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ABSTRACT

Water and chemical transport from a point source within vadose zone sediments at Hanford were

examined with a leak test consisting of five 3800-liter aliquots of water released at 4.5 m depth

every week over a 4-week period.  The third aliquot contained bromide, D2O and 87Sr.

Movement of the tracers was monitored for 9 months by measuring pore water compositions of

samples from boreholes drilled 2-8 m from the injection point.  Graded sedimentary layers acting

as natural capillary barriers caused significant lateral spreading of the leak water.  D2O

concentrations >50% of the concentration in the tracer aliquot were detected at 9-11 m depth.

However, increased water contents, lower d18O values, and geophysical monitoring of moisture

changes at other depths signified high concentrations of leak fluids were added where D2O

concentrations were <3% above background, suggesting limited mixing between different

aliquots of the leak fluids.  Initially high bromide concentrations decreased more rapidly over

time than D2O, suggesting enhanced transport of bromide due to anion exclusion.  No significant

increase in 87Sr was detected in the sampled pore water, indicating strong retardation of Sr by the

sediments.  These results highlight some of the processes strongly affecting chemical transport in
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the vadose zone and demonstrate the significant separation of contaminant plumes that can

occur.

INTRODUCTION

Fluid flow and chemical transport in unsaturated sediments are complex processes that

are highly dependent on a wide range of factors.  Seasonal variations in temperature, the volume

and nature of precipitation determine the amount of water available for infiltration.  In near-

surface layers, evaporation and plant transpiration strongly affect whether the water is recycled

to the atmosphere or migrates into the deeper subsurface.  Once the water has passed through the

root zone, relatively minor variations in the grain-size of the matrix can lead to significant lateral

transport of the fluids (Stephens and Heerman, 1988; Kung, 1990a; 1990b).  Locally, infiltration

along high-permeability fracture zones can greatly accelerate water transport (Scanlon et al.,

1997).  For chemical transport, processes such as sorption, anion exclusion and colloidal

transport further complicate the picture (Gvirtzman and Gorelick, 1991; Brusseau, 1994).

Where the fluid source is localized in time and/or space, such as an accidental spill or leak

from a holding tank or pipe, transient flow fields may occur that differ significantly from normal

background conditions.  This is of special concern when the leak fluids contain chemical

contamination that poses a potential threat to groundwater resources.  Tracking fluid and

chemical movement under these conditions is a complicated issue that generally requires the use

of several complementary monitoring techniques to fully understand what is happening.

Geophysical techniques including neutron moderation, electrical resistance and crosswell radar

tomography can accurately detect changes in moisture content in the vadose zone (e.g., Hubbard

et al., 1997; Binley et al., 2002; Alumbaugh et al., 2003).  Tracers can be used to examine

transport of chemicals, but processes such as sorption and retardation may make it unclear how
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they interact with the matrix under unsaturated conditions.  Natural variations in the stable

hydrogen (dD) and oxygen (d18O) isotopic compositions of water can also be used to track water

in the vadose zone.  These isotope tracers are water with the same properties as those of natural

water and are not affected by the chemical and physical processes that affect other tracers

making them ideal tracers for water.  Where natural differences in the isotopic compositions of

the different fluids are not significant, it is possible to use water labeled with D2O and/or H2
18O

(Swenson, 1997; Anderson et al., 1997).

In this paper, we present data from a field experiment at the Hanford Site designed to

simulate the movement of water and chemicals released from a point source (e.g., a leaking

tank).  The primary purpose of this test was to identify the principal mechanisms controlling

vadose zone transport processes at the site (Ward and Gee, 2000).  D2O was added to the third of

five aliquots of water released into the subsurface in order to track the migration of the water and

examine its interaction with the other four aliquots of leak water and the ambient pore water.  In

addition to D2O, the tracer aliquot also contained bromide and other stable isotopic tracers (e.g.,

87Sr) to examine how chemical transport in the vadose zone is affected by interaction with the

sediments.

MATERIALS AND METHODS

Site Background

The Hanford Site is located in the Pasco Basin in south-central Washington, about 10 km

north of the confluence of the Columbia and Yakima rivers (Figure 1).  Between 1944 and 1986,

the site was used for production and refining of plutonium for nuclear weapons.  During this

time, chemical separation and refining of the plutonium was done in the 200 Areas.  Radioactive
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waste generated from these activities is stored in buried tanks in the 200 Areas, many of which

are known to have leaked in the past (late 1950s to late 1970s) when they contained large

volumes of drainable liquids.  At the present time, most of the drainable liquids have been

removed and no further leaking has been observed.  In addition to the tank fluids, large quantities

of low-level waste were discharged directly to the ground through infiltration ponds, open

trenches, and cribs (buried, open-bottomed containers).  As a result of these practices, there is

considerable radionuclide contamination in the vadose zone beneath the 200 Areas.  Some of this

contamination has reached the groundwater and low levels have been detected in the Columbia

River.  Understanding the pathways and mechanisms of movement of the waste fluids in the

vadose zone is critical for assessing the potential threat to human health and the environment

posed by these contaminants.

