FRACTURE BEHAVIOR OF ALLOY 600, ALLOY 690, EN82H WELDS AND EN52 WELDS IN WATER

W. J. Mills, C. M. Brown and M. G. Burke

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
ABSTRACT

The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting Jc rising load tests in air and hydrogenated water and cooldown testing in water under constant-displacement conditions. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54°C water with 150 cc H2/kg H2O, Jc values were reduced by 70% to 95%, relative to their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature crack propagation (LTCP) is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on LTCP were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to LTCP as the toughness in 54°C water remained high and a microvoid coalescence mechanism was operative in both air and water.

Cooldown testing of EN82H welds under constant-displacement conditions was performed to determine if LTCP data from rising load Jc/Kpmax tests predict the onset of LTCP for other load paths. In these tests, bolt-loaded CT specimens were subjected to 288°C water for up to 1 week, cooled to 54°C and held in 54°C hydrogenated water for 1 week. This cycle was repeated up to 6 times. For two of the three welds tested, critical Kc levels for LTCP under constant-displacement conditions were much higher than rising load Kpmax values. Bolt-loaded specimens from a third weld were found to exhibit LTCP at Kc levels comparable to Kpmax values. Although work to date indicates that rising load tests either accurately or conservatively predict the critical conditions for LTCP under constant-displacement conditions, the potential for LTCP at Kc levels less than Kpmax has not been fully evaluated.

Annealing at 1093°C reduces or eliminates LTCP susceptibility. The microstructure and mechanical properties for susceptible and nonsusceptible EN82H welds were characterized to identify the key material parameters responsible for LTCP in the as-welded condition. The key microstructural feature associated with LTCP appears to be fine Nb- and Ti-rich carbonitrides decorating grain boundaries. In addition, the higher yield strength for the as-fabricated weld also promotes LTCP because it increases stresses and local hydrogen concentrations ahead of a crack.
FRACTURE BEHAVIOR OF ALLOY 600, ALLOY 690, EN82H WELDS AND EN52 WELDS IN WATER

Objective

Characterize the fracture behavior of Alloy 600, Alloy 690, EN82H and EN52 welds in water.

Expected failure process:
Crack initiation and propagation due to
 high temperature SCC or corrosion fatigue.
Stable or unstable tearing when crack depth reaches a critical size,
 Controlled by fracture toughness in water.

Parameters studied:
 Temperature
 Hydrogen content of water
 Loading rate
 Natural welding defects
 As-machined notches
 Load path
 Heat Treatment
CONCLUSIONS

High temperature (>150°C) water:
Fracture toughness of wrought and weld metals is exceptionally high in air and high temperature water.
Fracture is not a primary concern.

Low temperature water:
In low temperature water, EN82H, EN52 and Alloy 690 experience a severe degradation in fracture resistance.

Degradation in low temperature fracture resistance is associated with transition from ductile dimple rupture to intergranular cracking.

LTCP in water is due to hydrogen embrittlement mechanism.

Cracking resistance is recovered at loading rates above 26,000 MPa\(\sqrt{\text{m/h}}\) (300 mm/h), insufficient time to embrittle grain boundaries ahead of crack.

LTCP does not initiate at as-machined notches, but can initiate at sharp weld defects.

Alloy 600 is not susceptible to LTCP, even after 10-16% cold work.

Cooldown testing - EN82H under constant displacement conditions:
- \(K_{\text{Pmax}}\) conservatively predicted critical \(K_i\) level for LTCP in two welds.
- \(K_i\) for LTCP in a third weld was consistent with rising load \(K_{\text{Pmax}}\).

Annealing at 1093°C reduces or eliminates LTCP susceptibility.

LTCP susceptibility in welds is correlated with the presence of fine Nb- & Ti-rich carbonitrides decorating grain boundaries.
EXPERIMENTAL PROCEDURES

Materials:
- Alloy 600 – 2 heats (as-received & cold worked)
- Alloy 690 – 2 heats
- EN52 – 3 GTA welds (2 manufacturers: ‘A’, ‘B’)

Materials were tested in:
- as-received or as-welded condition &
- annealed at 1093°C & furnace cooled condition.

