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Abstract

Both Federal and California state policymakers are increasingly interested in developing
more standardized and consistent approaches to estimate and verify the load impacts of
demand response programs and dynamic pricing tariffs. This study describes a
statistical analysis of the performance of different models used to calculate the baseline
electric load for commercial buildings participating in a demand-response (DR) program,
with emphasis on the importance of weather effects. During a DR event, a variety of
adjustments may be made to building operation, with the goal of reducing the building
peak electric load. In order to determine the actual peak load reduction, an estimate of
what the load would have been on the day of the event without any DR actions is
needed. This baseline load profile (BLP) is key to accurately assessing the load impacts
from event-based DR programs and may also impact payment settlements for certain
types of DR programs. We tested seven baseline models on a sample of 33 buildings
located in California. These models can be loosely categorized into two groups: (1)
averaging methods, which use some linear combination of hourly load values from
previous days to predict the load on the event, and (2) explicit weather models, which use
a formula based on local hourly temperature to predict the load. The models were
tested both with and without morning adjustments, which use data from the day of the
event to adjust the estimated BLP up or down.

Key findings from this study are:

e The accuracy of the BLP model currently used by California utilities to estimate
load reductions in several DR programs (i.e., hourly usage in highest 3 out of 10
previous days) could be improved substantially if a morning adjustment factor
were applied for weather-sensitive commercial and institutional buildings.

e Applying a morning adjustment factor significantly reduces the bias and
improves the accuracy of all BLP models examined in our sample of buildings.

e For buildings with low load variability, all BLP models perform reasonably well
in accuracy.

e For customer accounts with highly variable loads, we found that no BLP model
produced satisfactory results, although averaging methods perform best in
accuracy (but not bias). These types of customers are difficult to characterize
with standard BLP models that rely on historic loads and weather data.

Implications of these results for DR program administrators and policymakers are:

e Most DR programs apply similar DR BLP methods to commercial and industrial
sector customers. The results of our study when combined with other recent
studies (Quantum 2004 and 2006, Buege et al., 2006) suggests that DR program
administrators should have flexibility and multiple options for suggesting the
most appropriate BLP method for specific types of customers.
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Customers that are highly weather sensitive, should be given the option of using
BLP models that explicitly incorporate temperature in assessing their
performance during DR events.

For customers with more variable loads, it may make more sense to direct these
facilities to enroll in DR programs with rules that require customers to reduce
load to a firm service level or guaranteed load drop (e.g. which is a common
feature of interruptible/curtailable tariffs) because DR performance is difficult to
predict and evaluate with BLP models.

DR program administrators should consider using weather-sensitivity and
variability of loads as screening criteria for appropriate default BLP models to be
used by enrolling customers, which could improve the accuracy of DR load
reduction estimates.

iv



1. Introduction

Both Federal and California state policymakers are increasingly interested in developing
more standardized and consistent approaches to estimate and verify the load impacts of
demand response programs and dynamic pricing tariffs (e.g. critical peak pricing)
[FERC Staff Report 2006, CPUC 2007].! For example, the California Public Utility
Commission is overseeing a regulatory process to develop methods to estimate the load
impacts of demand response (DR) programs. These methods will be useful for
measuring the cost-effectiveness of programs, assist in resource planning and long-term
forecasting exercises, and allow the California Independent System Operator (CAISO) to
be able to more effectively utilize DR as a resource.

Policymakers are concerned that the methods used to estimate load reductions and
compensate customers and load aggregators are fair and accurate, and that protocols for
estimating load impacts can be used by resource planners and system operators to
incorporate demand-side resources effectively into wholesale (and retail) markets. One
of the challenges to developing protocols for estimating load impacts is the diversity of
customers (and their loads) and the heterogeneity in types of DR programs and dynamic
pricing tariffs. In its Order Instituting Rulemaking on DR load impact protocols, the
CPUC [2007) acknowledged that calculating the load impacts of DR programs is not
easy given the diversity in curtailment strategies, customer characteristics, and DR event
characteristics (e.g., timing, duration, frequency, and location).

This paper describes a statistical analysis of the performance of different models used to
calculate the baseline electric load for buildings participating in an event-driven
demand-response (DR) program, with emphasis on the importance of weather effects.
During a DR event, a variety of adjustments may be made to building operation, with
the goal of reducing the building peak electric load. In order to determine the actual
peak load reduction, an estimate of what the load would have been without any DR
actions is needed. This is referred to as the baseline load profile or BLP and is key to
accurately assessing the load impacts from certain types of demand response programs
that pay for load reductions.? The impacts estimate uses the BLP calculated for a specific

! In their report to Congress on Demand Response and Advanced Metering, FERC Staff identified
the need for consistent and accurate measurement and verification of demand response as a key
regulatory issue in order to provide system operators with accurate forecasts and assessments of
demand response, to support just and reasonable rates for the delivery of DR in wholesale
markets, and to accurately measure and verify demand resources that participate in capacity
markets.

2 Note that an explicit customer baseline calculation is not as important if the DR program design
requires customers to reduce usage to a “firm load” level (e.g. an interruptible/curtailable tariff)
[KEMA 2007].



time period on the event-day. This calculation should ideally account for all those
factors which are known to systematically impact the building load at any given
moment, such as weather, occupancy, and operation schedules.

The sample of buildings included in this study is mainly commercial (e.g., office and
retail) and institutional (e.g. schools, universities, government) buildings. There are a
few industrial facilities including a bakery, electronics manufacturing, laboratories and
large mixed-use office/data center.  Historically, many utilities have marketed
emergency DR programs and interruptible/curtailable tariffs to large industrial facilities
with process loads or onsite generation. The mix and type of industries has changed in
California and other states due to the growth in light industry, high technology (e.g.
computer electronics, bio-technology), commercial office space, the institutional sector,
and retail services. As DR programs continue to evolve, it is important that the program
rules and protocols for determining load impacts take into account the increasingly
diverse types of customers that can participate in DR programs.

The BLP methods discussed in this study are most relevant for non-residential buildings
and have not been broadly evaluated for relevance to industrial facilities. DR events are
called during times of system stress, which are also typically related to weather. For
California, DR may be used in the summer to deal with high peak loads on weekdays,
which are often driven by space cooling in buildings. This study looks at results for
buildings participating in an Automated Demand Response pilot sponsored by the PIER
Demand Response Research Center® [Piette et al 2007; Piette et al 2005] and who face a
critical peak price. In these cases DR events are only called on normal working days,
during the period 12 pm. to 6pm. Weather-sensitivity is likely to be especially important
during DR events.

Accurate BLP estimates help ensure that individual participants in DR programs are
fairly compensated as part of settlement procedures for their actual load reductions, and
that the contribution of demand response resources in aggregate is properly accounted
for in resource planning and benefit cost screening analysis. In both cases it is important
to avoid systematic bias in estimating the load reductions. Given the correlation
between temperature and increased building energy use for space conditioning, non-
weather corrected models may under-predict the baseline and therefore systematically
underestimate the response. This can be true even for buildings with large non-weather
responsive loads, if the weather-dependent load is significant relative to the estimated
DR reduction. On the other hand, many customers, load aggregators and DR program
administrators have a strong preference for simpler calculation methods with limited
data requirements that can be used for customer settlement processes. It is useful
therefore to establish how much quantitative improvement is gained by introducing
more complicated calculation methods.