The general geology of the Hanford site consists of sedimentary deposits overlying tholeiitic

basalt flows of the Columbia River Basalt Group (Reidel et al., 1994; Slate, 1996; Reidel, 1998).

The uppermost sedimentary formation in the 200 Area plateau is the Hanford Formation.  The

thickness of the Hanford Formation in this area is up to 100 m.  It was deposited by cataclysmic

flood events during Pleistocene glacial periods.  The floods occurred when ice dams forming

massive glacial lakes (e.g., Lake Missoula in northern Idaho/Montana) were breached.  The age

of the Hanford Formation was believed to be restricted to the late Wisconsin (12 to 16 Ka), but

recent Th/U age determinations and paleomagnetic data suggest that it was deposited during

glacial periods throughout the Pleistocene (Bjornstad et al., 2001).

During flood events, the water would collect in the Pasco basin and slowly drain out through

the Wallula Gap (Allison, 1933).  This led to three basic types of sedimentary deposits: (1)

Gravel-rich units formed in high-energy channels; (2) Thick sequences of coarse- to fine-grained
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sands were deposited adjacent to the main channels; (3) Rhythmic graded beds consisting

primarily of silt with minor sand and ranging from 0.1 to 1 m thick were formed in slack-water

areas (Baker et al., 1991).  These different units have significantly different hydrologic properties

that strongly influence the transport of contaminants, especially in the vadose zone.

In May and June of 2000, a mock tank leak test was carried out at the 299-E24-111

Experimental Test Well Site (also know as the Sisson and Lu site) in the 200 East Area (Figure

1).  This time period was chosen because precipitation in the area is generally minimal during the

late spring and summer (no measurable precipitation occurred during the test), so natural

infiltration was not a factor.  The Sisson and Lu site was the location of a series of earlier tracer

tests using nitrate, chloride, barium, rubidium, calcium and the short-lived radionuclides 134Cs

and 85Sr conducted during the early 1980s (Sisson and Lu, 1984).  Figure 2 is a schematic map of

the site showing the locations of a set of steel-cased wells that were installed for those earlier

studies. Also shown on Figure 2 are the locations of the injection well, the sampling boreholes

drilled after the injection test, and wells installed for cross-well radar and seismic studies for this

test.

For this test, 5 aliquots of ~3800 liters (1000 gallons) each of water were leaked into the

subsurface at the Sisson and Lu site at weekly intervals, following the general protocol used for

the earlier sets of tracers studies done at the site during the 1980s (Sisson and Lu, 1984).  The

water was gravity-fed into the sediments at a depth of 4.5 m through a 15 cm inner diameter

cased borehole (taking approximately 8 hours to infiltrate into the sediments).  The third aliquot

of water contained 2 kg of D2O, 3 g NaH13CO3, 25 mg 87Sr, 1 mg 145Nd, 1 mg 179Hf, 3 mg 207Pb

and 1000 ppm of bromide.  Transport of the tracers with time was monitored by analyzing the
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isotopic compositions of the tracers and the bromide concentrations in pore water extracted from

core samples from the S boreholes.

The geology of the Sisson and Lu site consists of coarse- to fine-grained sands and silts from

the upper part of the Hanford Formation.  Last and Caldwell (2001) and Last et al. (2001)

identified six distinctive units in the upper 17 m of the sediments (the sequence where the tracer

tests were conducted) that could be correlated between boreholes.  The stratigraphic column in

Figure 3 summarizes this classification scheme.  The key features of the sediments are the two

strongly layered units at depths of 6-7 m (unit C) and 10-12 m (unit E).

Also plotted on Figure 3 are the moisture contents of the sediments measured for samples

from a borehole drilled before the leak test was conducted (Last and Caldwell, 2001).  In the

coarser, poorly laminated units, the water contents are generally low (~2 wt.% water).  In the two

layered units (C and E), the moisture contents of the sediments are higher (to >8 wt.% water),

especially in the bottom meter of the lower layered unit.  No measurements of the hydrogen and

oxygen isotope ratios of the pore water in the pre-test borehole were done.  However, the

isotopic compositions of pore water samples from boreholes from several uncontaminated areas

in the 200 Areas have been analyzed (DePaolo et al., 2004).  In most cases, the oxygen isotopic

compositions of the pore waters have been shifted to higher values relative to mean precipitation

due to evaporation during infiltration.  The magnitude of the isotopic shift varies, but is generally

2‰ to 4‰ for oxygen isotopes.  The d18O values of pore water from the Sisson and Lu site

measured on core samples that were not affected by the leak fluids were similar to those from

other vadose zone cores (d18O = -14 to -16), suggesting that the background d18O values at the

site were probably in the same range as other vadose zone pore waters at Hanford.
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Core Sampling

The S-2 and S-3 cores were drilled with a 25 cm (10 in) outer diameter hollow stem auger.