Test Environments:
- 24°-338°C Air
- 24°-338°C Water:
 - pH of 10.1 to 10.3
 - 150, 50 & 15 cc H₂/kg H₂O
 - 3-17 ppb O₂

J_{IC} Fracture Toughness Testing
 ASTM E1737-96 & J_{IC} normalization procedure\(^{(5)}\)

0.6T CT Specimens (20% side groove)
 Precracked,
 As-notched, Weld root defects.

K_{Pmax} Testing of Hydrogen-Precharged (45-70 ppm) CT Specimens
 Precharged in 99.999% H₂ at 360°C for 6 weeks.

Cooldown Testing Under Constant Displacement Conditions
 Bolt-loaded 0.6T CT cooled from 288°C to 54°C.

Characterization of Microstructure:
 Analytical Electron Microscopy (AEM)\(^{(6)}\)
 Auger Electron Spectroscopy (AES)
WELD SPECIMEN ORIENTATION

Longitudinal CT

Transverse CT

Transverse CT
Calculation of J

\[J_{PL} = \frac{\eta A_{PL}}{B_N b} \]

\[J = J_{PL} + \frac{K^2(1 - \nu^2)}{E} \]
Schematic Diagram of J-R Curve & Corresponding Cracking Behavior

\[K_{jc} = \sqrt{E J_{ic}} \]

\[T = (dJ/da) E/\sigma_f^2 \]
Category I: \(J_{IC} < 30 \text{ kJ/m}^2 \) \((K_{IC} < 75 \text{ MPa } \sqrt{\text{m}}) \), \(T < 10 \)
Low toughness material where failure can occur below yield strength loadings for relatively small flaw sizes.

Category II: \(30 < J_{IC} < 150 \text{ kJ/m}^2 \) \((75 < K_{IC} < 150 \text{ MPa } \sqrt{\text{m}}) \), \(10 < T < 100 \)
Intermediate toughness material where unstable or stable fracture can occur at approximately yield strength loadings for small to medium flaw sizes.

Category III: \(J_{IC} > 150 \text{ kJ/m}^2 \) \((K_{IC} > 150 \text{ MPa } \sqrt{\text{m}}) \), \(T > 100 \)
High toughness material where fracture involves stable tearing at stresses well above yield strength. Tearing instabilities are unlikely except after gross plastic deformation.
Effect of Low and High Temperature Water on J-R Curve for EN82H Welds

EN82H Weld - Longitudinal

54°C - 338°C Air
$J_{IC} = 806 \text{ kJ/m}^2$
$T = 364$

338°C Water
$J_{IC} = 679 \text{ kJ/m}^2$
$T = 373$

<table>
<thead>
<tr>
<th>Temp</th>
<th>J_{IC}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>54°C Air "A1"</td>
<td>54</td>
<td>42; 60; 79</td>
</tr>
<tr>
<td>338°C Air "A1,B1"</td>
<td>54</td>
<td>26; 34</td>
</tr>
<tr>
<td>54°C Water "B1"</td>
<td>54</td>
<td>14</td>
</tr>
<tr>
<td>338°C Water "A1,B1"</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

CRACK EXTENSION, mm
Comparison of Load-Displacement Curves for EN82H Weld
Tested in 54°C & 338°C Water

EN82H Weld
150 - 180 cc H₂/ kg H₂O

M1392
a/W = 0.585
Δa = 0.89 mm

M1395
a/W = 0.587
Δa = 2.92 mm

130°F Water 640°F Water
Fracture Toughness of EN82H Weld (Longitudinal Orientation) in Air & Water
(Values of J_{IC} are provided beyond each bar)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Condition</th>
<th>J_{IC}, kJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>24°C Air</td>
<td>'C5'</td>
<td>431</td>
</tr>
<tr>
<td>54°C Air</td>
<td>'A1'</td>
<td>364</td>
</tr>
<tr>
<td>338°C Air</td>
<td>'A1,B1'</td>
<td>364</td>
</tr>
<tr>
<td>54°C Water</td>
<td>33 'A1'</td>
<td></td>
</tr>
<tr>
<td>54°C Water</td>
<td>16 'B1'</td>
<td></td>
</tr>
<tr>
<td>54°C Water</td>
<td>3 'C1'</td>
<td></td>
</tr>
<tr>
<td>54°C Water</td>
<td>4 'C1'</td>
<td></td>
</tr>
<tr>
<td>93°C Water</td>
<td>7 'C1'</td>
<td></td>
</tr>
<tr>
<td>149°C Water</td>
<td>'C1'</td>
<td>101</td>
</tr>
<tr>
<td>338°C Water</td>
<td>'A1'</td>
<td>373</td>
</tr>
</tbody>
</table>
Fracture Toughness of EN82H Weld (Transverse Orientation) in Air & Water