3 The California Energy Commission’s Public Interest Energy Research (PIER) Program sponsors
the DRRC, which is managed by LBNL.



Table 1: Sites included in this study

Site name Description Location Weather Station
Officel Office Fremont Hayward Airport
Office2 Office Martinez Buchanan Field
Office3 Office Martinez Buchanan Field
Detention Facility |Detention Facility Martinez Buchanan Field
Schooll Jr. High School Fremont Hayward Airport
Museum Museum Oakland Oakland Foothills
Office4 Office San Jose San Jose Airport
Office/Labl Office/Lab Foster City ]San Francisco Airport
Office/Lab2 Office/Lab Foster City |San Francisco Airport
Office/Lab3 Office/Lab Foster City ]San Francisco Airport
Retaill Big Box Retalil Emeryville JOakland Airport
Retail2 Big Box Retail Palo Alto Palo Alto Airport
School2 High School Fremont Hayward Airport
Office/DC1 Office/Data Center Concord Buchanan Field
Officeb Office Rocklin Fair Oaks
Supermarket Supermarket Stockton Stockton Airport
Office/LM1 Office/Light Manufacturing [Milpitas San Jose Airport
Office/LM2 Office/Light Manufacturing |Milpitas San Jose Airport
Office/LM3 Office/Light Manufacturing [Milpitas San Jose Airport
Office/LM4 Office/Light Manufacturing [Milpitas San Jose Airport
Office/LM5 Office/Light Manufacturing [Milpitas San Jose Airport
Office/LM6 Office/Light Manufacturing [Milpitas San Jose Airport
Office/LM7 Office/Light Manufacturing [Milpitas San Jose Airport
Office/LM8 Office/Light Manufacturing |Milpitas San Jose Airport
Office/LM9 Office/Light Manufacturing [Milpitas San Jose Airport
Bakery Bakery Oakland Oakland Airport
Office/DC2 Office/Data Center Dublin Pleasanton
Office/DC3 Office/Data Center Dublin Pleasanton
Retail3 Big Box Retail Antioch Buchanan Field
Retail4 Big Box Retall Bakersfield |Meadows Field
Retail5 Big Box Retail Hayward Hayward Airport
Retail6 Big Box Retail Fresno Fresno Airport

1.1. Project Objectives and Analytical Approach

In this study we evaluate seven BLP models, for a sample of 32 sites in California
incorporating 33 separately metered facilities. In some cases the meter may include
electricity use for multiple buildings at one location. Such is the case, for example with
the High School and the Office/Data Center. For each BLP model, we tested two
implementations: models without and with a morning adjustment (which incorporates
site usage data from the morning of the DR event prior to load curtailment). The site
locations, building types and associated weather data sites are listed in Table 1. The
majority of the sites in the dataset are commercial buildings, but the analytical methods
we develop here can be applied to any building type. For each site, 15-minute electric
interval load data are available through the web-based customer energy metering site
maintained by Pacific Gas and Electric (PG&E). While the models differ in the details,



each uses electric load data from a period before the event to predict the electric load on
an event day.

Our main objective in this work is to provide a statistically valid evaluation of how well
each BLP model performs, and to relate the performance to more general building
characteristics. To do so, we need to define both the sampling procedure and the
evaluation metrics. Building loads always have a random component, so the baseline
estimation problem is inherently statistical in the sense that to properly assess the
performance of a method, a sufficiently large sample of applications must be considered.
Because our building sample is small, to develop a large enough data set, we define a set
of proxy event days (days on which no curtailment occurs and the load is known, but
which are similar in terms of weather to actual event days). For these days, we use the
historical data and the BLP model to predict the load, and compare the prediction to the
actual load for that day. If the proxy event set is large enough, we can evaluate each
model for each site separately. We focus on metrics that quantify the bias and the
accuracy of the model at the building level.

1.2. Prior Work

Several recent studies have reviewed and analyzed alternative methods for calculating
DR peak load reductions, either as part of working groups or evaluations of California
DR Programs using customer load data [KEMA 2003, Quantum 2004, Quantum 2006).
The most extensive review of BLP methods is provided in the KEMA (2003) study
Protocol Development for Demand Response Calculation — Findings and Recommendations. This
study examined a number of methods in use by utilities and ISO’s across the country,
and evaluated them in terms of accuracy and bias. As noted there, a BLP method is
defined by specifying three component steps:

e A set of data selection criteria,
e An estimation method,
¢ An adjustment method.

The difference between the estimation and the adjustment step is that estimation uses
data prior to the event day to predict the BLP during the event period, while adjustment
uses data from the event day, before the beginning of the curtailment period, to align
and shift the predicted load shape by some constant factor to account for characteristics
that may affect load on the day of the event.

The KEMA 2003 report, while quite comprehensive, included only three accounts from
California in their total sample of 646 accounts. There are 32 accounts from the
Northwest and 24 from the Southwest, so the sample is dominated by data from the
eastern U. S. Given significant climatic and demographic variation across the country,
with corresponding differences in building practices, occupancy, etc., it is unclear how
well results really generalize across different regions. In particular, the KEMA study
found that explicitly weather—dependent models did not generally outperform models



that did not include weather. One of the goals of this work is to determine whether this
hypothesis also holds true for California.

Quantum Consulting (2004) conducted an analysis of methods to estimate customer
baselines as part of its broader evaluation of California’s 2004 DR programs targeted at
industrial and commercial customers. The baseline assessment had billing data for a
large sample (450 customers) of non-participants that were eligible for the DR programs;
customers’ peak demand ranged from 200 kW to greater than 5 MW. The sample was
weighted appropriately to represent the population of eligible customers. Eight proxy
event days were selected for each utility from the period July 1, 2003 to August 31, 2003.
These event days were classified in to three categories: high load (potential event days),
low load (as potential “test” days), and consecutive high load days (series of three high
load days that occurred back-to-back). This study coupled with subsequent analysis of
load impacts in the Quantum (2006) evaluation provides a more detailed analysis of the
bias and accuracy of BLP methods for large industrial and commercial buildings located
in California.

In developing the statistical sample of test profiles, KEMA (2003) and Quantum (2004)
used a large number of accounts, but a relatively small number of calendar days,
comprised of only those days where an actual curtailment was called in the region (as in
KEMA) or proxy event days (as in Quantum). Our statistical approach is different,
using a much larger selection of proxy event days. This allows us to create a statistical
picture for each building, which is useful both because our building sample is smaller,
and because we can then evaluate whether different methods perform equally well for
different building types.

The methods investigated in this study overlap with the KEMA (2003) and Quantum
(2004) reports, with a somewhat different approach to adjustment for weather effects.
We have also developed a different method for estimating the degree of weather-
sensitivity of a building, and different diagnostics to quantify the predictive accuracy of
the BLP, and the estimated peak load savings values that are used in bill settlement. The
metric used for measuring the bias of the BLP is similar to that used by Quantum (2004).
We also provide detailed results for the baseline model that is currently in wide use in
California, based on a simple average of the hourly load over the highest 3 of the
previous 10 days in the sample. Some of the baseline models tested in Quantum (2004)
are the same as those included in this study (e.g. 10-day unadjusted and 10-day
adjusted). Our approach to testing BLP models that include an Adjustment Factor is
similar to the Quantum (2004) study, although the number of hours and time period (e.g.
day of vs. day ahead) used for calculating the adjustment factors is different.