Core samples were collected by removing the bit on the auger and driving a 7.6 cm (3 in) inner

diameter, 0.6 m (2 ft) long split spoon sampler into the undisturbed sediments beneath the auger.

The split spoon sampler included four 15 cm (6 in) Lexan® liners.  After the sampler was

retrieved, the Lexan® liners were removed from the sampler and capped at both ends.  The auger

bit was replaced and advanced to the next interval to be sampled.

The later tracer cores (S-5, S-7 and S-8) were drilled using a cone penetrometer and a

wireline sampling tool (Last et al., 2001).  For each borehole, the cone penetrometer was initially

pushed to 4.5 m depth.  From that depth on, the cone was removed and replaced with the

sampling unit (2.5 cm diameter and 30 cm in length).  The cone penetrometer with the sampling

unit was then pushed 30 cm at a time and retrieved.  The sample was removed from the sampler

and immediately placed in a sealed plastic bag, placed on ice and transported to the laboratory

for sub-sampling.

The core samples were kept sealed and refrigerated until they could be sub-sampled.  For the

samples collected in Lexan sleeves, the sleeves and caps were cut longitudinally and the core

split down the middle.  To minimize evaporation, samples for measurements of the isotopic

compositions of the pore waters were collected from the central part of the sampled interval

immediately after the core was split open.  For the samples collected with the cone penetrometer,

the bags were opened and immediately sampled.  From both sets of samples, approximately 200

g of material for isotopic analyses was placed into a wide-mouthed, plastic sample bottle and

sealed.
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Analytical Methods

The pore water in the samples collected for isotope analyses was vacuum-distilled from the

samples at 100°C at the Center for Isotope Geochemistry (CIG) at the E. O. Lawrence Berkeley

National Laboratory (LBNL).  Water contents were determined by weighing the samples before

and after the water was extracted and dividing the difference by the weight of the dry sample.

The water contents for the samples used for bromide analyses were determined at the Pacific

Northwest National Laboratory (PNNL).  For those samples, approximately 100 g of the wet

sample was placed in a pan of known weight and dried in an oven at 105°C for 24 hour (Last and

Caldwell, 2001; Last et al., 2001).

The water contents determined by the vacuum-distillation method were in very good

agreement with those determined for the oven-dried samples.  Where the water contents of splits

of the same sample were measured by both methods, the results were generally within ±10% of

each other.  Most of this variability is believed to be the result of the heterogeneity of the

samples.  The average water contents measured by both methods for samples from S-5 and S-7

(the two cores where splits of the same samples were analyzed) were within 0.1% of each other.

This is critical for the isotope analyses, as it has been shown that yields of less than 98% of the

total water in a sample can lead to significant shifts in the isotopic composition of the water

(Araguás-Araguás et al., 1995).

The stable isotope compositions of the water samples were analyzed at the Center for Isotope

Geochemistry (CIG) at LBNL.  The hydrogen isotope ratios (dD) of the waters were analyzed

using the method of Venneman and O’Neil (1993).  3 ml water samples were injected into

evacuated Pyrex® tubes containing approximately 50 mg of zinc metal.  The water was reduced

to H2 gas by baking the tubes for 20 minutes at 500°C.  dD values of the H2 gas were analyzed
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using the VG Instruments Prism Series II isotope ratio mass spectrometer (Prism) at CIG.  The

oxygen isotope ratios (d18O) of the samples were analyzed using an Isoprep automated CO2-H2O

equilibration system interfaced to the Prism.  The isotope ratios are expressed as per mil

deviations from an internationally accepted standard (V-SMOW).  For hydrogen, duplicate

analyses of the dD values of the waters were generally within ±2‰.  For oxygen, the precision of

the measurements is ±0.1‰.

Strontium isotope compositions (87Sr/86Sr) were measured for de-ionized water leaches of the

dried sediment remaining after the pore water was removed by vacuum distillation method.  30 g

of dried sediment were combined with 30 ml of 18MW de-ionized water, shaken for 90 minutes

and allowed to stand for 24 hours. The strontium contained in the rinse water is assumed to be

that which was originally dissolved in the pore fluid, plus any readily exchangeable strontium on

the solid phases.  The dissolved strontium was extracted from the rinse water using Eichrom Sr-

Spec resin in 0.250 ml Teflon columns.  Yields for the chemical separations were about 98%.

Total procedural blanks were approximately 5 ng Sr, corresponding to <0.2% of the total amount

of Sr extracted.  Given the small blank contribution relative to the total amount of Sr analyzed,

no blank corrections were applied.  Sr isotope ratios were measured on a VG354 multi-collector

thermal ionization mass spectrometer in the CIG laboratories on the UC Berkeley campus.  The

average 87Sr/86Sr value for NBS 987 during the analyses was 0.710286 ± 0.00002 (2s).