(Values of T are provided beyond each bar)

- 24°C Air: 'C4', 424 kJ/m²
- 54°C Air: 'A2', 315 kJ/m²
- 338°C Air: 'A2', 315 kJ/m²
- 54°C Water: 'A2', 25 kJ/m²
- 54°C Water: 'C2, C3, C4', 5 kJ/m²
- 54°C Water: 'C3, C4', 11 kJ/m²
- 149°C Water: 'C3', 184 kJ/m²
- 338°C Water: 'A2', 245 kJ/m²

EN82H Weld (Transverse)
Fracture Toughness of EN52 Weld "B1" in Water
(Values of T are provided beyond each bar)

54°C Air

338°C Air

54°C Water

338°C Water

EN52 'B1'

$J_{IC}, \text{ kJ/m}^2$

0 200 400 600 800 1000 1200

36

150 cc/kg

540
Fracture Toughness of EN52 Welds "C1" & "C2" in Water
(Values of T are provided beyond each bar)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>J<sub>IC</sub>, kJ/m<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>54°C Water</td>
<td>4</td>
</tr>
<tr>
<td>54°C Water</td>
<td>59</td>
</tr>
<tr>
<td>54°C Water</td>
<td>15 cc/kg 53</td>
</tr>
<tr>
<td>93°C Water</td>
<td>150 cc/kg 322</td>
</tr>
<tr>
<td>149°C Water</td>
<td>150 cc/kg 329</td>
</tr>
</tbody>
</table>
Fracture Toughness of Alloy 690 (Heat A) in Air & Water
(Values of T are provided beyond each bar)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Condition</th>
<th>J_{IC}, kJ/m^{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>54°C</td>
<td>Air</td>
<td>488</td>
</tr>
<tr>
<td>338°C</td>
<td>Air</td>
<td>488</td>
</tr>
<tr>
<td>54°C</td>
<td>Water</td>
<td>150, 38</td>
</tr>
<tr>
<td>54°C</td>
<td>Water</td>
<td>50, 72</td>
</tr>
<tr>
<td>54°C</td>
<td>Water</td>
<td>15 cc/kg, 128</td>
</tr>
<tr>
<td>149°C</td>
<td>Water</td>
<td>150 cc/kg, 267</td>
</tr>
<tr>
<td>338°C</td>
<td>Water</td>
<td>150 cc/kg, 407</td>
</tr>
</tbody>
</table>

Alloy 690
Heat A
Fracture Toughness of Alloy 690 (Heat B) in Water
(Values of T are provided beyond each bar)

54°C Water 150 cc/kg 58
54°C Water 15 cc/kg 63
93°C Water 150 cc/kg 193
93°C Water 50 cc/kg 249
93°C Water 15 cc/kg 249
149°C Water 150 cc/kg 249
338°C Water 150 cc/kg 242

$J_{IC} = \text{kJ/m}^2$
Fracture Toughness of Alloy 600 (Heat A) in Air & Water

(Values of \(T \) are provided beyond each bar)

- 54°C Air: 377
- 338°C Air: 377
- 54°C Water: 150 cc/kg, 232
- 54°C Water: 15 cc/kg, 232
- 149°C Water: 150 cc/kg, 232
- 338°C Water: 150 cc/kg, 264

\(J_{IC}, \text{ kJ/m}^2 \)
$K_{P_{\text{max}}}$ values for EN82H, EN52 & Alloy 690
Non-precharged & Hydrogen-Precharged (H) Specimens
Tested in 24°/54°C Air & Water

EN82H Trans.

EN52 Long.

Alloy 690

$K_{P_{\text{max}}}$ (MPa/m)
Alloy 690

54°C Air
Non-precharged

54°C Water
Non-precharged

24°C Air
Hydrogen-precharged
Effect of Loading Rate on Fracture Toughness of EN82H, EN52 and Alloy 690 in 54°C Water
(Values of T are provided above each bar)
LTCP does not initiate at a notch. However, once a tear forms at a notch, it serves as a sharp crack from which intergranular LTCP initiates.
Specimens with fatigue precracks and natural weld root defects exhibited similar LTCP properties in water.
Effect of Load Path on LTCP Behavior for EN82H Weld in Water with 150 cc H₂/kg H₂O

- Rising Load Tests
 - 54°C Air
 - 54°C Water
- Constant Load Tests
 - Open diamond: Loaded in ambient nitrogen gas
 - Open square: Loaded in 288°C Water

Closed symbols indicate LTCP occurred.

