrogeologic properties of 

the aquifer-aquitard system, the thicknesses of the aquifer and the aquitard, and the time 

since injection starts (i.e., λ , σ , and t). Considering that the scale-invariant phenomenon 

has been proved for a “laterally bounded” radial system in this paper and for a 

rectangular system in Butler and Tsou (2003), it is expected that the scale-invariance is 

valid for any aquifer-aquitard system with a wide range of more complicated aquifer 

geometries.  

4.  Physical Interpretation of the Solutions 

To physically interpret the analytical solutions given in Equations (11), (13), and (15c) 

for the hydraulic head rise in the aquifer, the leakage through the aquifer-aquitard 

interface, and the horizontal flux, we compared the first and the second terms in the 

denominators of these equations, by evaluating the value of the E ratio: 

)()(
)()(),,(

11

11

xrIxrK
xrIxrKxrrE

DwDw

DBDB
DBDw = .    (24) 
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Using the approximations: )(5.0)( 2
1

1 yOyIy +=−  and )(1)( 2
1 yOyyK +=  

(Abramowitz and Stegun, 1972, pp. 378–379), we obtain: 

2

)0,,(),,( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=→≤

DB

Dw
DBDwDBDw r

r
xrrExrrE .  (25) 

When 10≥DwDB rr , the E ratio can be approximated by zero, with an approximation 

error less than 1%. To demonstrate the approximation errors for a variety of Dwr  and DBr , 

we used four values of the dimensionless injection-zone radius 

( 0.10,0.1,1.0,01.0=Dwr ), and two reasonable values of the dimensionless aquifer’s 

radial extent ( 1000,100=DBr ). Figure 2 shows the dependence of the E ratio on the 

variables x  in the Laplace domain, the dimensionless radius of the injection zone ( Dwr ), 

and the dimensionless radial extent of the aquifer ( DBr ). The E ratio increases as the 

variable x  decreases and approaches a constant value, transitioning from an initially 

transient condition (relatively large x ) to a steady-state condition (relatively small x ). In 

general, the E ratio is smaller than 0.01 as long as the ratio 10≥DwDB rr  as indicated by 

Equation (25). 

Considering the negligible E ratio when 10≥DwDB rr , the analytical solutions in 

Equations (11), (13), (15c) can be rewritten in their approximate form:  
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We compared Equation (26), the approximate solutions for a laterally bounded system, to 

Equation (16), the solutions for a laterally infinite system, for the hydraulic head rise, the 

leakage rate, or the horizontal flux. The approximate analytical solution for a bounded 
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aquifer consists of the solution for an infinite system and a term reflecting the effect of the 

impervious lateral boundary. This boundary-effect term depends on the dimensionless 

radial extent DBr , because of the presence of )(1 xrK DB  and )(1 xrI DB  in Equation (26).  

As implied by Equation (26a), the hydraulic head rise at a given Dr  in a bounded aquifer 

is higher than that in an infinite system of the same λ  and σ  values. The extra head rise, 

represented by the boundary-effect term, results in a higher rate of flow through the 

aquifer-aquitard interface. The enhanced flow rate occurs over the entire bounded system 

and leads to a higher leakage rate ),( prDRvDΓ , as shown by the second term in Equation 

(26b). It is this self-adjusting nature of the bounded aquifer-aquitard system that results in 

the scale invariance of the total leakage rate. Furthermore, as shown in Equations (13) 

and (20a), the leakage rate ),( prDRvDΓ  in the Laplace domain changes from 0 at the edge 

of the wellbore or injection zone ( DwD rr = ) to )( pTD  ( )( fppf +≡ ) at the impervious 

radial boundary ( DBD rr = ). However, between these two end values, ),( prDRvDΓ  

depends on DRr  in a complicated form (to be shown in Section 5.2). 

Note that in the above physical interpretation of the derived analytical solutions in the 

Laplace domain (as well as in the mathematical formulations), it is assumed that no 

changes in the λ  and σ  parameter are caused by pressure increase from the initial 

hydrostatic pressure. This implies that geomechanical damage caused by overpressure 

needs be avoided (USEPA, 1994; Zhou et al., 2008). The sustainable injection rate (or the 

injection time for a given injection rate) can be easily calculated using Equation (11), 

when the maximum sustainable pressure is known. 