The Quantum evaluation reports (2004 and 2006) and a subsequent article based on
those reports by Buege et al. (2006) conclude that the 10-day adjusted BLP is
significantly better than the currently used 3-day unadjusted BLP in California.
Specifically, the authors assert that the 3-day unadjusted BLP method is biased high by
two to four times. They also find that the presence of large customers with highly
variable load can add considerable uncertainty to the estimation of baselines.



The remainder of the paper is organized as follows: In Section 2 we present an overview
of the technical steps involved in preparing the data sets, defining the sample of proxy
event days, running the models and developing the diagnostics. In Section 3 we
describe our weather sensitivity metrics, and in Section 4 we define each of the methods
investigated in this paper. Section 5 presents the results for our building sample. In
Section 6 we provide a discussion of the limitations of the analytical approach used here,
and outline some suggestions for future work.

2. Data Processing and Evaluation Metrics

In this section we describe the preparation of the data, the mechanics of implementing
different models, and the diagnostic metrics used in this report.

2.1. Data Sources

The building load data used in this project consists of 15-minute electric interval load
data for each metered building, which we convert to hourly by averaging the values in
each hour. We use data from May through October of 2005 and 2006 to define the
sample days and test the methods. Only the warm-weather months are included here,
as these are the periods when (to date) events are more likely to be called in California’s
DR Programs. The amount of data available depends on how long the account has
participated in the DR program (in some cases interval meters were installed because the
site was willing to go onto a DR program), and whether there is any missing data during
the sample period.

The explicit weather models require hourly temperature data for each site. The data
were obtained by assigning each site to a weather station that is currently active and
maintained by either a state or a federal agency. A website developed at the University
of California at Davis (www.ipm.ucdavis.edu/WEATHER) provides maps of the
weather monitoring stations maintained by various entities for each county in California.
These are used to select the weather station closest (both geographically and in
elevation) to each site. The sites were chosen from those maintained by NOAA
(available by subscription) or by the California Irrigation Management Information
System (CIMIS), which is a program of the state Department of Water Resources. Only
outdoor dry bulb air temperature data are used currently in developing the weather-
dependent models.

2.2. Proxy Event Days

The goal of using proxy event days is to have a large sample set for which (i) the actual
loads are known and (ii) the days are similar in some sense to the actual DR event days
that were called by the CAISO and California utilities in 2005 and 2006. Before selecting
the proxy set, we first need to define the set of what we call admissible days, which is the
set of days that can be used as input to the BLP model calculations. We define



admissible days as normal working days, i.e. eliminating weekends, holidays and past
curtailment events, which follows standard procedures.

The proxy event days are selected as a subset of the admissible days. DR events are
typically called on the hottest days, and can be called independently in each of several
climate zones defined by the CEC (all the sites available for this study are located in
either zone 1 or zone 2, as indicated in Table 1). To define the weather characteristics
associated with an event day, we first construct a spatially-averaged zonal hourly
temperature time series, using a simple average over the weather stations located in the
zone. The hourly zonal temperatures are then used to construct three daily metrics: the
maximum daily temperature, the average daily temperature, and the daily cooling
degree hours (using 65 °F as the base temperature).

Sorting the weather data on the value of the daily metric provides a list of the hottest to
coolest days in the sample period. We defined the proxy event days as the top 25
percent of the admissible days sorted in this manner. The three metrics give consistent
results for the hottest days, but select slightly different samples. A little over % of the
actual event days in each year are included in the top 25 percent selected.* The results
presented here use the sample associated with cooling-degree hours.® For each
building, a proxy event day is included in the analysis only if there is sufficient load data
for that day. Hence, the proxy event sets vary somewhat from building to building. On
average, this procedure leads to about 60 proxy days for each site.

2.3. Model Runs and Diagnostics

In our procedure, model results are calculated for all the admissible days, but
diagnostics are calculated only for the set of proxy event days. For each model and each
building site, the BLP for each hour from 9 am-6 pm is calculated. While the event
period is limited to 12 pm-6 pm, the adjustment factors may require model and actual
data from the early morning period. Our notation is as follows:

e the admissible day is labeled d

the hour is labeled h; our convention is h = time at the beginning of the hour
the predicted load is pl(d,h)
the actual load is al(d,h)

the adjustment factor for day d is c(d)

41t is possible that a metric based on the deviation of the daily value from a monthly average
would capture the rest of the event days, however it is also the case that event days may not be
entirely determined by the daily temperature.

5 The results do not appear to be sensitive to the daily metric used to define the sample. Note that
the proxy event days are defined purely from temperature data, so there is one set for each zone.



e the absolute difference between the actual load and the predicted load is defined
as x(d,h) = al(d,h) - pl(d,h)

e the relative difference between the actual load and the predicted load (or percent
error) is defined as e(d,h) = x(d,h)/al(d,h)

For each combination of a model and a site we calculate the absolute and relative
difference between predicted and actual loads, x(d,h) and e(d,h), for each proxy event
day and each hour in the event period, which gives us about 360 observations for each
building site. Our statistical metrics are defined for these sets of numbers.

Often, utilities or ISOs settle payments for performance during DR events based on the
average hourly load reduction during the hours of the event. It is therefore useful to
compare the prediction of the average hourly load to the actual value. To do so we
define:

e A(d) =<al(d,h) > the actual hourly load averaged over the event period

e P(d) =< pl(d,h) > the predicted hourly load averaged over the event period

¢ X(d) = A(d) — P(d) the absolute difference in average event-period hourly load
e E(d) = X(d)/A(d) the percent difference in average event-period hourly load

2.3.1.  Adjustment Factors

As noted in the KEMA 2003 report, the algorithm for predicting a customer’s load shape
includes a modeling estimation step and an adjustment step. In our analysis, we
evaluate each model both with and without a morning adjustment factor applied. The
KEMA report reviews several methods for calculating the adjustment factor. Most are
based on some comparison of the actual to the predicted load in the hours immediately
preceding an event. In this study, we use a multiplicative factor defined as the ratio of
the actual to the predicted load in the two hours prior to the event period:®

o(d) = [ al(d,h=10) + al(d,h=11) 1/[ pl(d,h=10) + pl(d,h=11) 1.

To adjust the BLP, we multiply the predicted value in each hour by the daily adjustment
factor:

pl'(d,h) = c(d) * pl(d,h).

The Adjustment Factor essentially scales the customer’s baseline from admissible days
to the customer’s operating level on the actual day of a DR event.”

¢ Quantum (2004 and 2006) studies use the three hours preceding the event period.

7 Deciding on the period to use for the Adjustment Factor can be more problematic for DR
programs or tariffs where the event is announced on prior days (e.g. Critical Peak Pricing), as
there may be some concern about customers “gaming” their baseline by intentionally increasing
consumption during the hours just prior to the event. Quantum [2004] addressed this issue by



We also tested an alternative adjustment approach that used the two hours preceding
the event to define an additive, rather than multiplicative, correction factor. In our
sample, there is no significant difference in the results.

2.3.2.  Diagnostic Measures

For each BLP model, both with and without adjustment, and each site, we calculate the
set of absolute and percentage errors x(d,h) and e(d,h). Our evaluation of the
performance of a model is based on the statistical properties of these errors. To measure
any bias in the model, we calculate the median of the distribution of errors.® If the
method is unbiased the median will be zero. If the median is positive (negative) it
means that the model has a tendency to predict values smaller (larger) than the actual
values. To quantify the accuracy of the model, we calculate the average of the absolute
value of the error terms (le(d,h)| or Ix(d,h)l). These metrics can also be applied to the
average event-period values X(d) or E(d).