Kp_{max} (MPa/m)

Temperature (°C)
TEMPERATURE & LOAD PATH HISTORY EFFECTS IN HYDROGENATED WATER

54°C RISING LOAD

<table>
<thead>
<tr>
<th>Weld</th>
<th>(K_{p_{\text{max}}}) MPa/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td>49-67</td>
</tr>
</tbody>
</table>

COOLDOWN LOAD CONTROL

<table>
<thead>
<tr>
<th>K MPa/m</th>
<th>Cracking Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>No LTCP</td>
</tr>
<tr>
<td>85</td>
<td>LTCP</td>
</tr>
</tbody>
</table>

COOLDOWN CONSTANT DISPLACEMENT

<table>
<thead>
<tr>
<th>K MPa/m</th>
<th>Cracking Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>47, 49, 57</td>
<td>No LTCP*</td>
</tr>
<tr>
<td>62, 67, 78</td>
<td>No LTCP*</td>
</tr>
<tr>
<td>78, 82, 73</td>
<td>LTCP initiated**</td>
</tr>
</tbody>
</table>

A2

| 43-56 |

C2

| 48-60 |

288°C for 1 week / 54°C for 1 week
* 6 cycles
** 2-3 cycles
As-welded EN82H Tested in Water with 150 cc H₂/kg H₂O

Predominantly intergranular cracking in bolt-loaded specimen

Intergranular cracking and dimple rupture in load-controlled specimen
Annealing at 1093°C:
Fully restores the fracture resistance of EN52 & Alloy 690
Restores significant fracture resistance for EN82H
Has little effect on the fracture resistance of Alloy 600
(Values of T are given above each bar.)
J-R curves for as-welded and annealed EN82H in 24°C air and 54°C water with 150 cc H₂/kg H₂O.
EN82H Weld Tested in 54°C Water

As-welded EN82H
Intergranular cracking

Annealed EN82H
Transgranular facets & poorly defined dimples
<table>
<thead>
<tr>
<th>Microstructural & Mechanical Properties for As-welded & Annealed EN82H Weld</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-welded</td>
</tr>
<tr>
<td>General Microstructure</td>
</tr>
<tr>
<td>Coarse dendritic grains. Cored structure—enriched Nb & Mn in interdendritic regions.</td>
</tr>
<tr>
<td>Grain Boundary Segregation</td>
</tr>
<tr>
<td>No S & limited P segregation.</td>
</tr>
<tr>
<td>Intergranular Precipitates</td>
</tr>
<tr>
<td>Nb,Ti(C,N) [3-16 nm] on most GBs.</td>
</tr>
<tr>
<td>Few TiN inclusions on GBs.</td>
</tr>
<tr>
<td>Very few MgS on GBs.</td>
</tr>
<tr>
<td>Extremely few MgS on GBs.</td>
</tr>
<tr>
<td>Intragranular Precipitates & Inclusions</td>
</tr>
<tr>
<td>Nb,Ti(C,N) ppt [3-16 nm] on dislocations. TiN inclusions AlMgSi-rich oxides</td>
</tr>
<tr>
<td>Dislocation Content</td>
</tr>
<tr>
<td>High density of dislocation tangles & networks</td>
</tr>
<tr>
<td>Mechanical Properties</td>
</tr>
<tr>
<td>σₚₚ = 360-480 MPa</td>
</tr>
<tr>
<td>σₚₚₚ = 680-710 MPa</td>
</tr>
<tr>
<td>Elong. = 27-57%</td>
</tr>
<tr>
<td>R-in-A = 47-59%</td>
</tr>
</tbody>
</table>
Microstructure of EN82H Welds

As-welded EN82H
Coarse dendritic grains

Annealed EN82H
Recrystallized structure with equiaxed grains
Localized regions with nonrecrystallized grains
AS-FABRICATED EN82H WELD

Dark-field TEM Micrograph of Fine Nb,Ti(C,N) on Grain Boundaries and Dislocations

0.5 μm
Annealed & Furnace Cooled EN82H Weld
AEM analysis confirmed presence of Cr-rich M_7C_3 and $M_{23}C_6$ precipitates decorating grain boundaries.