5.  Solution Evaluation 

The analytical solutions presented in Sections 2 and 3 are applied in this section. We used 

numerical inversion of the Laplace transforms in these analytical solutions to obtain the 

pressure perturbation (or hydraulic head drawdown/rise), leakage rate, and total leakage 

rate in the real time domain. An example of a large-scale injection in a deep sedimentary 
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sandstone aquifer was used to evaluate the solutions for a laterally bounded aquifer-

aquitard system. 

5.1. Numerical Inversion 

In general, no analytical inverse Laplace transforms of the solutions presented in Sections 

2 and 3 exist, and numerical inversion is needed. A number of numerical methods for 

Laplace transform inversion are available (Cohen, 2007). Among them, the methods of 

Stehfest (1970) and de Hoog et al. (1982) have been extensively employed with semi-

analytical solutions developed for field pumping and tracer tests (e.g., Moench, 1985; 

Moridis, 1999; Zhan and Bian, 2006; Zhou et al., 2007). In this research, the de Hoog et 

al. (1982) method was employed for numerical inversion of our analytical solutions. The 

code was verified by comparing our solutions with the solutions presented in Figure 2b of 

Moench (1985) for the Theis model and the Moench model with no skin effect and 

wellbore storage. The hydrogeologic parameters used are 004.0=λ  and 100=σ , with 

the dimensionless radius of the observations at 10=Dr . We applied the models to both 

Cases 1 and 2 for comparison, and added the underlying aquitard of the same properties 

as the overlying aquitard. An excellent agreement for both the Theis and Moench models 

between our solution and Moench’s solution was achieved (not shown), indicating that 

the numerical inversion of the Laplace transforms of analytical solutions works well. The 

FORTRAN code used in this paper can be obtained from the corresponding author upon 

request. 

5.2. Behavior of Hydraulic Head Rise and Leakage in a Bounded System 

A typical example for large-scale deep injection was used to demonstrate the behavior of 

hydraulic head rise and leakage in a laterally bounded brine aquifer. In the example, it 

was assumed that an equivalent volume of native brine is injected into the brine aquifer at 

a constant volumetric injection rate. (This example was extracted from a typical problem 

for industrial-scale injection of CO2 into a deep sedimentary sandstone-brine aquifer 

(Birkholzer et al., 2008; Zhou et al., 2008) by neglecting the two-phase CO2-brine flow 

regime, which cannot be represented by the developed analytical solutions.) The 

following properties were used: aquifer permeability of 1310−=k  m2, aquifer pore 
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compressibility of 10105.4 −×=pβ  Pa-1, aquifer thickness of 60 m, aquitard permeability 

of 1810' −=k  m2, aquitard pore compressibility of 10100.9' −×=pβ  Pa-1, aquitard 

thickness of 100 m, and water compressibility of 10105.3 −×=wβ  Pa-1. Accordingly, the 

hydraulic conductivities of the aquifer and the aquitards are 20.0=K  m/day and 
51020.0' −×=K  m/day, respectively, assuming brine density of 1200=ρ  kg/m3, gravity 

acceleration of 8.9=g  m/s2, and water viscosity of 3105.0 −×=µ  Pa s. The specific 

storativity of the aquifer is calculated using 61088.1)( −×=+= pws gS ββφρ  m-1, where 

the aquifers’ porosity is 2.0=φ . The specific storativity of the aquitards is calculated 

using 61047.1)'('' −×=+= pws gS ββρφ  m-1, where the aquitard’s porosity is 

10.0' =φ . Based on the above hydrogeologic and geometric properties, we calculated the 

two model parameters: 31045.2 −×=λ  and 30.1=σ . The additional parameters are: 

0.6=wr  m, 000,20=Br  m for the bounded system, and the injection rate is 700,5=Q  

m3/day. An overlying aquitard and an underlying aquitard of the same properties were 

considered, assuming the conditions of zero hydraulic head rise at the top of the 

overlying aquitard and the bottom of the underlying aquitard. Because an underlying 

aquitard is considered, the leakage term f  in Equation (8) is doubled, and all other 

solutions remain unchanged. For comparison, an infinite system of the same properties as 

the bounded system was also considered. 