RESULTS

The water contents, hydrogen, oxygen and strontium isotope compositions of the pore waters

extracted from the tracer cores are given in Table 1.  Limited analyses were done for the other
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isotopic tracers added to the leak fluids (NaH13CO3, 
145Nd, 179Hf, and 207Pb), but the results were

inconclusive and are not discussed here.

The enrichment of the deuterium content of the pore water relative to the tracer solution

(C/C0) is also given in Table 1.  This was calculated by converting the measured dD values for

the samples into D/H ratios using the following formula derived from the definition of delta

values:

(D/H)sample = [(dD)sample/1000 + 1] x (D/H)VSMOW (1)

where (D/H)VSMOW is taken as 0.000156.  The concentration of deuterium (in ppm) in the water

was then determined from (D/H)sample.  The C/C0 values for the samples were calculated using

the following formula:

C/C0 = [(ppm D)sample - (ppm D)background]/[(ppm D)tracer - (ppm D)background] (2)

with a background concentration of 136.36 ppm D (corresponding to a dD value of -126‰; the

average hydrogen isotope composition we have measured for pore water samples extracted from

fine-grained units in the Hanford Formation) and a tracer concentration of 574.44 ppm D (from

an average dD value of 2680‰ determined from measurements of 4 samples of the tracer

solution).  Given the uncertainties in the data collection and the initial isotopic compositions of

the pore water and the tracer solution, the maximum error in the C/C0 values in Table 1 is

estimated to be <0.01.

Boreholes S-2 and S-3

Sampling boreholes S-2 and S-3 were both drilled approximately 2 m down gradient from the

injection well, 21 and 25 days, respectively, after the tracer solution was leaked into the
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subsurface (8 and 12 days after the final aliquot of water was released).  The water contents,

C/Co for deuterium and bromide in the pore water, and the d18O compositions of the pore water

are all plotted versus depth on Figure 4.  The bromide concentrations and the moisture contents

for the bromide samples are from Last and Caldwell (2001).  Also shown on Figure 4 are the

approximate depths for the different units identified in Figure 3.

The highest water contents measured from both cores were in samples from the lower

sections of units C and E, the two fine-grained units.  However, these moisture contents are

comparable to the water contents measured in S-1, the pre-injection core (Figure 3).  The most

significant increases in the water contents of the sediments were observed between 7 and 11 m

depth (unit D and the upper part of unit E).  The average water concentration in this interval

more than doubled from 2.3 wt.% in S-1 to 5.1 wt.% in the S-2 and 5.5 wt. % in S-3.  Above and

below this interval, the water contents were essentially identical to those measured in S-1.  These

findings are similar to the results of neutron probe (Ward et al., 2000) and cross-well radar

imaging (Majer et al., 2000) studies of the site conducted before and after the infiltration tests.

Both of these studies clearly showed major increases in the moisture content of the sediments

between 7 and 11 m with only minor increases in moisture beneath 12 m depth, even within Unit

E, the lower, finer-grained, layered unit.

The C/C0 values measured for deuterium and bromide are plotted together in the central

panels of Figure 4.  High concentrations of both tracers were detected at 9 to 11 m depth in both

cores, corresponding to the lower part of unit D and the upper part of unit E.  There were also

smaller peaks in the upper part of unit C (~6 m depth) in both cores.  In addition, there was a

single sample with a high concentration of deuterium (C/C0 = 0.31) at 13 m depth in borehole S-
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2.  There was a slight enrichment in bromide (~3%) in a sample collected just below this sample,

but nothing nearly as high, suggesting that this represents an isolated fluid pathway.

The deuterium and bromide data clearly indicate that most of the tracer solution was

spreading out laterally between the two layered units (units C and E).  Peak tracer concentrations

above the lower layered unit (E) reached greater than 50% of the initial concentration in the

tracer solution, with C/C0 values for deuterium generally higher than for bromide.  Given that the

water content approximately doubled between the two layers, this implies that all of the added

water at this depth was from the tracer aliquot.  This is notable because the tracer solution

represented only 20% of the total water released during the experiment.  Furthermore, there were

low concentrations of both tracers in the zone between 7 and 9 m depth where increased moisture

contents were also observed.