Secondary electron image

![Secondary electron image]

TEM image showing $M_{23}C_6$

![TEM image showing $M_{23}C_6$]
DISLOCATION STRUCTURE IN EN82H WELDS

Extensive Dislocation Structure in As-Welded Condition

Significantly Reduced Dislocation Structure in Annealed Condition
AES Elemental Distribution Maps of As-Welded EN82H

- Nb, Ti(C,N) decorating most GBs.
- TiN inclusions & Limited sulfide (MgS) inclusions.
AES Elemental Distribution Maps of **Annealed EN82H**

- Limited intergranular cracking.
- Nb,Ti(C,N) confined to nonrecrystallized GBs (upper right).
- Intergranular Cr-rich carbides.
- Multiphase TiN / Nb(C,N) inclusions & MgS inclusions.
Grain Boundary Composition (a/o ± σ) for As-fabricated and Annealed EN82H Welds.†

Auger Electron Spectroscopy of EN82H welds revealed:
No S segregation in as-welded or annealed condition.
No P segregation in annealed condition.
Slight P segregation for half of the GBs in as-welded condition:
- 6 of 13 GBs with no P segregation (0.6 ± 0.2 a/o),
- 7 of 13 GBs with slight P segregation (1.4 ± 0.3 a/o).

<table>
<thead>
<tr>
<th>Material Condition</th>
<th>Areas Studied</th>
<th>B</th>
<th>N</th>
<th>Al</th>
<th>P</th>
<th>S</th>
<th>Ti</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Ni</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-welded</td>
<td>13 GBs†</td>
<td>1.3</td>
<td>2.5±0.4†</td>
<td>0.9</td>
<td>1.4±0.3*</td>
<td>0.7</td>
<td>1.2</td>
<td>15.2</td>
<td>1.8</td>
<td>2.0</td>
<td>62.2</td>
<td>19.2±2.0*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.7</td>
<td>±0.5†</td>
<td>±0.3</td>
<td>±0.3</td>
<td>±0.4</td>
<td>±0.3</td>
<td>±2.2</td>
<td>±1.2</td>
<td>±1.3</td>
<td>±7.0</td>
<td>±7.6±2.4*</td>
</tr>
<tr>
<td>Annealed</td>
<td>5 GBs</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>1.2</td>
<td>18.6</td>
<td>0.9</td>
<td>1.9</td>
<td>66.7</td>
<td>6.8</td>
</tr>
<tr>
<td>As-Welded & Annealed</td>
<td>11 TG‡</td>
<td>1.3</td>
<td>0.7</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>19.5</td>
<td>0.8</td>
<td>2.1</td>
<td>69.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>

* Mean and standard deviation values were determined for high and low concentration groups.
† Separate N concentrations were determined in regions with high and low Nb concentrations.
†† Note that values below about 0.5 to 1 a/o are probably not significantly different from 0.
‡ GB = Grain Boundary; TG = Trangranular Region
CONCLUDING REMARKS

High temperature water:
Fracture is not a concern because toughness is exceptionally high.

Low temperature water:
Fracture is a concern for EN82H and EN52 due to a severe degradation in cracking resistance, caused by a hydrogen embrittlement mechanism.

Although the fracture toughness of Alloy 690 is degraded, modest cracking resistance is retained.
 LTCP is not a primary concern.

LTCP is not an issue for Alloy 600.

Decreasing hydrogen content of water to 15 cc H₂/kg H₂O:
 small to modest increase in toughness for EN82H,
 substantial increase in toughness for EN52 and Alloy 690.

LTCP does not initiate at as-machined notches.
Failure scenario: Crack initiation and growth by HTSCC or fatigue
 LTCP causes final failure (KJC or Kpmax).

LTCP can initiate at a sharp weld defect.

Cooldown testing - EN82H under constant displacement conditions:
Tests to date show that rising load Kpmax values accurately or conservatively predict the critical Kf for LTCP.

Annealing at 1093°C reduces or eliminates LTCP susceptibility.
Dissolution of fine intergranular Nb,Ti(C,N) in welds appears to improve LTCP resistance.
References:

