

TWO-WEEK LOAN COPY

This is a Library Círculating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

UNIVERSITY OF CALIFORNTA
 Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

OBSERVATION OF A NONSTRANGE MESON OF MASS 959 MeV

George R. Kalbfleisch, Luis W. Alvarez, Angela Barbaro-Galtieri, Orin I. Dahl, Philippe Eberhard, William E. Humphrey, James S. Lindsey, Deane W. Merrill, Joseph J. Murray, Alan Rittenberg,
Ronald R. Ross, Janice B. Shafer, Frank T. Shively,
Daniel M. Siegel, Gerald A. Smith, and Robert D. Tripp

$$
\text { April 4, } 1964
$$

-• -

Observation of a Nonstrange Meson of Mass 959 MeV*

George R. Kalbfleisch, Luis W. Alvarez, Angela Barbaro-Galtieri, Orin I. Dahl, Philippe Eberhand, William E. Humphrey, James S. Lindsey, Deane W. Merrill, Joseph J. Murray, Alan Rittenberg,
Ronald R. Ross, Janice B. Shafer, Frank T. Shively,
Daniel M. Siegal, Gerald A. Smith, and Robert D. Tripp
Department of Physics and Lawrence Radiation Laboratory, University of California, Berkeley, California

April 4, 1964

We present here evidence howing the existence of a nonstrange meson of
mass 959 MeV .
In the current experiment, the $72-i n$, hydrogen bubble chamber was expased to a separated beam of $2.45-, 2.63-$, and $2.70-\mathrm{BeV} / \mathrm{c} \mathrm{K}^{-}$mesons from the Bevatron. Approximately 370000 pictures were taken to date; approximately 300000 have been scanned. The reactions of interest in this paper are

$$
\begin{align*}
& K^{-}+p-\Lambda^{0}+M M \tag{1}\\
& \Lambda^{0} \pi^{+} \pi^{-} \tag{2}\\
& \Lambda^{0} \pi^{+} \pi^{0} \mathbb{U}^{-} \tag{3}\\
& \Lambda^{0} \mathbf{I}^{+} \pi^{-}+M M \tag{4}\\
& \Lambda^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \Lambda^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-}+M M \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\Lambda^{0} 3 \pi^{+} 3 \pi^{-} \tag{7}
\end{equation*}
$$

These reactions are found in the topologies of $a V$ and $0,2,4$, and 6 prongs. At this time we have measured the V-four-prong and V-six-prong events in 250000 pictures, the V-two-prongs in 135000 pictures, and the V-zero-prongs in 100000 picturea.

Figure 1 a shows clearly the existence of the $959-\mathrm{NeV}$ meson as an enhanceners in the $\pi^{+} \pi^{+} \pi^{0} \pi^{-} \pi^{-}$spectrum from reaction (6). The mass is $959 \pm 2 \mathrm{MeV}$ and the full width is $\Gamma \leqslant 12 \mathrm{MeV}$. ${ }^{2}$ We observe 35 events in the interval $0.86 \leqslant \mathrm{M}^{2}(5 \pi) \leqslant 0.98 \mathrm{BeV}^{2}$. The background is estimated to be less than 10% of the 2eak. These events axe produced mainly with a momentum transfer $\Delta^{2} p, A$ less than $0.5 \mathrm{BeV}^{2}$. ${ }^{2}$ We have used the momentum transfer only as a means to -agatate other decay modes of this meson from the large background in reactions 1 through 5). The distribution of the four $\pi^{+} \pi^{\circ} \pi^{-}$combinations for each of the Z. event in the peak (Fig. ib) clearly shows the presence of the $548-\mathrm{MeV} \eta \mathrm{meson}$. oh of the 35 events has at least one $\pi^{+} \pi^{0} \pi^{*}$ triplet at the η mass. ${ }^{3}$ We conclude . Che 559-MeV meson decays into $\pi^{\dagger} \pi^{-} \pi$.

