Independent Review of Simulation of Net Infiltration for Present-Day and Potential Future Climates

PDF Version Also Available for Download.

Description

The DOE Office of Civilian Radioactive Waste Management (OCRWM) tasked Oak Ridge Institute for Science and Education (ORISE) with providing an independent expert review of the documented model and prediction results for net infiltration of water into the unsaturated zone at Yucca Mountain. The specific purpose of the model, as documented in the report MDL-NBS-HS-000023, Rev. 01, is “to provide a spatial representation, including epistemic and aleatory uncertainty, of the predicted mean annual net infiltration at the Yucca Mountain site ...” (p. 1-1) The expert review panel assembled by ORISE concluded that the model report does not provide a technically ... continued below

Physical Description

2.27 Mb

Creation Information

Review Panel: Soroosh Sorooshian, Ph.D., Panel Chairperson, University of California, Irvine; Jan M. H. Hendrickx, Ph.D., New Mexico Institute of Mining and Technology; Binayak P. Mohanty, Ph.D., Texas A&M University; Scott W. Tyler, Ph.D., University of Nevada, Reno; Tian-Chyi Jim Yeh, Ph.D., University of Arizona -- ORISE Review Facilitators: Robert S. Turner, Ph.D., Technical Review Group Manager, Oak Ridge Institute for Science and Education; Brian R. Herndon, Project Manager, Oak Ridge Institute for Science and Education et al. August 30, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The DOE Office of Civilian Radioactive Waste Management (OCRWM) tasked Oak Ridge Institute for Science and Education (ORISE) with providing an independent expert review of the documented model and prediction results for net infiltration of water into the unsaturated zone at Yucca Mountain. The specific purpose of the model, as documented in the report MDL-NBS-HS-000023, Rev. 01, is “to provide a spatial representation, including epistemic and aleatory uncertainty, of the predicted mean annual net infiltration at the Yucca Mountain site ...” (p. 1-1) The expert review panel assembled by ORISE concluded that the model report does not provide a technically credible spatial representation of net infiltration at Yucca Mountain. Specifically, the ORISE Review Panel found that: • A critical lack of site-specific meteorological, surface, and subsurface information prevents verification of (i) the net infiltration estimates, (ii) the uncertainty estimates of parameters caused by their spatial variability, and (iii) the assumptions used by the modelers (ranges and distributions) for the characterization of parameters. The paucity of site-specific data used by the modeling team for model implementation and validation is a major deficiency in this effort. • The model does not incorporate at least one potentially important hydrologic process. Subsurface lateral flow is not accounted for by the model, and the assumption that the effect of subsurface lateral flow is negligible is not adequately justified. This issue is especially critical for the wetter climate periods. This omission may be one reason the model results appear to underestimate net infiltration beneath wash environments and therefore imprecisely represent the spatial variability of net infiltration. • While the model uses assumptions consistently, such as uniform soil depths and a constant vegetation rooting depth, such assumptions may not be appropriate for this net infiltration simulation because they oversimplify a complex landscape and associated hydrologic processes, especially since the model assumptions have not been adequately corroborated by field and laboratory observations at Yucca Mountain.

Physical Description

2.27 Mb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: 08-STRI-0598
  • Grant Number: DE-AC05-06OR23100
  • DOI: 10.2172/935765 | External Link
  • Office of Scientific & Technical Information Report Number: 935765
  • Archival Resource Key: ark:/67531/metadc897028

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 30, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 3, 2016, 7:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Review Panel: Soroosh Sorooshian, Ph.D., Panel Chairperson, University of California, Irvine; Jan M. H. Hendrickx, Ph.D., New Mexico Institute of Mining and Technology; Binayak P. Mohanty, Ph.D., Texas A&M University; Scott W. Tyler, Ph.D., University of Nevada, Reno; Tian-Chyi Jim Yeh, Ph.D., University of Arizona -- ORISE Review Facilitators: Robert S. Turner, Ph.D., Technical Review Group Manager, Oak Ridge Institute for Science and Education; Brian R. Herndon, Project Manager, Oak Ridge Institute for Science and Education et al. Independent Review of Simulation of Net Infiltration for Present-Day and Potential Future Climates, report, August 30, 2008; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc897028/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.