Figure 3 shows the profiles of the dimensionless hydraulic head rise along the radial 

direction, ),( DDD trh , as a function of dimensionless time ( Dt ), for the bounded aquifer-

aquitard system calculated using Equation (11) and its comparison with those for the 

infinite system calculated using Equation (16a). At 31008.1 ×=Dt (0.1 year of injection), 

the injection-induced hydraulic head rise has not reached the outer radial boundary of the 

bounded system, so that identical profiles are obtained for both the bounded and infinite 

aquifers. At 41008.1 ×=Dt , the hydraulic head rise has just reached the outer radial 

boundary, but no significant difference in the profiles occurs between the bounded and 

the infinite systems. Starting with 41008.1 ×=Dt , the profile for the bounded aquifer 
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deviates from that of the infinite aquifer. At 41040.5 ×=Dt , the deviation mainly occurs 

in the region close to the outer radial boundary. After 51008.1 ×=Dt , the profile of the 

bounded aquifer is significantly different from that of the infinite aquifer over the entire 

region of 3.333≤Dr . The hydraulic head rise in the storage formation gradually 

increases; a steady-state condition is observed at 61008.1 ×=Dt (100 years of injection) 

for the bounded system, as no changes are obtained for longer injection time. For the 

infinite aquifer, however, the condition appears to be at a quasi-steady state after 
51024.3 ×=Dt  for the inner region ( 3.333≤Dr ), while the front of the pressure wave 

continues to propagate away.  

Figure 4 shows the incremental dimensionless hydraulic head rise, 

),(),( 12 DDDDDD trhtrh − , over five intervals of the dimensionless time from 0 to 
61008.1 ×=Dt . At early time, the incremental head change decreases from the injection 

zone to the outer radial boundary, as shown for the time intervals from 31008.1 ×  to 
41008.1 ×  and from 41008.1 ×  to 41040.5 × . The shape of the profile of incremental 

head rise indicates the injection-driven pressure change. After that, the incremental head 

rise with injection time becomes relatively uniform over the entire bounded aquifer, 

driven by the needs to store additional injected fluid in the entire aquifer-aquitard system. 

This pressure change is referred to as storage-driven pressure changes (Zhou et al., 

2008). 

The profiles of the hydraulic head change along the radial direction determine the shape 

of the radial profiles of the leakage rate, ),( DDRvD trΓ , as shown in Figure 5. For the 

bounded system, the leakage is attributed mainly to the hydraulic head rise in the 

pressure-perturbation region of 70≤Dr  and 300≤Dr  at 31008.1 ×=Dt  and 
41008.1 × , respectively. Once the pressure wave reaches the outer boundary at 

approximately 41008.1 ×=Dt , the increase in the leakage rate with injection time is 

attributed to the incremental hydraulic head rise over the entire domain (see Figure 4). 

The other factor affecting the shape of the leakage-rate profiles is that the aquifer-
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aquitard interface area (i.e., DD rr ∆π2 ) available for leakage per unit Dr∆  increases with 

Dr . Because of the radial feature of the bounded system and the relatively uniform 

incremental hydraulic head rise, the radial profile of the leakage rate changes its shape: 

when 41008.1 ×<Dt , the leakage occurs mainly within the pressure-perturbation region, 

with a flat line outside of this region; when 41008.1 ×>Dt , the slope of the radial profile 

becomes steeper with DRr  (see Figure 5a). At 61008.1 ×=Dt , the dimensionless total 

rate of leakage through the entire aquifer-aquitard interface is unity, reaching a steady-

state condition for the entire aquifer-aquitard system.  

Figure 5b shows the radial profile of the leakage rate, ),( DDRvD trΓ , as a function of 

dimensionless injection time, for a radial distance 3.333<DRr  (20 km) for the infinite 

system. A steady-state leakage rate is obtained for the region 3.333<DRr  at 

approximately 51008.1 ×=Dt , with the leakage rate of 0.46 at 3.333=DRr . In other 

word, 46% of the injected fluid rate leaks out of the 20 km domain. Note that the radial 

profiles of leakage rate at 51008.1 ×=Dt , 51024.3 × , 61008.1 ×  are essentially the 

same. The leakage rate at 31008.1 ×=Dt , for example, is higher than the steady-state 

leakage rate for the region 100≤DRr , even though the injection-induced hydraulic head 