Ve zow turn our attention to other possible decay modes of this meson. The neutral MM and the $\pi^{+} \pi^{-} \mathrm{MM}$ distributions (at $2.45 \mathrm{BeV} / \mathrm{c}$ only) from reactions (i) and (4) (Fig. 2, a and b) show enhancements at 959 MeV . In addition, the welection of $M M \approx \eta$ in the low $-\Delta^{2} \Lambda^{0} \pi^{\dagger} \pi^{-} M M$ events gives a practically clean aemple for the $\pi^{+} \pi^{-\times} \eta$ where the η decays into all neutrals (Fig. 2 b). This last celection gives a sample of 26 events with $0.86 \leqslant \mathrm{M}^{2}\left(\pi^{+} \pi^{-} \mathrm{MM}\right) \leqslant 0.98 \mathrm{BeV}^{2}$ and $0.27 \leqslant \mathrm{MM}^{2} \leqslant 0.33 \mathrm{BeV}^{2}$ for all the 135000 pictures in which these events were measured. ${ }^{4}$ No appreciable decay into $\pi^{+} \pi^{-}, \pi^{+} \pi^{0} \pi^{-}$, and $2 \pi^{+} 2 \pi^{-}$is observed (Fig. 2, c and d). In addition, no decay into $2 \pi^{+} 2 \pi^{\circ} 2 \pi^{-}$or $3 \pi^{+} 3 \pi^{-}$is observed. ${ }^{5}$ We note that the decay rate into all neutrals $\left\{\leq 20 \Lambda^{0}+M M\right.$ events above background in Fig. 2a) is comparable to the decay rate into $\pi^{+} \pi^{-} \eta$ (four of the $35 \Lambda^{\circ} 5 \pi$ events occur in the $2.45 \mathrm{meV} / \mathrm{c}$ part of the sample in addition to the 14 $\Lambda^{\circ} \pi^{+} \pi^{-} M M$ events in Fig. $2 b$).

We now look at the properties of the $\pi^{+} \pi^{-} \eta$ decay mode in an attempt to determine the quantum numbers of this mecon. When we construct the Dalitz plot of $M^{2}\left(\pi^{+} \eta\right.$) versus $M^{2}\left(\pi^{-} \eta\right.$) and their projections (Fig. 3a) for the $61 \Lambda^{\circ} \pi^{+} \pi \pi^{-} \eta$ events
$\left\{35 \Lambda^{0} 5 \pi \text { and } 26 \Lambda^{0}{ }^{+}{ }^{+m} M M\right)^{6}$ we observe no particular structure in the $\pi^{ \pm} \eta$ distributions. The diatribution of points in the Dalitz plot is consistent with uniformity. The $20-\mathrm{MeV}$ spread in the observed full widih of the meson mass smears out the points appreciably (envelopes labeled 950 and 970 MeV in Fig. 3a). However, the distribution in $M^{2}\left(\pi^{+} \pi^{*}\right.$ outaide the η) (Fig. $3 b$) is not appreciably affected by the resolution. The $\pi^{+} \pi^{*}$ distribution appears to be enhanced around 360 MeV . We now consider the $\pi \pi \eta$ system as a dipion and η_{0} with no final-state interaction between the η and the pions outside it, and denote the angular momentum of the dipion as ℓ and shat between tho dipion and the eta as L. All J^{P} states except 0^{+}are allowed. For $J=0$ or 1 , the possible spins and parities are $0^{-}(\ell=L=0) ; 1^{+}(\ell=0, L=1$, or $\ell=1, L=0)$; and $1^{-}(\ell=L=1)$. For 0^{-}and 1^{+}, there can be no correlation between the direction of the η and that of one of the pions as viewed in the dipion rest frame. ${ }^{7}$ For 1^{-}, a $\sin ^{2} \theta_{\pi \eta}$ correlation is required. ${ }^{8}$ The distribution in $\cos \theta_{\pi \eta}$ as observed in the dipion rest frame is essentially isotropic, disagreeing with the $\sin ^{2} \theta_{\pi \eta}$ prediction of a 1^{-}state (Fig. 3c). The ambiguity of the choice of the η in the $\Lambda 5 \pi$ events does not alter this conclusion. ${ }^{9}$ Thus, we conclude that the $959-\mathrm{MeV}$ meson is probably not a vector particle.

The isospin of the meson is either $T=0$ or $T=1$ because of its production from an initial $K^{-} p$ system in association with a Λ^{0}. Absence of appreciable decay into $\pi^{+} \pi^{-}, \pi^{+} \pi^{0} \pi^{-}, 2 \pi^{+} 2 \pi^{-}, 2 \pi^{+} \cdot 2 \pi^{\circ} 2 \pi^{-}$and $3 \pi^{+} 3 \pi^{-}$implies the absence of appreciable decay into $n \pi^{\circ}$. If the decay into $\pi^{+} \pi \bar{\eta}$ occurs atrongly, then the neutral mode $\pi^{0} \pi^{0} \eta$ determines the isospin to be $T=0$. However, a "zero" width for this meson is not excluded ($\Gamma \leqslant 12 \mathrm{MeV}$). ${ }^{10}$ The predicted branching ratios for a strongly decaying $T=0 \pi \pi \eta$ eystem are in fair agreement with the observed ratios. ${ }^{11}$ In addition, observation of six $e^{+} e^{-}$conversion pairs and four Compton electrons in association with the $\sim 50 \Lambda^{\circ}+\mathrm{MM}$ events in the $959-\mathrm{MeV}$ region
pointa to a high multiplicity of gammas in the all-neutral decay, consistent with $\pi^{0} \pi^{0} \pi^{12}$