The leak fluids also shifted the d18O values of the pore waters.  Although the d18O values of

the leak fluids were not intentionally altered, there was a large enough difference between the

leak water (Columbia river water) and the pore waters (precipitation shifted by evaporation

during infiltration) to detect the leak fluids.  Based on the d18O values of pore water samples

from similar units in other cores and the d18O values of the pore water from unaffected intervals

of these cores (e.g., from unit B, the lower part of unit E and unit F), the background d18O values

of the pore water are estimated to be between -14.5 and -15.5‰, whereas the leak waters were

approximately -17.5‰.  Although this signal is not nearly as pronounced as the deuterium and

bromide signals, it is significant enough to identify the presence of the leak fluids in the

subsurface, and allows us to compare the distribution of the tracers, which were only added to

the third leak aliquot, to the distribution of the total amount of leaked water.
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The d18O values of the pore water samples from both boreholes are plotted on right-hand side

of Figure 4.  Also shown is an outline of the deuterium data for the same samples.  In general the

results were similar, but there were some notable differences.  Based on the d18O data, all of the

pore water between 7 and 11 m depth contained high proportions of the leak water (up to 70%),

including areas that contained only minor enrichment of deuterium or bromide.  This indicates

that there was limited mixing between the different leak aliquots in the subsurface.  The water

from the tracer aliquot spread laterally mainly near the boundary between stratigraphic units D

and E, whereas the water from all of the leaked aliquots is more evenly distributed within units

C, D and E.

The 87Sr/86Sr values measured for pore water samples from S-2 and S-3 were between 0.7139

and 0.7153 (except for one sample from the bottom S-2 which had a value of 0.7118).  One

sample from Unit D in borehole S-1 had 87Sr/86Sr of 0.7140, which matches well with strontium

isotope ratios reported by Maher et al. (2003) at similar depths in the Hanford Formation.  The

87Sr/86Sr of the tracer solution was measured at 1.300.  For Sr concentrations of 1.6 ppm in the

pore water and 100 ppb in the tracer solution and a C/Co of 0.5, the 87Sr/86Sr ratio of the pore

water in the peak deuterium samples in S-2 and S-3 should be about 0.753 if strontium was

acting conservatively.  However, the 87Sr/86Sr ratios in both cores were very close to background,

indicating strong retardation of strontium in the sediments.

Borehole S-5

A third borehole, S-5, was drilled at about 2 m from the injection hole on September 11,

2000 (88 days after the tracer solution was released).  The data collected for S-5 are plotted on

Figure 5.  The average water content between 7 and 11 m depth in the core dropped to 4.1 wt.%
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versus greater than 5 wt.% in the S-2 and S-3 cores, but was still significantly higher than before

the test (based on changes in gravimetric water contents determined from bulk density estimates

and volumetric water contents determined from neutron probe logging).  This decrease is greater

in the upper part of this zone (corresponding to the upper part of unit D) than in the lower part of

the zone (corresponding to the lower part of unit D and the upper part of unit E).

The relative concentrations of deuterium and bromide in the S-5 pore water samples are

plotted versus depth in the center part of Figure 5.  The locations of the tracer peaks are similar

to what was observed in boreholes S-2 and S-3.  However, the concentrations of the tracers are

lower.  The peak deuterium concentration in S-5 is only 34% of the concentration in the tracer

cocktail.  Furthermore, the bromide concentrations in S-5 are significantly lower than the

deuterium concentrations (less than half on average).

The d18O data for the S-5 pore waters are plotted on the right-hand side of Figure 5.  As with

the S-2 and S-3 cores, the d18O values of the pore water within the high water content zone at the

base of unit D have been affected by the leak waters.  In addition, the d18O values of the pore

water in the upper part of the core (above the 7 m high water content zone) are also shifted.

There is one deep sample (at 16.6 m) with a shifted d18O value and relatively high water content

(4.5 wt. %).  This sample suggests that water from some of the unlabeled leak aliquots may have

penetrated to 16 m depth, but water from the tracer aliquot did not.

The strontium isotope ratios in the samples with elevated deuterium and bromide in this core

are slightly enriched relative to the earlier samples (averaging 0.7154).  This is much lower than

would be expected (>0.73) based on the level of deuterium enrichment, but could be an

indication that there was limited transport of strontium during the infiltration experiments.
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Boreholes S-7 and S-8

 The final two boreholes that were analyzed, S-7 and S-8, were drilled on 3/23/01, 281 days

after injection of the tracer solution.  S-7 was drilled about 3 m from the injection well and S-8

was drilled approximately 8 m from the injection well (Figure 2).  The data from the S-7 samples

are plotted on Figure 7 (including the bromide moisture contents and concentrations from Last et

al., 2001).  The water contents between 7 and 11 m depth average 3.4 wt. %, which is elevated

relative to the pre-injection well (S-1), but significantly less than the concentrations in S-2, S-3

and S-5.

The bromide and deuterium concentrations in S-7 peaked at about the same depth as in the

earlier boreholes (at the top of unit E, bottom of unit D).  The relative concentration of deuterium

in the highest sample (C/C0 = 0.25) had decreased relative to the peak concentration measured in

S-5 (C/C0 = 0.34).  The highest bromide concentration (C/C0 = 0.08) was found in the same

sample, but it is less than a third of the deuterium concentration.  The strontium isotope ratios of

seven pore water samples from this core were also measured and were in the same range as

background.

