Regional Analysis of Lg Attenuation: Comparison of 1D Methods in Northern California and Application to the Yellow Sea / Korean Peninsula

PDF Version Also Available for Download.

Description

The measurement of regional attenuation Q{sup -1} can produce method dependent results. The discrepancies among methods are due to differing parameterizations (e.g., geometrical spreading rates), employed datasets (e.g., choice of path lengths and sources), and methodologies themselves (e.g., measurement in the frequency or time domain). We apply the coda normalization (CN), two-station (TS), reverse two-station (RTS), source-pair/receiver-pair (SPRP), and the new coda-source normalization (CS) methods to measure Q of the regional phase, Lg (Q{sub Lg}), and its power-law dependence on frequency of the form Q{sub 0}f{sup {eta}} with controlled parameterization in the well-studied region of northern California using a high-quality ... continued below

Physical Description

PDF-file: 11 pages; size: 0.8 Mbytes

Creation Information

Ford, S R; Dreger, D S; Mayeda, K M; Walter, W R; Malagnini, L & Phillips, W S July 6, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The measurement of regional attenuation Q{sup -1} can produce method dependent results. The discrepancies among methods are due to differing parameterizations (e.g., geometrical spreading rates), employed datasets (e.g., choice of path lengths and sources), and methodologies themselves (e.g., measurement in the frequency or time domain). We apply the coda normalization (CN), two-station (TS), reverse two-station (RTS), source-pair/receiver-pair (SPRP), and the new coda-source normalization (CS) methods to measure Q of the regional phase, Lg (Q{sub Lg}), and its power-law dependence on frequency of the form Q{sub 0}f{sup {eta}} with controlled parameterization in the well-studied region of northern California using a high-quality dataset from the Berkeley Digital Seismic Network. We test the sensitivity of each method to changes in geometrical spreading, Lg frequency bandwidth, the distance range of data, and the Lg measurement window. For a given method, there are significant differences in the power-law parameters, Q{sub 0} and {eta}, due to perturbations in the parameterization when evaluated using a conservative pairwise comparison. The CN method is affected most by changes in the distance range, which is most probably due to its fixed coda measurement window. Since, the CS method is best used to calculate the total path attenuation, it is very sensitive to the geometrical spreading assumption. The TS method is most sensitive to the frequency bandwidth, which may be due to its incomplete extraction of the site term. The RTS method is insensitive to parameterization choice, whereas the SPRP method as implemented here in the time-domain for a single path has great error in the power-law model parameters and {eta} is greatly affected by changes in the method parameterization. When presenting results for a given method it is best to calculate Q{sub 0}f{sup {eta}} for multiple parameterizations using some a priori distribution. We also investigate the difference in power-law Q calculated among the methods by considering only an approximately homogeneous subset of our data. All methods return similar power-law parameters, though the 95% confidence region is large. We adapt the CS method to calculate Q{sub Lg} tomography in northern California. Preliminary results show that by correcting for the source, tomography with the CS method may produce better resolved attenuation structure.

Physical Description

PDF-file: 11 pages; size: 0.8 Mbytes

Source

  • Presented at: Monitoring Research Review, Denver, CO, United States, Sep 25 - Sep 27, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-232586
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 920848
  • Archival Resource Key: ark:/67531/metadc897165

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 6, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 7, 2016, 8:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ford, S R; Dreger, D S; Mayeda, K M; Walter, W R; Malagnini, L & Phillips, W S. Regional Analysis of Lg Attenuation: Comparison of 1D Methods in Northern California and Application to the Yellow Sea / Korean Peninsula, article, July 6, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc897165/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.