PROBABILITY BASED CORROSION CONTROL FOR HIGH LEVEL WASTE TANKS: INTERIM REPORT

PDF Version Also Available for Download.

Description

Controls on the solution chemistry (minimum nitrite and hydroxide concentrations) are in place to prevent the initiation and propagation of pitting and stress corrosion cracking in high level waste (HLW) tanks. These controls are based upon a series of experiments performed on carbon steel coupons in simulated waste solutions. An experimental program was undertaken to investigate reducing the minimum molar nitrite concentration required to confidently inhibit pitting. A statistical basis to quantify the probability of pitting for the tank wall, when exposed to various dilute solutions, is being developed. Electrochemical and coupon testing are being performed within the framework of ... continued below

Creation Information

Hoffman, E & Karthik Subramanian, K April 23, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Controls on the solution chemistry (minimum nitrite and hydroxide concentrations) are in place to prevent the initiation and propagation of pitting and stress corrosion cracking in high level waste (HLW) tanks. These controls are based upon a series of experiments performed on carbon steel coupons in simulated waste solutions. An experimental program was undertaken to investigate reducing the minimum molar nitrite concentration required to confidently inhibit pitting. A statistical basis to quantify the probability of pitting for the tank wall, when exposed to various dilute solutions, is being developed. Electrochemical and coupon testing are being performed within the framework of the statistical test matrix to determine the minimum necessary inhibitor concentrations and develop a quantitative model to predict pitting propensity. A subset of the original statistical test matrix was used to develop an applied understanding of the corrosion response of the carbon steel in the various environments. The interim results suggest that there exists some critical nitrite concentration that sufficiently inhibits against localized corrosion mechanisms due to nitrates/chlorides/sulfates, beyond which further nitrite additions are unnecessary. The combination of visual observation and the cyclic potentiodynamic polarization scans indicate the potential for significant inhibitor reductions without consequence specifically at nitrate concentrations near 1 M. The complete data sets will be used to determine the statistical basis to confidently inhibit against pitting using nitrite inhibition with the current pH controls. Once complete, a revised chemistry control program will be devised based upon the probability of pitting specifically for dilute solutions which will allow for tank specific chemistry control implementation.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-STI-2007-00712
  • Grant Number: DE-AC09-96SR18500
  • DOI: 10.2172/927900 | External Link
  • Office of Scientific & Technical Information Report Number: 927900
  • Archival Resource Key: ark:/67531/metadc897179

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 23, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 2, 2016, 5:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hoffman, E & Karthik Subramanian, K. PROBABILITY BASED CORROSION CONTROL FOR HIGH LEVEL WASTE TANKS: INTERIM REPORT, report, April 23, 2008; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc897179/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.