Pore water samples were extracted from only 3 samples from the S-8 core.  However, the

peak concentration of deuterium was at the same depth (11.4 m) as the peak bromide

concentration (for which 20 samples were analyzed by Last et al., 2001).  C/C0 for deuterium in

that sample was 0.06, or ~25% of the peak concentration in S-7.  C/C0 for bromide in the same

sample was 0.08, higher than the value measured for deuterium.  Furthermore, despite the greater

distance from the injection point for S-8, the bromide concentration was essentially equal to the

relative concentration measured in S-7.
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DISCUSSION

The results of the leak tests illustrate several important features of rapid infiltration of water

coming from a point source within vadose zone sediments at Hanford (e.g., a tank leak).  The

geophysical monitoring of the infiltration tests very clearly demonstrated that most of the water

released during the experiment spread out laterally between 4.5 m (the bottom of the injection

well) and 11 m depth (Ward et al., 2000; Majer et al., 2000; Kowalski et al., 2005).  Numerical

simulations of the leak tests also predict significant lateral transport in the vadose zone (Ye et al.,

2005; Ward et al., 2006).  The tracer test data presented in this paper confirm this result and

highlight several other important aspects of water movement and chemical transport in

unsaturated, layered sediments.

Stratified Water Flow in the Unsaturated Zone

The tracer data provide strong evidence that the different aliquots of leak fluids did not mix

significantly as they moved laterally through the unsaturated sediments.  In all four cores drilled

at 2 to 3 m from the injection well (S-2, S-3, S-5, S-7), the moisture contents of the samples from

between 6 and 11 m depth increased significantly relative to the moisture contents of the samples

from the same interval in S-1, the pre-injection core, due to the addition of water from the leak

aliquots.  This is confirmed by both the geophysical data and the decrease in the d18O values of

the pore water samples.  However, the zone of increased bromide and deuterium was more

limited in extent, with the most highly enriched samples between 9 and 10 m depth.

Furthermore, the peak C/C0 values for deuterium in S-2 and S-3 were 0.53 and 0.62,

respectively.  Given that the moisture content of these samples was approximately double the
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pre-test concentrations in this interval, this indicates that most, if not all, of the added pore water

at this depth was derived from the tracer aliquot and not the other four leak aliquots.

The average and peak C/C0 values for deuterium in all four of the boreholes are plotted

versus the fraction of water added to the sediments on Figure 7.  The fraction of “added water”,

Fadded water, was determined using the following formula:

  

† 

Fadded water=
qpeakD- qinitial( )

qpeakD

(5)

where qpeakD is the average moisture content in the interval containing the significantly elevated

deuterium and bromide concentrations in each of the tracer cores and qinitial is the average

moisture content between 9 and 11 m depth in S-1 (2.46%).  The upper diagonal line across the

figure has a slope of one and represents the position where a sample would plot if all of the

added water in the sample were derived from the tracer aliquot.  The lower line has a slope of 0.2

and is where the samples would plot if the added water contained 20% tracer solution (the

fraction of the total leak water represented by the tracer aliquot).  For all cases, at least 50% of

the added water in this interval was derived from the tracer aliquot, especially in S-2 and S-3, the

two cores drilled within two weeks after the final release of water.  It is likely that the leak fluids

displaced some of the pore water originally in the sediments, meaning that there is a greater

fraction of added water.  However, even if all of the original pore water was displaced, the tracer

concentrations were still much higher than 20% in most cases.  Conversely, if a similar analysis

is done for samples with significant added water from above this interval, the C/C0 values for

deuterium fall well below the slope 0.2 line.  There was clearly limited mixing between the

different aliquots of fluid released during the experiment, leading to strong vertical stratification

of the fluids that persisted until 9 months after the leak test.
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The implication of this result is that as the leak fluids filled the coarser-grained sedimentary

layers, the unsaturated hydraulic conductivity of the layers would increase to the point where the

fluid would begin to spread laterally.  As different aliquots of the leak fluids were introduced,

this occurred at different levels in the sediments, causing the waters from the different aliquots to

spread along different layers in the sediments.  This could result in different batches of waste

fluids released from the same tank, infiltration pond or crib following different pathways through

the unsaturated zone, eventually reaching the groundwater at different points.

Differential Transport of Deuterium and Bromide

The observed movements of deuterium and bromide during this experiment were

significantly different.  In almost every case in the cores drilled within 2-3 m of the injection

well, C/C0 for deuterium was higher than C/C0 for bromide.  Furthermore, this relative difference

increased with time.  Figure 8 is a plot of the ratio of the relative concentrations of deuterium to

bromide in the same zones of elevated tracer concentrations used for Figure 7.  In S-2 and S-3,

the average deuterium concentrations were approximately 1.5 times the average bromide

concentrations.  In S-5, that ratio of deuterium to bromide increased to greater than 2, and in S-7,

drilled 9 months after the test, the ratio was greater than 3.5.  Conversely, in S-8, which was

drilled at the same time as S-7, but almost three times as far from the injection well, the ratio of

deuterium to bromide was less than 1.