is lower. This anomaly in the leakage rate is attributed to the hydraulic gradient at the 

aquifer-aquitard interface, which depends on the pressure increase in both the aquifer and 

the aquitards (see Equation (8) for f ). For example, for a given hydraulic head rise in the 

aquifer at a given Dr , the diffusive penetration into the aquitards leads to a decrease with 

time in hydraulic gradient at the aquifer-aquitard interface. On the basis of the proven 

scale-invariant phenomenon of the total leakage rate, we consider that, for a given time, 

the difference between the total leakage rate for the bounded aquifer and the leakage rate 

for 3.333=DRr  (i.e., 000,20=Rr  m) of the infinite system can be attributed to the 

leakage rate for the region ∞≤≤ DRr3.333  of the infinite system.  

Figure 6a shows the evolution of the dimensionless leakage rate, ),( DDRvD trΓ  for the 

bounded system, as a function of DRr  ( DBr00.1,90.0,75.0,50.0,25.0= ). The leakage 
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rate monotonically increases with DRr  up to the total leakage rate at DBDR rr = . The 

contribution to the total leakage rate from each of the regions (e.g., 

DBDRDB rrr 50.025.0 ≤≤ ) varies with injection time. For example, the contribution from 

the region DBDR rr 25.0≤  is dominant at 31008.1 ×=Dt , while the contribution from the 

DBDRDB rrr ≤≤5.0  region is dominant at later time (e.g., 61008.1 ×=Dt ). For a given 

DRr  value, the leakage rate does not always monotonically change with injection time, 

depending on the transient hydraulic gradient at the aquifer-aquitard interface as 

discussed above. The total leakage rate for the entire bounded system, however, increases 

with time until the system reaches a steady-state condition at 61008.1 ×=Dt  with 

0.1=DT . In the steady-state condition, native brine is displaced, at a discharge rate 

equivalent to the injection rate, into the overlying/underlying formations through the 

aquitards. 

As shown in Figure 6b, the total horizontal flux, ),( DDRhD trΓ , through the aquifer 

thickness at a given dimensionless radius, DRr , increases with injection time until it 

becomes constant at approximately 51008.1 ×=Dt . This flux provides the fluid mass (1) 

stored within the subdomain DBDDR rrr ≤≤  in response to continuous pressure increase 

and (2) leaking through the aquifer-aquitard interface for DBDDR rrr ≤≤ . As a result, the 

total horizontal flux decreases with DRr  until it becomes zero at the outer radial 

impervious boundary. Figure 6c shows the evolution of the dimensionless storage rate, 

),( DDRsD trΓ , within the aquifer, as a function of DRr . Together, Figure 6 shows the mass 

balance between the dimensionless injection rate (i.e., unity) and combination of (1) 

dimensionless storage rate within DRD rr ≤ , (2) dimensionless total horizontal flux 

through DRD rr =  and (3) dimensionless leakage rate for DRD rr ≤ , i.e., 

1),(),(),( =Γ+Γ+Γ DDRsDDDRhDDDRvD trtrtr . Similarly, the accumulative volume of 

water stored within the aquifer and that leaking through the aquifer-aquitard interface can 

be calculated using Equations (14c) and (15d).  
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6. Conclusions 

Existing (semi-)analytical solutions developed for analyzing pumping-induced drawdown 

and leakage in an aquifer-aquitard system assume that the aquifer has an infinite radial 

extent. Such solutions may not be applicable to a laterally bounded, deep sedimentary 

aquifer when large-scale injection of fluids is considered. In this case, injection-induced 

pressure perturbation may reach the natural boundary of the aquifer, increasing pressure 

over the entire lateral extent of the aquifer, in part because of the relatively low specific 

storativity or pore compressibility. 

We developed new semi-analytical solutions for the injection- (or pumping-) induced 

pressure perturbation in both the aquifer and the aquitard, and the rate and volume of 

leakage through the aquifer-aquitard interface. These solutions were developed by 

coupling the one-dimensional radial flow equation for the aquifer and the one-

dimensional vertical flow equation for the aquitard. Continuity in pressure and mass flux 

at the aquifer-aquitard interface was imposed, and the no-flow condition was used at the 

outer radial boundary. The analytical solutions for the Laplace-transform pressure 

change, leakage rate, and leakage volume were proved to be the generalized forms of 

their corresponding solutions for a laterally infinite system. Numerical inversion of these 

solutions was conducted to analyze the pressure change and leakage in the real time 

domain. 