3. Weather Sensitivity

Weather sensitivity is a measure of the degree to which building loads are driven
directly by local weather. By far the most important weather variable is temperature.
Physically, space-conditioning loads are affected by the total heat transfer to the
building from the environment, which is affected by such details as the orientation and
shading of the building, shell characteristics, thermal mass, cooling and ventilation
strategies, and occupant behavior. In modeling baseline energy consumption, the
cooling load in a given hour is related to some kind of weighted integral of the
temperature over an earlier set of hours, with the weighting and the number of hours
depending on the specific building. Practically, weather dependence is often
represented by using regression models relating hourly load to hourly temperature,
possibly including lagged variables or more complex functions of temperature. The
KEMA 2003 report investigated a number of weather regression models, some fairly
complicated, but it is not clear from that study that including additional variables leads
to a consistent improvement in the accuracy of the models tested. In some climates
humidity may be an important factor in weather sensitivity, but for sites in California,
weather behavior is likely to be dominated by dry bulb outdoor air temperature (OAT).
The models tested here are based on straightforward correlation of hourly load with

selecting the three hours prior to the utility notifying customers of an event on the prior weekday.
For purposes of our analysis, we have included the two preceding hours prior to a CPP event on
the same day for the Adjustment Factor.

8 The median of a set of numbers is the value such that one half of the set is greater than the
median, and one half of the set is less than the median. The average value of the error could also
be used as a bias measure, however the median tends to be more robust as it is not sensitive to
outliers.



hourly OAT. This approach effectively rolls all other building-specific factors into the
regression coefficients.

To develop an a priori sense of whether a building is likely to be weather sensitive, we
use a simple and robust correlation function known as Spearman Rank Order
Correlation (ROC) (Press et al. 2007). Given two time series (X(t), Y(t)) of equal length M,
the ROC is obtained by (1) replacing each variable with its rank relative to the rest of the
set and (2) calculating the linear correlation coefficient between the two sets of ranks.
While the distributions of the X and Y variables may be unknown, the ranks are
distributed uniformly on the interval [1,M]. Thus, the ROC can be calculated explicitly
without approximation, along with the associated statistical significance. The ROC
coefficient is insensitive to the size of hourly variation in X and Y, and measures only the
degree to which they tend to rise and fall together. This makes it more straightforward
to compare correlation magnitudes across different types of buildings. The ROC should
also provide a more robust measure of weather sensitivity for buildings with highly
variable loads.

For each site, we calculate the ROC between load and temperature for each hour
separately for all the admissible days. We calculate an ROC coefficient in each hour
separately to avoid spurious correlations driven by the daily work schedule. The
average of these calculated values during event period hours is shown in Table 2. These
have been color-coded to indicate high (>= 0.8), medium (0.65-0.8), low (0.5-0.65) and
very low (<0.5) degrees of correlation. We also calculate an average coefficient over all
the hours, which is used as an overall indicator for the building. In all cases except two
the significance is greater than 95%. The two exceptions are the Schooll and School2
sites, which also show negative correlation coefficients. These schools are closed from
mid-June to September. The algorithm works correctly for these sites, but what it picks
out is an anti-correlation between load and temperature and a strong random
component.
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Table 2: Hourly rank order correlation (ROC) coefficients

Avg h=10am h=1lam h=12pm h=1pm h=2pm h=3pm h=4pm h=5pm h=6pm

Site Name

Retail6 0.97
Supermarket 0.93
Retail4 0.91
Office/LM5 0.88
Retail3 0.83
Retail5 0.83
Office2 0.82
Office3 0.82
Officed 0.82
Office/DC3 0.79
Office/Lab2 0.78
Retaill 0.77
Office/LM7 0.77
Officel 0.75
Office/DC1 0.75
Office/DC2 0.74
Detention Facility

Retail2 0.71
Office/LM1 0.65
Office/LM2 0.64
Office/LM4 0.63
Office/Labl 0.61
Office/LM8 0.60
Office/Lab3 0.49
Museum 0.48
Office/LM3 0.45
Office5 0.40
Office/LM9 0.36
Office/LM6 0.17
Bakery 0.01
Schooll -0.05
School2 -0.23

0.56
0.63
0.57
0.51
0.62
0.34
0.47
0.43
0.39
0.30
0.16
0.07
-0.12
-0.24

0.58
0.30
0.59
0.39
0.50
0.45
0.42
0.34
0.16
0.10
-0.04
-0.12

0.62
0.43
0.56
0.43
0.42
0.35
0.21
0.07
0.00
-0.12

0.61
0.53
0.56
0.47
0.40
0.38
0.18
-0.06
0.03
-0.24

0.62
0.50
0.55
0.43
0.37
0.39
0.16
-0.05
-0.07
-0.33

0.62
0.57
0.49
0.43
0.38
0.38
0.16
-0.06
-0.09
-0.34

0.56
0.10
0.46
0.34
0.39
0.15
-0.01
-0.13
-0.35

4. Baseline Profile (BLP) Models

We tested seven baseline models for our sample of buildings, with and without the
morning adjustment factor applied. These models can be loosely categorized into two
groups: (1) averaging methods, which use some linear combination of hourly load values
from previous days to predict the load on the event day (models 1 through 4), and (2)
explicit weather models, which use a formula based on local hourly temperature to predict
the load (models 5 through 7). The methods are summarized in Table 3, and described
in more detail below. To improve the readability of the results tables, we have given
each model a code (BLP1 through BLP7). For the version of the model with no morning
adjustment factor applied we append an n to the code. For example, BLP1 refers to the
simple average model with morning adjustment, and BLP1n refers to the simple average
with no adjustment.
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Table 3: Summary of BLP models evaluated

Code |Description

BLP1 |10-Day simple average baseline with morning adjustment

BLP2 |Weighted average formula using previous 20 admissible days with morning adjustment

BLP3 Simple average over the highest 3 out of 10 previous admissible days with morning
adjustment

BLP3n Simple average over the highest 3 out of 10 previous admissible days without morning
adjustment

BLP4 Simple average over the highest 5 out of 10 previous admissible days with morning
adjustment

BLP5 |Seasonal regression baseline with morning adjustment

BLP6 ]10-day regression baseline with morning adjustment

BLP7 |Limited seasonal regression baseline with morning adjustment

4.1. 10-Day Simple Average Baseline with Morning Adjustment (BLP1)

In simple averaging, the average of the hourly load over the N most recent
admissible days before the event is used to predict the load on the event day.

Typically, N is set equal to 10, which is the value used in our analysis. Note that

averaging will tend to under-predict the load by definition. Both BLP1 and
BLP1In (without morning adjustment) were also tested in the Quantum (2004)
study.

4.2.

Weighted Average Baseline with Morning Adjustment (BLP2)

In recent regulatory discussions on load impact estimation protocols, EnerNOC

has proposed a recursive formula to predict the load on day d from predictions
over a set of N previous days (EnerNOC 2006). This is equivalent to a weighted
average of actual loads over the previous N days, with weights defined by:

P

1(d,h) = 0.1*] sum( m=0,N-1) (0.9)™ * al(d-m,h) ] + (0.9)N * al(d-N,h)

We applied EnerNOC’s proposed BLP using 20 previous days.

4.3.

