The Heavy-Ion Approximation for Ambipolar Diffusion Calcuations for Weakly Ionized Plasmas

PDF Version Also Available for Download.

Description

Ambipolar diffusion redistributes magnetic flux in weakly ionized plasmas and plays a critical role in star formation. Simulations of ambipolar diffusion using explicit MHD codes are prohibitively expensive for the level of ionization observed in molecular clouds ({approx}< 10{sup -6}) since an enormous number of time steps is required to represent the dynamics of the dominant neutral component with a time step determined by the trace ion component. Here we show that ambipolar diffusion calculations can be significantly accelerated by the 'heavy-ion approximation', in which the mass density of the ions is increased and the collisional coupling constant with the ... continued below

Physical Description

PDF-file: 33 pages; size: 0.3 Mbytes

Creation Information

Li, P; McKee, C & Klein, R July 27, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ambipolar diffusion redistributes magnetic flux in weakly ionized plasmas and plays a critical role in star formation. Simulations of ambipolar diffusion using explicit MHD codes are prohibitively expensive for the level of ionization observed in molecular clouds ({approx}< 10{sup -6}) since an enormous number of time steps is required to represent the dynamics of the dominant neutral component with a time step determined by the trace ion component. Here we show that ambipolar diffusion calculations can be significantly accelerated by the 'heavy-ion approximation', in which the mass density of the ions is increased and the collisional coupling constant with the neutrals decreased such that the product remains constant. In this approximation, the ambipolar diffusion time and the ambipolar magnetic Reynolds number remain unchanged. We present three tests of the heavy-ion approximation: C-type shocks, the Wardle instability, and the 1D collapse of a magnetized slab. We show that this approximation is quite accurate provided that (1) the square of the Alfven Mach number is small compared to the ambipolar diffusion Reynolds number for dynamical problems, and that (2) the ion mass density is negligible for quasi-static problems; a specific criterion is given for the magnetized slab problem. The first condition can be very stringent for turbulent flows with large density fluctuations.

Physical Description

PDF-file: 33 pages; size: 0.3 Mbytes

Source

  • Journal Name: Astrophysical Journal, vol. 653, no. 2, December 1, 2006, pp. 1280-1291; Journal Volume: 653; Journal Issue: 2

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-223245
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 943821
  • Archival Resource Key: ark:/67531/metadc897111

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 27, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 7, 2016, 3:13 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Li, P; McKee, C & Klein, R. The Heavy-Ion Approximation for Ambipolar Diffusion Calcuations for Weakly Ionized Plasmas, article, July 27, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc897111/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.