Complete chloroplast genome of Trachelium caeruleum: extensiverearrangements are associated with repeats and tRNAs

PDF Version Also Available for Download.

Description

Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 and ... continued below

Creation Information

Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L. & Jansen, Robert K. January 9, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 and ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome,relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats,which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping studies identified a number of taxa inwhich several rearrangements have occurred (reviewed in Raubeson andJansen, 2005), an extraordinary number of chloroplast genome alterationsare concentrated in several families in the angiosperm order Asterales(sensu APGII, Bremer et al., 2003). Gene mapping studies ofrepresentatives of the Campanulaceae (Cosner, 1993; Cosner et al.,1997,2004) and Lobeliaceae (Knox et al., 1993; Knox and Palmer, 1999)identified large inversions, contraction and expansion of the invertedrepeat regions, and several insertions and deletions in the cpDNAs ofthese closely related taxa. Detailed restriction site and gene mapping ofthe chloroplast genome of Trachelium caeruleum (Campanulaceae) identifiedseven to ten large inversions, families of repeats associated withrearrangements, possible transpositions, and even the disruption ofoperons (Cosner et al., 1997). Seventeen other members of theCampanulaceae were mapped and exhibit many additional rearrangements(Cosner et al., 2004). What happened in this lineage that made itsusceptible to so many chloroplast genome rearrangements? How do normallyvery conserved chloroplast genomes change? The cause of rearrangements inthis group is unclear based on the limited resolution available withmapping techniques. Several mechanisms have been proposed to explain howrearrangements occur: recombination between repeats, transposition, ortemporary instability due to loss of the inverted repeat (Raubeson andJansen, 2005). Sequencing whole chloroplast genomes within theCampanulaceae offers a unique opportunity to examine both the extent andmechanisms of rearrangements within a phylogenetic framework.We reporthere the first complete chloroplast genome sequence of a member of theCampanulaceae, Trachelium caeruleum. This work will serve as a benchmarkfor subsequent, comparative sequencing and analysis of other members ofthis family and close relatives, with the goal of further understandingchloroplast genome evolution. We confirmed features previously identifiedthrough mapping, and discovered many additional structural changes,including several partial to entire gene duplications, deterioration ofat least four normally conserved chloroplast genes into gene fragments,and the nature and position of numerous repeat elements at or nearinversion endpoints. The focus of this paper is on analyses of sequencesat or near these rearrangements in Trachelium caeruleum. Inversions arebelieved to occur due to the presence of repeat elements subject tohomologous recombination (Palmer, 1991; Knox et al., 1993). Repeats mayfacilitate inversions or other genome rearrangements (Achaz et al.,2003), and higher incidences of repeats have been correlated with greaternumbers of rearrangements (Rocha, 2003). Alternatively, repeats mayproliferate within a genome asa result of DNA strand repair mechanismsfollowing a rearrangement event such as an inversion. Gene

Source

  • Journal Name: Journal of Molecular Evolution; Journal Volume: 66; Journal Issue: 4; Related Information: Journal Publication Date: 04/2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--59348
  • Grant Number: DE-AC02-05CH11231
  • Grant Number: NSF:DEB 0120709
  • Office of Scientific & Technical Information Report Number: 929094
  • Archival Resource Key: ark:/67531/metadc897001

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 9, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 30, 2016, 1:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L. & Jansen, Robert K. Complete chloroplast genome of Trachelium caeruleum: extensiverearrangements are associated with repeats and tRNAs, article, January 9, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc897001/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.