In summary, we have observed a meson of mase $959 \pm 2 \mathrm{MeV},{ }^{13}$ full width $\Gamma \leqslant 12 \mathrm{MeV}$, and Lsospin $\mathrm{T}=0$ or 10 which decays into $\pi^{+} \pi \pi^{-} \eta$. No appreciable decay into two, three, four, or oir pions is obeerved. The angular correlation of the en and the π^{+}in cho dipion reat aystem is not $\sin ^{2} \theta_{\pi \eta}$ maiking unlikely the $J^{P}=1^{-}$assignment. If we assume a strong decay (nonzero-width), the meson has isospin $T=0$ and G parity $=+1$, with J^{P} probably 0^{*} or 1^{+}. 14 However, electromagnetic decay cannot be ruled out. The path lengeh at $2.45 \mathrm{BeV} / \mathrm{c}$ is approximately $0.6 \mu \mathrm{~b}$ per event. The $\sim 44 \Lambda \pi \pi \eta$ events at $2.45 \mathrm{BeV} / \mathrm{c}$ yield a crose section of about $25 \mu \mathrm{~b}$. The average polarization of the Λ^{0} produced in association with this meson is a ${ }_{\Lambda} \mathrm{P}_{\mathrm{r}}=0 \pm .2$.

We wish to acknowledge helpful discussions with Professors Murray GellMann and Donald FF. Miller and Dr. Nicola Cabibbo. We are indebted to the operators of the 72-in. bubble chamber and the Bevatron for their skill and patience. Furthermore, we thank our scanning and measuring stafis for their untiring efforts, without which this experiment would not have been possible.

FOOTNOTES AND REEERENCES

*Work done under the auspices of the U.S. Atomic Energy Commission.