Simple Average over the Highest 3 out of 10 Admissible Days with
Morning Adjustment (BLP3)

In this model, the 3 days with the highest average load during the event period
12pm-6pm are selected from the previous 10 days, and the simple average of the
load over these three days is calculated for each hour. The unadjusted version

12



4.4.

4.5.

4.6.

4.7.

(BLP3n), is the baseline method currently used in California’s Demand Bidding
and Critical Peak Pricing programs® and was also tested in Quantum (2004).

Simple Average over the Highest 5 out of 10 Admissible Days with
Morning Adjustment (BLP4)

This method is similar to BLP3, except the highest five days are used.
Seasonal Regression Baseline with Morning Adjustment (BLP5)

In this method, we use a year’s worth of data to calculate the coefficients of a
linear model : pl(d,h) = Cl(th) + C2(h)*temperature(d,h). The coefficients are
calculated using linear regression. We have calculated two separate sets of
coefficients, using 2005 data and 2006 data. The coefficients differ slightly, and
the 2006 values are used here. All the admissible days from May through
October are used. This is the Linear Regression with Seasonal Coefficient
method.

10-Day Regression Baseline with Morning Adjustment (BLP6)

This method uses a linear regression model as defined for BLP5, but the
coefficients are calculated using only data from the N most recent admissible
days prior to the event period. In this analysis we set at N equal to 10.

Limited Seasonal Regression with Morning Adjustment (BLP7)

This method is a variation of BLP5. Here, in calculating the regression
coefficients, instead of using all the admissible days from May through October,
we use only those hours for which the temperature is greater than or equal to
60°F. The results for this model do not differ significantly from those for model
BLP5, and are not included in the tables.

5. Results

As an illustration of how the actual and estimated load profiles look, Figure 1 shows
data for an office building in Fremont, for a summer day in 2006. The plot shows the

% The California Capacity Bidding Program uses a different version of the BLP3n model, in which
the selection of the highest 3 of 10 days is based on analysis of the total load for all the sites
included in the portfolio of a load aggregator. For the methods evaluated in this study, the 3
highest days are chosen separately for each individual site/facility. This approach is commonly
used by other U.S. ISO/RTOs (e.g., NYISO, PJM, ISO-NE) in their DR programs. We believe that
calculating customer baseline load profiles from individual participating facilities is likely to
enhance customer acceptance and transparency because individual customers can determine and
verify their baseline load profile and load reductions (compared to the aggregator portfolio
approach in which the CBL depends on the usage patterns of all other customers).
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estimated BLP for method BLP3 with adjustment and method BLP3n with no
adjustment, and the actual load. The model values are calculated for all the hours from 9
am to 6 pm, and the values for the beginning at 10 am and 11 am are used to calculate
the morning adjustment factor. In this particular case, the unadjusted prediction is
below the actual load, so the adjustment boosts the load profile upward.

The percent error in the estimate is the ratio of the difference between the actual and
estimated load, divided by the actual load. For this example, the actual hourly load is on
the order of 300 kwh. The BLP3n prediction is roughly 30 kwh below the actual, so the
percent error in model BLP3n is about +10%. This error is slightly larger during the
afternoon, high load period. The difference from the adjusted BLP3 profile is roughly 5-
15 kwh during the event period, so the adjustment reduces the error to roughly 5%.

Our statistical analysis is based on calculations of profiles like the one illustrated in
Figure 1 for all sites, all proxy event days and all models. For a given site and model,
the performance of the model is characterized by the average size of the absolute percent
error over all proxy event days, and whether there is a bias towards predominantly
positive or negative errors.

Figure 5-1: Example results for models BLP3n and BLP3
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5.1. Building Characteristics

An examination of some general characteristics of our sample of buildings is very
helpful in interpreting the results of our analysis of BLP models. The characteristics we
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use are the weather sensitivity (discussed above) and the load variability of each
building in the sample. In this context, load variability refers to how different the load
profiles are from one day to another, which will affect the degree to which the loads on a
given day can be predicted from previous data.

There are a variety of ways of measuring the load variability. In Figure 2, we show one
approach, where for each building site the minimum, maximum and average hourly
load are plotted. The sites are labeled in Figure 2 by building type, and the order on the
horizontal axis is determined by sorting the average loads from largest to smallest. Note
that the vertical axis uses a logarithmic scale. This plot shows that while for most sites
variability is moderate, for several sites the variability exceeds two orders of magnitude.
In these cases, the building was essentially “turned off” for some part of the sample
period (for example, the Museum is closed on Mondays).

Figure 5-2: Maximum, minimum and average hourly load at each site
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To quantify the variability, we use a simple measure based on the deviation of the load
in each hour from an average calculated over all the admissible days. The deviation is
defined as the average value of the difference between the load in a given hour and the
period average load for that hour. This is converted to a percent deviation by dividing
by the period average. This variability coefficient can take on any value greater than
zero, with low values indicating low variability. In order to derive a single value for
each facility in our sample, we average the values calculated for each hour. Facilities are
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classified as either high or low variability. The cutoff is chosen at 15 percent. We also
classify building weather sensitivity as either high or low, with the cutoff set at an ROC
coefficient of 0.7. Using this segmentation scheme, we disaggregate our sample of
facilities into four categories, as shown in Table 4.

In our sample there are three buildings with non-standard schedules, shown in the table
in italics. Two are schools that are closed during the summer as noted above. The third
is a museum that is closed on Mondays and most Tuesdays. Although these schedules
are perfectly predictable, they deviate from the assumption that normal operating days
are Monday through Friday year-round. This results in an artificially high level of
variability in load (and corresponding reduced estimate of weather sensitivity) for these
sites.

Table 4: Classification by load variability (var) and weather sensitivity (ws)

Site Name ROC | VAR | ws | var |Site Name ROC VAR  ws |var
Retail6 0.97 @ 0.20 h h |Supermarket 0.93 @ 0.10 h I
Retail4 0.91 @ 0.19 h h |Office/LM5 0.88 0.11 h [
Office2 0.83 | 0.22 h h |Retail3 0.83 @ 0.13 h [
Office3 0.82 @ 0.27 h h |Retail5 0.83 @ 0.10 h |
Office/LM7 0.77 | 0.19 h h |Office4 0.82 | 0.14 h I
Detention Facility | 0.71 = 0.24 h h |Office/DC3 0.79 | 0.11 h I
Office/LM1 0.65 @ 0.17 I h |Office/Lab2 0.79 @ 0.15 h |
Office/LM4 0.63 @ 0.15 I h |Retail2 0.77 @ 0.10 h |
Office/LM8 0.60 0.32 I h |Office/DC1 0.75 | 0.10 h I
*Museum 0.49 | 0.29 | h [Officel 0.75 | 0.15 h |
Office/Lab3 0.49 0.18 I h [|Office/DC2 0.74 | 0.14 h [
Office5 0.40 @ 0.29 I h |Retaill 0.71 | 0.12 h [
Office/LM9 0.36 @ 0.63 I h |Office/LM2 0.64 @ 0.11 | |
Office/LM6 0.17 = 0.96 I h |Office/Labl 0.61 0.13 | |
*Schooll -0.05 | 0.41 | h |Office/LM3 0.45  0.14 | |
*School2 -0.23  0.34 | h |Bakery 0.01 011 I I

5.2. Morning Adjustment

Overall, we find that the morning adjustment factor substantially improves the
performance of each baseline model; both in terms of reduced bias and improved
accuracy (see Figures 3 and 4). In Figure 3, we show the average of the absolute errors
between predicted and actual load, which is our accuracy measure, for each site using
the BLP3/BLP3n (highest 3 of 10) model. The sites are labeled by name, and have been
ordered along the x-axis according to the category they belong to with respect to
variability and weather sensitivity. The category order is high-high, high-low, low-high,
and lastly low-low. The shaded bars are for the model with no morning adjustment
applied, and the white bars with the morning adjustment. The vertical axis limits are
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chosen to ensure that all the data are visible, and as a result one of the unadjusted values
is off the chart. This plot shows that for almost all the sites, and in particular for the high
variability sites, the morning adjustment leads to a large improvement in the accuracy of
the model prediction. For cases where the adjustment does not improve the result (for
example, Detention Facility) use of the adjustment does not substantially degrade the
model performance.

