Structural Formation Studies of UV-Catalyzed Gels and Aerogels byLight Scattering

PDF Version Also Available for Download.

Description

The skeletal structure of aerogel is determined before, during, and after the gel is formed. Supercritical drying of aerogel largely preserves the pore structure that is determined near the time of gelation. To better understand these gel formation mechanisms we carried out measurements of the time evolution of light scattering in a series of gels prepared without conventional acid or base catalysis. Instead, ultraviolet light was used to catalyze the formation of silica gels made from the hydrolysis of tetraethylorthosilicate and partly prehydrolyzed tetraethylorthosilicate in ethanol. Time evolution of light scattering provides information regarding the rate and geometrical nature of ... continued below

Creation Information

Hunt, Arlon J. & Ayers, Michael R. April 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The skeletal structure of aerogel is determined before, during, and after the gel is formed. Supercritical drying of aerogel largely preserves the pore structure that is determined near the time of gelation. To better understand these gel formation mechanisms we carried out measurements of the time evolution of light scattering in a series of gels prepared without conventional acid or base catalysis. Instead, ultraviolet light was used to catalyze the formation of silica gels made from the hydrolysis of tetraethylorthosilicate and partly prehydrolyzed tetraethylorthosilicate in ethanol. Time evolution of light scattering provides information regarding the rate and geometrical nature of the assembly of the primary silica particles formed in the sol. UV-catalyzed gels show volumetric growth typical of acid-catalyzed gels, except when UV exposure is discontinued at the gel point, where gels then show linear chain formation typical of base-catalyzed gels. Long term UV exposure leads to coarsening of the pore network, a decrease in the clarity of the aerogel, and an increase in the surface area of the aerogel. Additionally, UV exposure up to the gel point leads to increased crystallinity in the final aerogel.

Source

  • Journal Name: Journal of Non-Crystalline Solids; Journal Volume: 225; Related Information: Journal Publication Date: 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--43804
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1016/S0022-3093(98)00132-X | External Link
  • Office of Scientific & Technical Information Report Number: 920145
  • Archival Resource Key: ark:/67531/metadc897152

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1998

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 29, 2016, 7:04 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hunt, Arlon J. & Ayers, Michael R. Structural Formation Studies of UV-Catalyzed Gels and Aerogels byLight Scattering, article, April 1, 1998; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc897152/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.