Nanoporous-carbon adsorbers for chemical microsensors.

PDF Version Also Available for Download.

Description

Chemical microsensors rely on partitioning of airborne chemicals into films to collect and measure trace quantities of hazardous vapors. Polymer sensor coatings used today are typically slow to respond and difficult to apply reproducibly. The objective of this project was to produce a durable sensor coating material based on graphitic nanoporous-carbon (NPC), a new material first studied at Sandia, for collection and detection of volatile organic compounds (VOC), toxic industrial chemicals (TIC), chemical warfare agents (CWA) and nuclear processing precursors (NPP). Preliminary studies using NPC films on exploratory surface-acoustic-wave (SAW) devices and as a {micro}ChemLab membrane preconcentrator suggested that NPC ... continued below

Physical Description

35 p.

Creation Information

Overmyer, Donald L.; Siegal, Michael P.; Staton, Alan W.; Provencio, Paula Polyak & Yelton, William Graham November 1, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Chemical microsensors rely on partitioning of airborne chemicals into films to collect and measure trace quantities of hazardous vapors. Polymer sensor coatings used today are typically slow to respond and difficult to apply reproducibly. The objective of this project was to produce a durable sensor coating material based on graphitic nanoporous-carbon (NPC), a new material first studied at Sandia, for collection and detection of volatile organic compounds (VOC), toxic industrial chemicals (TIC), chemical warfare agents (CWA) and nuclear processing precursors (NPP). Preliminary studies using NPC films on exploratory surface-acoustic-wave (SAW) devices and as a {micro}ChemLab membrane preconcentrator suggested that NPC may outperform existing, irreproducible coatings for SAW sensor and {micro}ChemLab preconcentrator applications. Success of this project will provide a strategic advantage to the development of a robust, manufacturable, highly-sensitive chemical microsensor for public health, industrial, and national security needs. We use pulsed-laser deposition to grow NPC films at room-temperature with negligible residual stress, and hence, can be deposited onto nearly any substrate material to any thickness. Controlled deposition yields reproducible NPC density, morphology, and porosity, without any discernable variation in surface chemistry. NPC coatings > 20 {micro}m thick with density < 5% that of graphite have been demonstrated. NPC can be 'doped' with nearly any metal during growth to provide further enhancements in analyte detection and selectivity. Optimized NPC-coated SAW devices were compared directly to commonly-used polymer coated SAWs for sensitivity to a variety of VOC, TIC, CWA and NPP. In every analyte, NPC outperforms each polymer coating by multiple orders-of-magnitude in detection sensitivity, with improvements ranging from 103 to 108 times greater detection sensitivity! NPC-coated SAW sensors appear capable of detecting most analytes tested to concentrations below parts-per-billion. In addition, the graphitic nature of NPC enables thermal stability > 600 C, several hundred degrees higher than the polymers. This superior thermal stability will enable higher-Temperature preconcentrator operation, as well as greatly prolonged device reliability, since polymers tend to degrade with time and repeated thermal cycling.

Physical Description

35 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2004-5277
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/920117 | External Link
  • Office of Scientific & Technical Information Report Number: 920117
  • Archival Resource Key: ark:/67531/metadc897048

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2004

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 6, 2016, 1:47 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Overmyer, Donald L.; Siegal, Michael P.; Staton, Alan W.; Provencio, Paula Polyak & Yelton, William Graham. Nanoporous-carbon adsorbers for chemical microsensors., report, November 1, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc897048/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.