Nanofluidic devices for rapid detection of virus particles.

PDF Version Also Available for Download.

Description

Technologies that could quickly detect and identify virus particles would play a critical role in fighting bioterrorism and help to contain the rapid spread of disease. Of special interest is the ability to detect the presence and movement of virions without chemically modifying them by attaching molecular probes. This would be useful for rapid detection of pathogens in food or water supplies without the use of expensive chemical reagents. Such detection requires new devices to quickly screen for the presence of tiny pathogens. To develop such a device, we fabricated nanochannels to transport virus particles through ultrashort laser cavities and ... continued below

Physical Description

10 p.

Creation Information

Gourley, Paul Lee; McDonald, Anthony Eugene & Hendricks, Judy K. January 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Technologies that could quickly detect and identify virus particles would play a critical role in fighting bioterrorism and help to contain the rapid spread of disease. Of special interest is the ability to detect the presence and movement of virions without chemically modifying them by attaching molecular probes. This would be useful for rapid detection of pathogens in food or water supplies without the use of expensive chemical reagents. Such detection requires new devices to quickly screen for the presence of tiny pathogens. To develop such a device, we fabricated nanochannels to transport virus particles through ultrashort laser cavities and measured the lasing output as a sensor for virions. To understand this transduction mechanism, we also investigated light scattering from virions, both to determine the magnitude of the scattered signal and to use it to investigate the motion of virions.

Physical Description

10 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2005-0485
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/921716 | External Link
  • Office of Scientific & Technical Information Report Number: 921716
  • Archival Resource Key: ark:/67531/metadc897084

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2005

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 6, 2016, 1:48 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gourley, Paul Lee; McDonald, Anthony Eugene & Hendricks, Judy K. Nanofluidic devices for rapid detection of virus particles., report, January 1, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc897084/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.