Figure 5-3: Error magnitude for model BLP3 without and with adjustment
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The results in Figure 3 illustrate the decrease in magnitude of errors between predicted
and actual load when the morning adjustment is applied. In Figure 4, we provide a
slightly more complicated representation of the effect of applying the morning
adjustment factor, using data from all BLP models and all sites. It illustrates the impact
of the adjustment on the likelihood that the model will have a small (less than 5%) error.
Each point on the chart represents a single building-model pair. It is constructed as
follows:

1. For a site and a model with no adjustment applied we calculate the probability
that the absolute value of the error le(d,h)! is less than 5%.

2. For a site and a model with the adjustment applied we calculate the probability
that the absolute value of the error le(d,h)! is less than 5%.
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3. The probability calculated in case (2) is plotted against the probability in case (1).
4. The diagonal is shown on the plot as a heavy dark line.
5. A linear trend line passing through (0,0) is also plotted in black.

The diagonal corresponds to a situation where the morning adjustment has no effect on
the likelihood of a small error. If a point lies above the diagonal it means that the
probability of a small error is larger when the adjustment is used. The fact that most
points are above the diagonal means that in most cases the morning adjustment
increases the probability that the error will be small. The linear fit shows that on
average, for a given model-site pairing, the probability of small error is increased by
about 25 percent when the morning adjustment is applied. There is broad scatter in the
plot, indicating that some cases are improved a great deal, where as others are improved
only slightly. Below the diagonal, there are a few cases where the adjustment factor
produces worse results, but in general these differences are small.

Figure 5-4: Comparison: probability of error less than 5% with
or without morning adjustment
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We have observed two situations where building or facility operating issues are likely to
be misrepresented with morning adjustments. These are related to demand response
end-use strategies that begin prior to the start of the DR event, and are important for
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day-ahead or other pre-notification DR programs. The first situation is when pre-
cooling is done only on DR event days, and not on normal days. If the chiller load is
higher than normal on the morning of a DR event day, the baseline load will be adjusted
to a higher value than if the pre-cooling had not occurred. The adjustment reflects a
demand response strategy, not the fact that the day is hotter than normal. In the second
situation, we have observed industrial demand response strategies that involve reducing
the end-use loads one to two hours prior to the beginning of the DR event. This is done
because some industrial loads take time to “unload”. In this case the morning load is
lower than it would have been in the absence of a DR event, so the morning adjustment
will scale the baseline down more than is appropriate. These issues suggest that some
information about the building DR strategies would be very useful in assessing whether
and how a morning adjustment should be applied to a baseline model.

5.3. Bias and Accuracy

The next two tables present our analysis of the relative bias and accuracy among the
various BLP models that we tested in our sample of buildings. Table 5 provides results
for the distribution of hourly percent errors e(d,h) between predicted and actual load,
while Table 6 shows the same metrics for the distribution of daily values of the percent
error in the average event-period hourly load E(d). The bias is measured using the
median of the sample of values, and the accuracy is measured by the average of the
absolute value of the error. We present only the percent error data as these are easiest to
compare across buildings. In Tables 5 and 6, the best and worst performing models for
each building, are highlighted in blue and grey shading respectively. The table rows are
sorted on the categories for variability (var) and weather sensitivity (ws). The three sites
with anomalous schedules (the two schools and the museum) are noted in italics.

In the table of results for the hourly values e(d,h) we present both model BLP3 and
model BLP3n (highest 3 of 10 with and without the adjustment applied), as the current
practice in California is to use the BLP3n method (no adjustment).
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Table 5: Metrics for the percent hourly error e(d,h) by site and model

Median of e(d,h) (Bias measure) Average of |e(d,h)| (Accuracy measure)

site var wsf m1 m2| m3 m3n m4 m5 m6| ml m2 | m3 m3n| m4 m5 | m6
Office2 h h 0.1] 0.8 24] -0.5 44 16| 39 40 39 8.3h 59 48
Office3 h | h 0.7 -1.0/ 3.6 -0.7 7.5 1.1 8.2/ 10.5| 8.0 11.2 8.6
Detention Facility h|/h|] -06 -08 05 19 0.2 -0.6Qee] 7.9 7.7 83 8.0 86 8.2
Office/LM7 h h|-23 24/ 10 18|l 47 02 53 54| 52 112 53 638
Retail4 h|h] -09 -05| -0.5/ 2.0 -0.5 -1.080 3.0 el 35 54 34 3.0 3.5
Retail6 h|h] -03 -04f -0.7/ 22 -0.5 -1.1880 ) 20| 21 50 20 20 21
*Schooll h I]-71 -72|-38 7.3]|-7.8 0.2 BKe o8 31.6| 33.5| 55.1| 32.3 44.5| 34.6
*Museum h 1 16 35| 1.6 44 16| 15.0| 15.8| 16.2 23.6 . 18.2
*School2 h | . 1.2 70| -34 16 26| 189 20.7| 18.3 344 . 22.7
Office/Lab3 h || 47 51| -35 -1.9 -0.7] 10.6 10.6] 10.9 MR 11.4
Office5 h 1] -14 21| -0.2 -21 0.2 36 37| 36 . . 4.6/ 3.6
Office/LM1 h 1|14 2.0 0.7 -02| ssE 61 s 8 61 60
Office/LM4 h | 1] -27 34| -14 48 -16/ 51 51| 49 83| 49 6.1
Office/LM6 h | 1] -10 4.0 8.3 0.9 7.8 10.5 29.3] 9.1 121 12.0
Office/LM8 h | 1] -04 0.5| -0.4 6.7 -1.2| 47 48 89| 48 93 51
Office/LM9 h | 1] -29 89| -1.6 -11.1 i 7.2 9.0/ 27.4] 8.0 139 10.8
Officel I " h]| -24 -27| 0.2 23| -05 1180 53/ 52| 54 89| 53 4.9
Office4 I " h] -1.9 -2.0| -0.8 -1.5| -0.90e -0.6] 4.3 43| 45 8.0 438N 4.5
Office/Lab2 I h 0.7/ 0.6] O0.5Fe5 (0f:] -04 0.4 4.4 45 51| 42 48 49
Retaill I h 1.0 14 0.9 04 1.2 0.4 27 50 26 26
Retail2 I " h] -0.7/ -0.9 28| -0.4/ O.6fWeNel 4.7 4.7 45 51| 49 5.2
Office/DC1 I ' h 1.7 13 /g O 3.3 24, 21 9 32 21 41 28
Supermarket I "h] -16 -1.6/ -0.4 1.0] -0.580e 0 27 25| 25
Office/LM5 I " h] -1.0 -1.3] 0.7/ 0.5 ¢ 0.3 0.2 26 27| 29
Office/DC2 | ' h] -4.0 -53| -1.7 -1.6] -2.40 -3.2] 5.8 6.7 5.2
Office/DC3 I " h] -3.4 -39| -0.58¥Y 21 -1.0 -1.1] 5.1 54| 438
Retail3 I h] -0.7| -0.88&¢ 1.3] -0.2 -0.2 0.2 0 21 21
Retail5 I | h] -20 -2.286H) 0.5 -0.6fe] 0.4 4.2 42| 4.1
Office/Labl | I'|] 21 -1.9] 1.680 -0.7|  0.7850¢ 4.4 4.4 4
Office/LM2 I -0.5 06 1.4/ 05 09 -08 52 56
Office/LM3 | || -0.9 -1.1f 0.8 2.7 0K¢ 1.4 -0.8] 54 5.8
Bakery | | 0.6/ 0.8 eHe] 3.7pN0H0) 0.2 -0.1] 4.4 5.2

