A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels

PDF Version Also Available for Download.

Description

The reactor pressure vessels (RPVs) of commercial nuclear power plants are subject to embrittlement due to exposure to high-energy neutrons from the core, which causes changes in material toughness properties that increase with radiation exposure and are affected by many variables. Irradiation embrittlement of RPV beltline materials is currently evaluated using Regulatory Guide 1.99 Revision 2 (RG1.99/2), which presents methods for estimating the shift in Charpy transition temperature at 30 ft-lb (TTS) and the drop in Charpy upper shelf energy (ΔUSE). The purpose of the work reported here is to improve on the TTS correlation model in RG1.99/2 using the ... continued below

Creation Information

Eason, Ernest D.; Odette, George Robert; Nanstad, Randy K & Yamamoto, Takuya November 1, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The reactor pressure vessels (RPVs) of commercial nuclear power plants are subject to embrittlement due to exposure to high-energy neutrons from the core, which causes changes in material toughness properties that increase with radiation exposure and are affected by many variables. Irradiation embrittlement of RPV beltline materials is currently evaluated using Regulatory Guide 1.99 Revision 2 (RG1.99/2), which presents methods for estimating the shift in Charpy transition temperature at 30 ft-lb (TTS) and the drop in Charpy upper shelf energy (ΔUSE). The purpose of the work reported here is to improve on the TTS correlation model in RG1.99/2 using the broader database now available and current understanding of embrittlement mechanisms. The USE database and models have not been updated since the publication of NUREG/CR-6551 and, therefore, are not discussed in this report. The revised embrittlement shift model is calibrated and validated on a substantially larger, better-balanced database compared to prior models, including over five times the amount of data used to develop RG1.99/2. It also contains about 27% more data than the most recent update to the surveillance shift database, in 2000. The key areas expanded in the current database relative to the database available in 2000 are low-flux, low-copper, and long-time, high-fluence exposures, all areas that were previously relatively sparse. All old and new surveillance data were reviewed for completeness, duplicates, and discrepancies in cooperation with the American Society for Testing and Materials (ASTM) Subcommittee E10.02 on Radiation Effects in Structural Materials. In the present modeling effort, a 10% random sample of data was reserved from the fitting process, and most aspects of the model were validated with that sample as well as other data not used in calibration. The model is a hybrid, incorporating both physically motivated features and empirical calibration to the U.S. power reactor surveillance data. It contains two terms, corresponding to the best-understood radiation damage features, matrix damage and copper-rich precipitates, although the empirical calibration will ensure that all other damage processes that are occurring are also reflected in those terms. Effects of material chemical composition, product form, and radiation exposure are incorporated, such that all effects are supported by findings of statistical significance, physical understanding, or comparison with independent data from controlled experiments, such as the Irradiation Variable (IVAR) Program. In most variable effects, the model is supported by two or three of these different forms of evidence. The key variable trends, such as the neutron fluence dependence and copper-nickel dependence in the new TTS model, are much improved over RG1.99/2 and are well supported by independent data and the current understanding of embrittlement mechanisms. The new model includes the variables copper, nickel, and fluence that are in RG1.99/2, but also includes effects of irradiation temperature, neutron flux, phosphorus, and manganese. The calibrated model is a good fit, with no significant residual error trends in any of the variables used in the model or several additional variables and variable interactions that were investigated. The report includes a chapter summarizing the current understanding of embrittlement mechanisms and one comparing the IVAR database with the TTS model predictions. Generally good agreement is found in that quantitative comparison, providing independent confirmation of the predictive capability of the TTS model. The key new insight in the TTS modeling effort, that flux effects are evident in both low (or no) copper and higher copper materials, is supported by the IVAR data. The slightly simplified version of the TTS model presented in Section 7.3 of this report is recommended for applications.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2006/530
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/941022 | External Link
  • Office of Scientific & Technical Information Report Number: 941022
  • Archival Resource Key: ark:/67531/metadc897034

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 22, 2017, 2:17 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Eason, Ernest D.; Odette, George Robert; Nanstad, Randy K & Yamamoto, Takuya. A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels, report, November 1, 2007; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc897034/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.