Our solutions provide a general proof of the scale-invariant phenomenon of the total 

leakage rate and volume integrated over the entire aquifer-aquitard interface. This 

phenomenon was found by Butler and Tsou (2003), using image well theory and an 

existing semi-analytical solution of infinite aquifers, with the aid of an infinite number of 

image wells. Laplace transforms of total leakage rate and volume were demonstrated to 

be independent of the radial extent of the aquifer, regardless of a bounded or an infinite 

aquifer. The total leakage rate and volume depend only on the hydraulic conductivity and 

specific storativity of the aquifer and the aquitard, as well as on the duration for injection 

or injection time. The scale-invariant phenomenon reflects the self-adjusting nature of an 

aquifer-aquitard system (whether it is bounded or infinite): a higher pressure increase 
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within a smaller bounded system results in a higher leakage flux through per unit area of 

the aquifer-aquitard interface. 

Acknowledgements 

The authors wish to thank George Moridis at Lawrence Berkeley National Laboratory 

(LBNL) for his careful internal review of the manuscript. Thanks are also due to two 

anonymous reviewers for their constructive suggestions for improving the quality of the 

manuscript. This work was funded by the Assistant Secretary for Fossil Energy, Office of 

Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology 

Laboratory, of the U.S. Dept. of Energy, and by Lawrence Berkeley National Laboratory 

under Contract No. DE-AC02-05CH11231. 

References 
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, 

Graphs, and Mathematical Tables. Dover Publications, Inc., New York (1972) 

Batu, V.: Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis. 
John Wiley, New York (1998) 

Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1972) 

 Birkholzer, J.T., Zhou, Q., Tsang, C.-F.: Large-scale impact of CO2 storage in deep 
saline aquifers: A sensitivity study on pressure response in stratified systems. Int. J. 
Greenhouse Gas Control (in press)  

Butler, J.J., Tsou, M.:  Pumping-induced leakage in a bounded aquifer: An example of a 
scale-invariant phenomenon. Water Resour. Res. 39(12), 1344, 
doi:10.1029/2002WR001484 (2003) 

Cheng, A.H.D., Morohunfola, O.K.: Multilayered leaky aquifer systems: Pumping well 
solutions. Water Resour. Res. 29(8), 2787–2800 (1993)  

Cheng, A.H.D.:, Multilayered Aquifer Systems– Fundamentals and Applications. Marcel 
Dekker, New York (2000) 

Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, New York 
(2007) 

de Hoog, F.R., Knight, J.H., Stokes, A.N.: An improved method for numerical inversion 
of Laplace transforms. SIAM J. Sci. Stat. Comput. 3, 357-366 (1982) 

Earlougher, R.C: Advances in Well Test Analysis. Henry L. Doherty Memorial Fund of 
AIME, New York (1977) 

Hantush, M.S.: Modification of the theory of leaky aquifers. J. Geophys. Res. 65(11), 
3713-3725 (1960) 



 28

Hantush, M.S.: Hydraulics of wells, in Advances in Hydroscience, Chow, V. T. (ed.). 
Academic Press, New York (1964) 

Hantush, M.S., Jacob, C.E.: Nonsteady radial flow in an infinite leaky aquifer. Eos Trans. 
AGU, 36(1), 95-100 (1955) 

Konikow, L.F., Neuzil, C.E.: A method to estimate groundwater depletion from confining 
layers. Water Resour. Res. 43, W07417, doi:10.1029/2006WR005597 (2007) 

Moench, A.F.: Transient flow to a large-diameter well in an aquifer with storative 
semicofining layers. Water Resour. Res. 21(8), 1121-1131 (1985) 

Moridis, G.: Semianalytical solutions for parameter estimation in diffusion cell 
experiments. Water Resour.  Res. 35, 1729-1740 (1999) 

Neuman, S.P., Witherspoon, P.A.: Theory of flow in a two-aquifer system. Water Resour. 
Res. 5(4), 803-816 (1969) 

Ramakrishnan, T.S., Kuchuk, F.J.: Pressure transients during injection: Constant rate and 
convolution solutions. Transport Porous Media 10, 103–136 (1993) 