blue e = best performance grey/black = worst performance

With respect to the bias indicator, both the BLP3 and the BLP6 models perform well
(BLP6 is the load-temperature model based on the 10 previous days of data). The
weather-dependent BLP6 model is distinguished by the fact that it is the only model that
consistently avoids bias in our sample of buildings. For the accuracy metric it is clear
that the unadjusted 3-in10 model BLP3n is the least accurate. Table 5 also shows that,
for buildings with low variability, all models (except BLP3n) perform reasonably well,
which is not surprising. For buildings with high weather sensitivity, overall the explicit
weather models (BLP5 and BLP6) either improve the performance for that building or
do not affect it much.
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Table 6: Metrics for the average hourly load percent error E(d)

Median of E(d) (Bias measure)

Average of |E(d)| (Accuracy measure)

site var wsjml 'm2 m3 m4 'm5 m6 |ml m2 m3 |m4 'm5 mé6
Office2 h h Y 03 -10 02 46 16 3.4 33EE 53 40
Office3 h h| 21 11 84 13 68- 72 69 106 7.8
Detention Facilty h h | -0.6 -0.4 0.3 09 06 70 73 76 6.7
Office/LM7 h h| 25 -30 10 05 4.4 41 42 61
Retail4 h h| 10 -06 -06 -07 -09 29 29 24 29
Retail6 h h| 03 -03 -09 -06 -2 20 19 19 19
*Schooll h 1 [-104 -103° -36 -9.0 22 252 255 28.2 246
*Museum h | 17 50 16 35 15.1 14.6J6EN] 16.5
Ofiice/Lab3 h I | 69 67 08 -44 3 87 99¥ 81
*School2 h I 13 81 -34 155 15.0 14.8 21.2 17.6
Office5 h I | -18 -21 -04 -06 32 31

Office/LM1 h 1 | 48 -1.0 10 8 47 49

Ofiice/LM4 h 1 | 36 -36 14, 52 -10] 46 45 38

Office/LM6 h I | 12 -16 22 05 .

Office/LM8 h | | 06 -07 -0.5 44/ 91 45
Office/LM9 h | | 24 25 06 9.8
Officel I h | 25 25 02 -0.2 3.6
Office4 I h 20 21 -11

Office/Lab2 I h 03 07 0.7

Retaill I h | 10 12X

Retail2 | h | -11 12 -06

Office/DC1 | h | 17 14

Supermarket I h -1.20 -15

Ofiice/LM5 I h | -11 -5

Office/DC2 | h | 44 55

Office/DC3 | h | 37 -48

Retail3 I h | 07 11

Retail5 I h 21 21

Office/Labl I 25 -1.9

Office/LM2 I 0.9 -0.6 : :
Ofiice/LM3 I 1| -4 10 44/ 42 42 50
Bakery | 1.0 16 43 38 46 46

blue/white = best performance

grey/black = worst performance

Table 6 is similar to Table 5, except that the error metrics are derived for the sample of
event-period average hourly load differences E(d). We have also removed the BLP3n
column from this table. The BLP3n model is clearly the least accurate, and by removing
it we can get a sense of which of the BLP models is best/worst when all the models
include the morning adjustment factor. For the bias measure, the results are similar to
Table 5. This is to be expected, as averaging is a linear operation, which is unlikely to

strongly affect the median results.
to be the most biased in our sample of buildings.

The BLP5 model (seasonal load-temperature) tends
In the accuracy metric, no model

stands out as clearly worse or better than the others. It is interesting to note that the
BLP5 model is frequently both the best and the worst. The building load categorizations
are reasonably good at predicting performance, with BLP5 performing poorly for “h-1”
buildings (high load variability and low weather sensitivity) and well for “l1-h” (low
variability and high weather sensitivity facilities). The “h-h” and “1-1” sample sizes are
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small, so one should be careful in drawing conclusions from these data. They do
suggest that, as noted above, for buildings in the “I-1” category all models perform
reasonably well. For the “h-h” category, the BLP6 model (load temperature based on 10
days of data) consistently avoids bias. It is not clear from this data if explicit weather
models out-perform averaging models in this category.

5.4. Event Day Shed Load Estimates

ISOs or utilities with DR programs use BLP models to estimate the customer load
reduction achieved from changes to building operation during DR events. The
reduction is defined as the estimated baseline value minus the actual (presumably
curtailed) value. For this analysis, we have used models to predict electric loads on DR
event days for sites that showed some significant demand reductions (these are itemized
in Piette et al 2007 and Piette et al 2005). Figure 5 shows the estimated load reductions
for each site and event day in the data set. For clarity, only a few representative BLP
models are shown. We include three models: BLP3n represents current practice in
California’s Demand Bidding program, BLP6 is an example of an explicit weather model,
and BLP3 is the preferred model for most of the facilities in our sample, which includes
a representative day approach with a same-day morning adjustment.

Load shed estimates are defined as the difference between the estimated average event
period hourly load and the measured (curtailed) event-period average hourly load. The
results are expressed in percentage terms (i.e., estimated shed load during an event
divided by the actual average hourly load). The data in Fig. 5 are sorted on the value of
the predicted shed for the BLP3 model (highest 3 of 10 with morning adjustment). We
exclude sites for which no BLP model predicts a shed of greater than 10%. Note that in
some cases the BLP model baseline values for a site are lower than the actual load; these
negative values are included in Figure 5. This leads to about 85 building-event day
records in the data set. From Figure 5, it is clear that the BLP3n model (no morning
adjustment) generally predicts lower values for the sheds than BLP3, i.e. the morning
adjustment raises the value of the predicted baseline and hence of the load reduction.
The load-temperature (BLP6) model results are scattered around the line defined by the
BLP3 results.
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Figure 5-5: Predictions of the shed load for event days in California 2005 and 2006
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It is also useful to compare the aggregate load reductions for our sample of buildings
predicted by the different baseline load profile models. The aggregate is defined as the
total over all buildings participating in the DR event on a given day. Figure 6 shows the
estimated total load reduction from buildings that participated in DR events in June and
July 2006. Eight to ten sites participated in these eleven events as part of PG&E’s critical
peak pricing tariff; events covered six hours (noon - 6 pm). Not all sites participated in
every event, but Figure 6 shows the sum of the participant load reductions for the
facilities listed in Tables 5 and 6. The average of the maximum hourly outside dry bulb
temperatures for each site is also shown; average peak temperatures ranged from the
mid-80’s °F to about 100 °F.