1. The observed full width is $\sim 20 \mathrm{MeV}$, and the resolution is $\sim 16 \mathrm{MeV}$ for the fitted $\Lambda^{0^{i}} \pi^{+} \pi^{+} \pi^{0} \pi^{-} \pi^{-}$reaction.
2. The square of the momentum transfer from the proton to the lambda is defined by $\Delta_{p, \Lambda}^{2}=-\left(E_{p}-E_{\Lambda}\right)^{2}+\left(F_{p}-P_{\Lambda}\right)^{2}$.
3. Of the 35 events with $0.86 \leqslant \mathrm{M}^{2}(5 \pi) \leqslant 0.98 \mathrm{BeV}^{2}$, twelve have one, eighteen have two, three have three, and two have four $\pi^{+} \pi^{0} \pi^{-}$triplets near the η mass. The η mass is defined by $0.282 \leqslant \mathrm{M}^{2}\left(\pi^{+} \pi^{0} \pi^{-}\right) \leqslant 0.322 \mathrm{BeV}^{2}$. This distribution is consistent with a random coincidence based on the phase space for the $\pi \pi \eta$ decay (sce Fig. 1b) and the resolution.
4. The resolution for the $M M$ and the $\pi^{+} \pi^{-} M M$ is $\sim 25 \mathrm{MeV}$, which is essentially due to the 3% momentum spread in the beam. The observed full width in these MM channels of $\sim 30 \mathrm{MeV}$ gives a full width for the 959 MeV meson of $\leqslant 20 \mathrm{MeV}$.
5. Three Λ^{0}-six-prong and $28 \Lambda^{0}$-four-prong events are consistent with $\Lambda^{\circ} 6 \pi$ or $\Sigma^{\circ} 5 \pi$ in the total sample (~ 300000 scanned pictures). All 31 of these eventshave $\mathrm{M}^{2}(6 \pi$ or $\gamma 5 \pi) \geqslant 1.1 \mathrm{BeV}^{2}$.
6. In the $\Lambda^{\circ} 5 \pi$ events we chose as the η that $\pi^{+} \pi^{0} \pi^{-}$triplet whose mass squared is closest to $M_{\eta}^{2}=0.300$. This choice does not always pick the correct triplet because of the fiaite resolution. About half of the ambiguities should be chosen correctly statistically, giving 40 (of which 38 are unambiguous) correctly and 13 incorrectly chosen. ${ }^{3}$
7. The $\mathrm{J}^{\mathrm{P}}=0^{-}, 1^{+}, 1^{-}$states can also be formed from $(\ell=\mathrm{L}=1$ or $\ell=\mathrm{L}=2$), $(\ell=2, L=1$ or $\ell=1, L=2)$, and $(\ell=2, L=2)$ combinations, respectively. The $0^{-}(l=L=1)$ state would give a $\cos ^{2} \theta_{\pi^{+} \eta}$ distribution, in disagreement with the data. The angular correlations would be relatively complicated in the other cases.
8. The odd intrinaic parity of the $\pi \pi \eta$ syotem requires a 1^{+}matrix element (proportional to $P_{\pi} \times{\underset{\eta}{\eta}}$) for a vector-meson asbignment. N. Cabibbo points out that the resulting $\sin ^{2} \theta_{\pi \eta}$ dietribution is essentially independent of any $\pi^{+} H^{-}$interaction that might be present (such as at 360 MeV . Fig. 3b).
9. The $\Lambda^{0} 5 \pi$ that are unambiguous as to the choice of the eta are shown crosshatched in Fig. 3c. Replotting the "ambiguous" $\Lambda^{0} 5 \pi$ so that all posible combinations contribute equally to the unit area per event does not appreciably alter the distribution presented in Fig. 3c.
10. The $T=0$ component of the vector-meson octet has $T J^{P G}=01^{-\cdots}$. If the $\pi \pi \eta$ state with $G=+1$ is this 01^{-0} meson, it must decay electromagnetically. The 1^{-}vector assignment is unlikely, because of the $\cos \theta_{\pi \eta}$ distribution (Fig. 3c). An additional argument can be made against this assignment. Charge conjugation invariance in the electromagnetic decay requires a $T=1 \pi^{+} \pi^{-} \eta$ system, so that all neutral decay must be due to the modes $\pi^{0} \gamma, 2 \pi^{0} \gamma$, and 3γ. However, the decay rate into $\pi^{0} \gamma$ relative to $\pi^{+} \pi^{-} \eta$ is expected to be very large. The $\pi^{0} \gamma$ rate is proportional to a times a large two-body phase-space factor, whereas the $\pi^{+} \pi^{-} \eta$ decay is proportional to a^{2} times a smaller three-body phase-space factor. This is in marked disagreement with the observed all-neutral to $\pi^{+} \pi^{-} \eta$ rates.
11. We use a branching ratio of ~ 2.5 for (η docay into all neutrals)/(charged decay) and 0.5 for $2 \pi^{0} / \pi^{+} \pi^{-}\langle T=0)$. For the ~ 44 events at low Δ^{2} at $2.45 \mathrm{BeV} / \mathrm{C}$, this predicts an apportionment of $8,21,4$, and 11 events, respectively, as $\pi^{+} \pi^{-} \eta_{\text {chg. }}, \pi^{+} \pi^{-} \eta_{\text {neut. }} \cdot \pi^{0} \pi^{0} \eta_{\text {chg. }}$, and all neutral. We observe 4, 14, $£ 6, \leq 20$, respectively, in fair agreement with the predicted apportionment. In addition, we note that we have not observed any $\pi^{ \pm} \pi^{0} \eta^{0}$ enhancement in,$\Sigma^{ \pm}(n \pi)^{\mp}$ states. This constitutes weak evidence against $T=1$.
12. None of the 10 detected y events was consistent with $\Delta \gamma y$ production. The $M M$ in $K-p \rightarrow \Lambda+\gamma+M M$ for theso events is peaked from 500 to 900 MeV . This suggeste an average of approximately 4 to 5 gammas for each of the $50 \Lambda^{\circ}+M M$ events. The observed detection efficiency for the gammas is then $10 /(4$ to 5$) \times 50 \approx 4 \%$, a reasonable value for the 72 -in. chamber.
13. We note that evidence for an enhancement in the missing mass opposite the Λ in the reaction $K^{-}+p \rightarrow \Lambda+$ neutrals near this value has been observed by the Brookhaven bubble chamber group. [See M. Goldberg, M. Gundzik, J. Leitner, S. Lichtman, P. L. 'Connolly, E. L. Hart, K. W. Lai, G. London, G. C. Moneti, R. R. Rau, N. P. Samios, I. O. Skillicorn, and S. S. Yamamoto, Study of $K^{-} p \rightarrow \Lambda\left(K^{0}\right)+$ neutrals at $2.3 \mathrm{BeV} / \mathrm{c}$, Bull. Am. Phys. Soc. 9, 23 (1964).] 〒
14. The existence of a singlet 00^{-+}meson as well as 1^{+}mesons has long been conjectured by M. Gell-Mann. J. Schwinger has also proposed a $0^{-} \delta$ meson at a mass of $\sim 1500 \mathrm{MeV}$ [Phys. Fev. Letters 12, 237 (1964)].