Even with the limited data, it is clear that the bromide is moving through the unsaturated

sediments differently than the deuterium.  Deuterium effectively represents the movement of the

water and the peak bromide concentrations dissipated more rapidly than the peak deuterium

concentrations.  This implies that the spread of the bromide was limited to the faster flow paths
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through the sediments.  The most likely explanation for this is the process of anion exclusion

(Gvirtzman and Gorelick, 1991).  The negative charges on the surfaces of clay particles in the

sediments repel the bromide anions in the tracer solution, preventing them from entering the

narrower pore spaces that are accessible to the water.  Since the bromide anions are restricted to

the larger pore spaces where the fluid velocity is higher, the peak bromide concentrations will

move through the sediments faster than the deuterium (although the initial breakthrough for both

should remain the same).

If anion exclusion is an important process associated with chemical transport in the vadose

zone, it could strongly effect of the appearance of different contaminants in the groundwater.

99Tc (as pertechnetate), nitrate and tritium are widespread contaminants and major components

of many of the tank fluids.  Anion exclusion could cause them to reach the groundwater sooner

and/or in higher concentrations than some of the other less mobile contaminant species (e.g.,

uranium, 90Sr, 137Cs), acting as a precursor to the arrival of high-level groundwater waste plumes.

Strontium Mobility

There was limited evidence that the 87Sr in the tracer solution reached any of the boreholes

sampled.  The Sr concentration in the tracer solution was approximately 100 ppb with 87Sr/86Sr

of 1.3.  For the other aliquots of leak water the concentration is also 100 ppb, but the 87Sr/86Sr is

about 0.714.  The average pore water Sr concentration in vadose zone sediments of the Hanford

formation is about 1600 ppb with 87Sr/86Sr of 0.714 (Maher et al., 2003).  With these numbers,

we can calculate the expected 87Sr/86Sr for the pore waters after the test for a range of Kd values.

Those have been plotted on Figure 9 versus C/C0 for the tracer solution.  Also plotted are the

strontium isotope ratios for the pore water samples versus C/C0 for deuterium in the pore water
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from the same sample.  Given the uncertainties in the initial 87Sr/86Sr of the background (pre-test)

pore water (which probably ranged between 0.714 to 0.715), the lack of a discernible

breakthrough for the 87Sr in the tracer aliquot is consistent with Kd values greater than 10.

Column studies with Hanford sediments conducted by Um and Serne (2005) obtained Kd values

for 90Sr of about 18 ml/g for coarse-grained Hanford sands.  Kd values for finer sands from

Hanford formation (such as those in this study area) are estimated to be 40 to 50 ml/g (R.J.

Serne, personal communication).

CONCLUSIONS

The results of the infiltration test demonstrate some of the complexity of chemical transport

in the Hanford vadose zone.  The layering in the sediments at the test site caused extensive

lateral transport of leak fluids.  This was further complicated by vertical stratification of flow

with time, segregating the different leak aliquots at different levels within the active flow

horizon.  Chemical transport at the site was also strongly affected by interaction with the

sediments.  Anion exclusion led to accelerated transport of bromide relative to the bulk fluid

(represented by deuterium).  Conversely, sorption and exchange of dissolved strontium with the

sediments strongly retarded its transport.

The implications of these results for contaminant transport at Hanford are significant.  It is

possible that contaminated water from a point source (e.g., leaking tank, crib) could travel

substantial horizontal distances before infiltrating deeper into the sediments.  How far is not clear

(certainly on the order of tens of meters) and will depend on the types of sediments and the

amount and continuity of any layering.  In addition, the chemical composition of the waste fluids

could be greatly altered by interaction with the sediments, separating the different chemical
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components from each other.  This makes it difficult to predict when and if the different

contaminants will reach the groundwater.
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Figure captions

Figure 1.  Map of the Hanford site showing the location of the E24-111 Experimental Test Well

(“Sisson and Lu”) Site.

Figure 2.  Map of the Sisson and Lu Site showing the position of the injection well and

monitoring wells used for the infiltration tests discussed in this paper.

Figure 3.  Stratigraphic column for the Sisson and Lu site and moisture contents measured for

samples from the S-1 (pre-injection test) core (Last and Caldwell, 2001).

Figure 4.  Plots of the moisture contents in the S-2 (drilled 21 days after tracer injection) and S-3

(drilled 25 days after tracer injection) cores, relative concentrations of bromideand deuterium,

and the d18O values of pore waters in the pore waters plotted versus depth.  The dashed line on

the d18O plots represents the deuterium concentrations for comparison.  The moisture content

data and bromide concentrations are from (Last and Caldwell, 2001).

Figure 5. Plots of the moisture contents in the S-5 core (drilled 88 days after tracer injection),

relative concentrations of bromide and deuterium, and the d18O values of pore waters in the pore

waters plotted versus depth.  The dashed line on the d18O plot represents the deuterium

concentrations for comparison.  The moisture content data and bromide concentrations are from

(Last et al., 2001).