Our analysis of this sample of buildings that actually reduced load during DR events
suggests the following key results.

e First, for each DR event, the BLP3n model (highest 3 of previous 10 days with no
morning adjustment) estimates the lowest level of demand response and actually
shows a net negative response in 3 of the 11 events.

e Second, the negative load reductions with the BLP3n model often occur on the
hottest days.

The lowest negative aggregated load reduction took place on July 24" during a
severe heat wave in California where DR events were called for several days during
a second week of record high temperatures. While there may be some “participant
fatigue” in the load reductions from these 8 to 10 sites on those hot days, the other
three baseline models show 400 to 500 kW of reduction. Interviews with the facility
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managers at these sites indicated that they continued to implement their DR
strategies during this heat wave but their load reductions were not revealed by the
existing BLP approach used in the critical peak pricing tariff (i.e. BLP3n approach).

This also illustrates a problem that occurs with all averaging methods during multi-
day events. Because event days are excluded from the set of admissible days, an
averaging method will calculate the same unadjusted baseline for every event day if
there are events on consecutive days. The adjustment factors will differ on each day
during the event, but because of alterations to the building operation induced by the
event, the morning loads used to calculate the adjustment may no longer be
representative of the normal correlation of that building’s load with that day’s
weather. Explicit weather models do not have this problem.

Figure 6: Aggregate estimated load reduction by baseline model
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e Third, in general the three models that include a morning adjustment (BLP1,
BLP3, and BLP6) show load reductions that average at three to five times larger
than the CBL model without the morning adjustment (BLP3n).

This result illustrates the problem of using the BLP3n model for commercial buildings
during heat waves when the previous days in the baseline were not as hot as the DR
event days, and the morning adjustment factor is no longer representative of typical
load-weather correlations.

e Fourth, the results from this research on baseline models to assess DR load
impacts in commercial buildings stands in sharp contrast to previous work in
California by Buege et al (2006). Buege et al found that the 3 in 10 day baseline
model with no morning adjustment (BLP3n) produced the highest estimates of
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customer baseline and the largest savings estimates for the California demand
bidding and CPP tariffs. However, the load impacts from the sample of sites
that Buege et al evaluated were dominated by a relatively small number of large
industrial customers.'’ In contrast, our results suggest that for weather-sensitive
commercial/institutional customers in California, the 3 in 10 day baseline model
(BLP3n) produces estimates of the customer’s baseline that are biased on the low
side, which results in estimated load curtailments that are biased on the low side.

6. Conclusions and Suggestions for Further Work

We believe that the methods used in this study provide a statistically sound approach to
evaluating the performance of different BLP models for a building or set of buildings,
provided sufficient historical data are available. The results indicate in general that:

1. The BLP3n model currently used by California utilities to estimate load reductions in
several of their DR programs could be improved substantially if a morning
adjustment factor were applied for commercial and institutional buildings."

2. Applying a morning adjustment factor significantly reduces the bias and improves
the accuracy of all BLP models examined in our sample of buildings.

3. Characterization of building loads by variability and weather sensitivity is a useful
screening indicator that can be used to predict which types of BLP models will
perform well. We believe that DR program administrators can use the analytic
techniques described in this study to characterize and possibly screen participating
customer’s loads.

4. In our sample, BLP models that incorporate temperature (e.g. explicit weather
models) improve accuracy of the estimated baseline loads, and in cases where it
doesn’t improve the accuracy it has relatively little impact.

5. Explicit weather models (in particular, the 10-day version BLP6) are the only model
type that consistently avoids bias in the predicted loads in our sample of buildings.

10 We believe that large industrial customers account for most of the load impacts in the
California Demand Bidding and CPP evaluation study conducted by Buege et al, because of their
load shapes (i.e., high nighttime loads) [Buege et al 2006]. Industrial facilities may have
nighttime electric loads that are twenty to thirty percent lower, or even greater than daytime peak
loads. By contrast, the primarily commercial and institutional sector participants in our sample
of California buildings all have night time loads that are typically a factor of three lower than
peak hour electric loads.

11 DR baselines are used to estimate load reductions in both the California Demand Bidding
program and CPP tariff for resource planning and B/C screening analysis. The Demand Bidding
Program also uses a BPL method to determine payments to customers for their load reductions as
part of a settlement process.
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6. For customer accounts with highly variable loads, we found that no BLP model

produced satisfactory results, although averaging methods perform best in accuracy
(but not bias). These types of customers are difficult to characterize with standard
baseline load profile models that rely on historic loads and weather data. Because
the DR potential and performance in actual DR events for facilities with more
variable loads is harder to predict, measure, and evaluate, it may make more sense to
direct these facilities to enroll in DR programs with rules that require customers to
reduce load to a firm service level or guaranteed load drop (e.g.
interruptible/curtailable tariffs).

For buildings with low load variability all BLP models perform reasonably well in
accuracy.

Similarly, customers that are highly weather sensitive, should be given the option of
using BLP models that explicitly incorporate temperature in assessing their
performance during DR events.

Many DR programs apply similar DR BLP methods to both commercial and
industrial sector (Cé&I). The results of our study when combined with results of
other recent studies (Quantum 2004 and 2006, Buege et al., 2006) suggests that DR
program administrators should have flexibility and multiple options for suggesting
the most appropriate BLP method for specific types of customers. Key load
characteristics to be considered in BLP methods are weather-sensitivity (which is an
issue for many commercial and institution buildings but not common in industrial
process loads) and variability of loads.

Suggestions for Future Work

From our detailed examination of both the data and the model predictions, we can also

suggest some new approaches that are reasonably straightforward and could improve

the utility of a given model. Below is a list of specific suggestions for future work.

1.

For many sites the seasonal load-temperature model (BLP5) is either the best or
worst performer. From the data, it is fairly clear that a linear load-temperature
relationship is crude, and simply changing to a quadratic fitting function may
substantially improve the model performance.

Application of the methods developed here to a larger sample of buildings, covering
a wider geographical area, would be very useful in determining the robustness of the
results. The calculation methodologies are fully automated, so larger data sets could
be handled without significant additional effort.

The weather data provided by NOAA and CIMIS may occasionally contain
erroneous values, which produce outliers (large errors) in the model predictions.
We have not screened for weather data errors in our analysis, as we wanted to
evaluate the methods as they are currently used by DR program administrators in
California. =~ To screen for consistency in the weather data is technically
straightforward, but burdensome if each program participant has to do it on their
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own. Given the large number of state agencies that use weather data, and the
extensive infrastructure that already exists for collecting and maintaining it, it
should be feasible to provide DR program participants with access to weather
information that is periodically screened and updated. This would greatly facilitate
the use of explicit weather models.

4. Some buildings have predictable but non-standard schedules (for example, closed
Mondays, closed in summer etc.) Including this scheduling information in the
selection of the admissible set would reduce the variability in the load data, and
therefore improve BLP model performance. Technically, because the admissible day
selection process used by utilities and ISOs typically screens for weekends etc., it
should be simple to add additional building-specific criteria.

5. Our data set of proxy events is similar to but not the same as the actual event day set
in California, and in particular contains milder weather days than is typical for real
events. It may also be useful to investigate whether using a more restricted proxy
event set (e.g., the highest 10% of days in temperature instead of the highest 25%)
would significantly impact the results.!?
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