FIGURE LEGENDS
 reaction $K-p \rightarrow \Lambda^{0} \pi^{+} \pi^{+} \pi^{0} \pi^{-}$. The shacied asea represeras/in which the square of the momentum transfer from the protom to the lambda, $\Delta^{2} p \Lambda^{\prime}$ is less than $0.5 \mathrm{BeV}^{2}$. (b) Distribution of the eftective mase squared of ali four $\pi^{+} \pi^{0} \pi^{-}$combinations in the $35 \Lambda^{2} \pi^{+} \pi^{+} \pi^{0} \pi^{-} \pi^{0}$ event in $\{a\}$ where $0.86 \leqslant \mathrm{M}^{2}(5 \pi) \leqslant 0.98 \mathrm{BeV}^{2}$. The data are at incicent momenta of 2.45, 2.63, and $2.70 \mathrm{BeV} / \mathrm{c}$.

Nr.2.(3) Distribution of the square of the mass of an neutrals (MND in the reaction $K^{-} p \rightarrow A^{0}+$ neutrals (Man). An everes congistent with a fie bo $\pi^{-}+p \rightarrow \Lambda^{0}+K^{0}$ have been subtracted from che plot. (b) Dietribution of the effective mass squared of $\pi^{+}+\pi^{-}+n e u t a l$ (NR) in the reaction $\mathbb{K}^{-}{ }^{p} \rightarrow \Lambda^{0} \pi^{+} \pi^{+}+$neutrals (MNS). The croshatched events have been selected to be consiatent with $\eta^{0}\left(0.28 \leqslant \mathrm{MMR}^{2} \leqslant 0.32 \mathrm{EeV}^{2}\right.$). (c) Distribution of the square of the effective mass of $\pi^{\gamma} \pi^{0} \pi^{-}$in the reaction $\mathbb{K} p \rightarrow \Lambda^{0} \pi^{+} \pi^{3} \pi^{-}$. (d) Distribution of the square of the effective mass of $\pi^{+} \pi$ and $\pi^{+} \pi^{+} \pi^{-} \pi^{-}$ in the reactions $K^{-} p \rightarrow \Lambda^{0} \pi^{+} \pi^{-}$and $\Lambda^{0} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$- respectively. Shaded events are those with low momentum transfer from the proton to the lambla $\left(\Delta_{p \Lambda^{2}}^{2} \leqslant 0.5 \mathrm{BeV}^{2}\right)$. All data are at $2.45 \mathrm{BeV} / \mathrm{c}$ incident K^{-}momentum.
Fig. 3. (a) Dalitz plot $\left[M^{2}\left(\pi^{+} \eta^{0}\right)\right.$ versus $M^{2}\left(\pi^{-} \eta^{0}\right]$ and projections for the 61 events in the reastions $K^{-} p \rightarrow \Lambda^{0} 5 r$ and $\Lambda^{0} \pi^{+} \pi^{-}+$neutraio with $0.86 \leqslant M^{2}(5 \pi)$ or $M^{2}\left(\pi^{+} \pi^{-}+M M=\eta^{0}\right) \leqslant 0.98$. (b) Distribution of the square of the efiective mase of the $\pi^{+} \pi^{-}$outside the η^{0} for the 61 evente chown in (a). (c) Distribution of the cosine of the angle included between the η° and the $T^{\text {in }}$ as viewed in the dipion $\left(\pi^{+} \pi^{*}\right)$ rest frame. Shaded events are those from the reaction $K^{-} p \rightarrow \Lambda^{0} \pi^{+} \pi^{-}+$neutrals $\left(\eta^{0}\right)$.

Fig. 1

MUB. 2534

Fig. 2

MUB-2530
Fig. 3

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

