New inflation vs. chaotic inflation, higher degree potentials and the reconstruction program in light of WMAP3

PDF Version Also Available for Download.

Description

The cosmic microwave background power spectra are studied for different families of single field new and chaotic inflation models in the effective field theory approach to inflation. We implement a systematic expansion in 1/N(e), where N(e)~;;50 is the number of e-folds before the end of inflation. We study the dependence of the observables (n(s), r and dn(s)/dlnk) on the degree of the potential (2n) and confront them to the WMAP3 and large scale structure data: This shows in general that fourth degree potentials (n=2) provide the best fit to the data; the window of consistency with the WMAP3 and LSS ... continued below

Physical Description

19

Creation Information

Ho, Chiu Man; Boyanovsky, D.; de Vega, H.J.; Ho, C.M. & Sanchez, N.G. February 12, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The cosmic microwave background power spectra are studied for different families of single field new and chaotic inflation models in the effective field theory approach to inflation. We implement a systematic expansion in 1/N(e), where N(e)~;;50 is the number of e-folds before the end of inflation. We study the dependence of the observables (n(s), r and dn(s)/dlnk) on the degree of the potential (2n) and confront them to the WMAP3 and large scale structure data: This shows in general that fourth degree potentials (n=2) provide the best fit to the data; the window of consistency with the WMAP3 and LSS data narrows for growing n. New inflation yields a good fit to the r and n(s) data in a wide range of field and parameter space. Small field inflation yields r<0.16 while large field inflation yields r>0.16 (for N(e)=50). All members of the new inflation family predict a small but negative running -4(n+1) x 10-4<=dn(s)/dlnk<=-2 x 10-4. (The values of r, n(s), dn(s)/dlnk for arbitrary N(e) follow by a simple rescaling from the N(e)=50 values.) A reconstruction program is carried out suggesting quite generally that for n(s) consistent with the WMAP3 and LSS data and r<0.1 the symmetry breaking scale for new inflation is |phi0|~;;10MPl while the field scale at Hubble crossing is lbar phi(c) rbar~;;M(Pl). The family of chaotic models features r>=0.16 (for N(e)=50) and only a restricted subset of chaotic models are consistent with the combined WMAP3 bounds on r, n(s), dn(s)/dlnk with a narrow window in field amplitude around |phi(c)|~;;15M(Pl). We conclude that a measurement of r<0.16 (for N(e)=50) distinctly rules out a large class of chaotic scenarios and favors small field new inflationary models. As a general consequence, new inflation emerges more favored than chaotic inflation.

Physical Description

19

Subjects

Keywords

STI Subject Categories

Source

  • Journal Name: Physical Review D; Journal Volume: 75; Related Information: Journal Publication Date: 7 June 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-393E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 934478
  • Archival Resource Key: ark:/67531/metadc896852

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 12, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 30, 2016, 6:48 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ho, Chiu Man; Boyanovsky, D.; de Vega, H.J.; Ho, C.M. & Sanchez, N.G. New inflation vs. chaotic inflation, higher degree potentials and the reconstruction program in light of WMAP3, article, February 12, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc896852/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.