Figure 6.  Plots of the moisture contents in the S-7 core (drilled 281 days after tracer injection),

relative concentrations of bromide and deuterium, and the d18O values of pore waters in the pore

waters plotted versus depth.  The dashed line on the d18O plot represents the deuterium

concentrations for comparison.  The moisture content data and bromide concentrations are from

(Last et al., 2001).
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Figure 7. Average fraction of added water plotted against average and peak C/Co for deuterium

in core samples with elevated deuterium concentrations.  Also plotted are 1:1 and 1:5 mixing

lines.

Figure 8. Ratio of average relative concentrations of deuterium to bromide plotted versus time

for samples with elevated tracer concentration from all 5 sampling wells.

Figure 9.  Plot of strontium isotope ratios versus C/C0 deuterium for pore water samples.  Also

plotted are calculated strontium isotope ratios at varying strontium retardation factors.
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Table 1.  Isotope data for the VZTFS core samples.

Interval (ft) Depth (m) % Water dD (‰) C/Co D d18O (‰) 87Sr/86Sr

S-2 Core
14.0-14.5 4.3 2.6 -123 0.00 -14.7
18.5-19.0 5.7 4.0 323 0.16 -15.4 0.7147
22.5-23.0 6.9 6.2 -112 0.01 -15.8 0.7141
26.5-27.0 8.2 5.4 -28 0.04 -16.3 0.7153
30.5-31.0 9.4 7.0 513 0.23 -16.4
32.5-33.0 10.0 4.8 1356 0.53 -16.3 0.7142
38.0-38.5 11.7 8.3 -112 0.01 -14.9 0.7139
43.0-43.5 13.2 4.3 749 0.31 -15.7 0.7153
48.5-49.0 14.9 3.3 -124 0.00 -15.2
52.5-53.0 16.1 2.8 -119 0.00 -15.2 0.7118

S-3 Core
15.5-16.0 4.8 2.0 -119 0.00 -14.8
18.5-19.0 5.7 2.4 -123 0.00 -15.2
21.5-22.0 6.6 5.0 -75 0.02 -16.4 0.7141
25.0-25.5 7.7 3.8 -85 0.02 -16.7 0.7144
29.5-30.0 9.1 4.8 1602 0.62 -16.5 0.7143
35.5-36.0 10.9 4.1 887 0.36 -16.5 0.7140
37.5-38.0 11.5 6.3 -30 0.03 -16.4
39.5-40.0 12.1 6.4 -123 0.00 -14.8 0.7138
48.5-49.0 14.9 2.5 -122 0.00 -15.5
52.0-52.5 15.9 2.4 -124 0.00 -15.2 0.7144
56.0-56.5 17.1 4.3 -125 0.00 -15.0

S-5 Core
19.0-20.0 5.9 4.8 -39 0.03 -16.4 0.7153
21.0-22.0 6.6 4.2 -123 0.00 -16.1
23.0-24.0 7.2 7.6 267 0.14 -15.9 0.7158
28.0-29.0 8.7 3.4 679 0.29 -16.3
30.0-31.0 9.3 4.5 817 0.34 -16.2 0.7154
34.0-35.0 10.5 5.3 105 0.08 -16.0 0.7150
37.0-38.0 11.4 7.5 -124 0.00 -15.0 0.7144
40.0-41.0 12.3 2.8 -129 0.00 -15.3 0.7148
43.0-44.0 13.3 2.8 -129 0.00 -14.9
48.0-49.0 14.8 2.6 -131 0.00 -14.9
51.0-52.0 15.7 3.5 -128 0.00 -15.3
54.0-55.0 16.6 4.5 -125 0.00 -15.8
57.0-58.0 17.5 2.8 -131 0.00 -14.6
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Table 1.  Continued

Depth (ft) Depth (m) % Water dD (‰) C/Co D d18O (‰) 87Sr/86Sr

S-7 Core
19.0-20.0 5.9 4.2 -69 0.02 -17.0 0.7148
26.0-27.0 8.1 3.0 96 0.08 -17.7 0.7143
29.0-30.0 9.0 3.3 568 0.25 -17.1 0.7141
33.0-34.0 10.2 5.3 244 0.13 -16.3 0.7145
36.0-37.0 11.1 7.1 -101 0.01 -15.4
37.0-38.0 11.4 6.0 -123 0.00 -15.3 0.7144
44.0-45.0 13.6 3.1 -132 0.00 -15.4 0.7142
49.0-50.0 15.1 3.6 -132 0.00 -15.3 0.7145
54.0-55.0 16.6 2.9 -134 0.00 -15.3

S-8 Core
20.0-21.0 6.2 4.3 -121 0.00 -13.9
37.0-38.0 11.4 9.6 45 0.06 -14.6
43.0-44.0 13.3 3.1 -106 0.01 -16.0