Stehfest, H.: Numerical inversion of Laplace transforms. Commun. ACM 13(1), 47-49 
(1970) 

Streltsova, T.D.: Well Testing in Heterogeneous Formations. Wiley, New York (1988) 

Theis, C.V.: The relation between the lowering of the piezometric surface head and the 
rate and duration of discharge of a well using ground-water storage. Eos Trans. AGU 
16, 519-524 (1935) 

USEPA (U.S. Environmental Protection Agency): Determination of maximum injection 
pressure for Class I wells, United States Environmental Protection Agency Region 5—
underground injection control section regional guidance #7. EPA, Washington DC 
(1994) (URL: http://www.epa.gov/R5water/uic/r5guid/r5_07.htm) 

Vukovic, M., Soro, A.: Hydraulics of Water Wells: Theory and Application. Water 
Resources Publications, Littleton, CO (1992) 

Zhan, H., Bian, A.: A method of calculating pumping-induced leakage. J. Hydrol., 328, 
657-667 (2006) 

Zhou, Q., Bensabat, J., Bear, J.: Accurate calculation of specific discharge in 
heterogeneous porous media. Water Resour. Res. 37(12), 3057-3070 (2001) 

Zhou, Q., Liu, H.-H., Molz, F.J., Zhang, Y., Bodvarsson, G.S.: Field-scale effective 
matrix diffusion coefficient for fractured rock: Results from literature survey. J. 
Contam. Hydrol. 93, 161-187 (2007) 

Zhou, Q., Birkholzer, J.T., Tsang, C.-F., Rutqvist, J.: A method for quick assessment of 
CO2 storage capacity in closed and semi-closed saline formations. Int. J. Greenhouse 
Gas Control, doi:10.1016/j.ijggc.2008.02.004 (2008)  



 29

Figure 1. Schematic showing a laterally bounded aquifer, with an overlying aquitard and 

an underlying impervious layer 

Figure 2. Dependence of the E ratio on the variable fpx += , the dimensionless 

radius of the injection zone Dwr , and the dimensionless radial extent of the aquifer DBr  

Figure 3. Radial profiles of the dimensionless hydraulic head rise, as a function of 

dimensionless injection time, at (a) early time and (b) later time  

Figure 4. Radial profiles of the incremental dimensionless hydraulic head rise in the 

bounded aquifer for five intervals of dimensionless time 

Figure 5. Radial profiles of the dimensionless leakage rate, ),( DDRvD trΓ , through the 

aquifer-aquitard interface, as a function of dimensionless injection time, for (a) the 

laterally bounded aquifer and (b) the infinite system. Note that (b) shows only a portion 

(close to the injection zone) of the infinite system  

Figure 6. Evolution of (a) the dimensionless leakage rate, ),( DDRvD trΓ , through the 

aquifer-aquitard interface, (b) the dimensionless horizontal flux, ),( DDRhD trΓ , through the 

aquifer thickness, and (c) the dimensionless storage rate, ),( DDRsD trΓ , of the injected 

fluid in the aquifer for the bounded aquifer-aquitard system, as a function of the 

dimensionless integrated radius DRr . Note that the leakage rate approaches the total 

leakage rate as the integrated DBDR rr →  and 

1),(),(),( =Γ+Γ+Γ DDRsDDDRhDDDRvD trtrtr  
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Radius, rD (dimensionless)
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Radius, rDR (dimensionless)

Le
ak

ag
e

ra
te

(d
im

en
si

on
le

ss
)

0 50 100 150 200 250 300 3500

0.2

0.4

0.6

0.8

1

tD=1.08 x 103

tD=1.08 x 104

tD=5.40 x 104

tD=1.08 x 105

tD=3.24 x 105

tD=1.08 x 106

(b) Infinite System

Radius, rDR (dimensionless)

Le
ak

ag
e

ra
te

(d
im

en
si

on
le

ss
)

0 50 100 150 200 250 300 3500

0.2

0.4

0.6

0.8

1

tD=1.08 x 103

tD=1.08 x 104

tD=5.40 x 104

tD=1.08 x 105

tD=3.24 x 105

tD=1.08 x 106

(a) Bounded System

 

Figure 5.  



 34

Injection time (dimensionless)
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