INITIAL SLUDGE BATCH 4 TANK 40 DECANT VARIABILITY STUDY WITH FRIT 510

PDF Version Also Available for Download.

Description

Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry feed in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times that may eventually impact canister production rates, decant scenarios of 100, 150, and 200 kilogallons of supernate were proposed for Tank 40 during the ... continued below

Creation Information

Raszewski, F; Tommy Edwards, T; David Peeler, D; David Best, D; Irene Reamer, I & Phyllis Workman, P May 27, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry feed in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times that may eventually impact canister production rates, decant scenarios of 100, 150, and 200 kilogallons of supernate were proposed for Tank 40 during the DWPF March outage. Based on the results of the preliminary assessment issued by the Savannah River National Laboratory (SRNL), the Liquid Waste Organization (LWO) issued a Technical Task Request (TTR) for SRNL to (1) perform a more detailed evaluation using updated SB4 compositional information and (2) assess the viability of Frit 510 and determine any potential impacts on the SB4 system. As defined in the TTR, LWO requested that SRNL validate the sludge--only SB4 flowsheet and the coupled operations flowsheet using the 100K gallon decant volume as well as the addition of 3 wt% sodium on a calcined oxide basis. Approximately 12 historical glasses were identified during a search of the ComProTM database that are located within at least one of the five glass regions defined by the proposed SB4 flowsheet options. While these glasses meet the requirements of a variability study there was some concern that the compositional coverage did not adequately bound all cases. Therefore, SRNL recommended that a supplemental experimental variability study be performed to support the various SB4 flowsheet options that may be implemented for future SB4 operations in DWPF. Eighteen glasses were selected based on nominal sludge projections representing the current as well as the proposed flowsheets over a WL interval of interest to DWPF (32-42%). The intent of the experimental portion of the variability study is to demonstrate that the glasses of the Frit 510-modified SB4 compositional region (Cases No.1-5) are both acceptable relative to the Environmental Assessment (EA) reference glass and predictable by the current DWPF process control models for durability. Frit 510 is a viable option for the processing of SB4 after a Tank 40 decant and the addition of products from the Actinide Removal Process (ARP). The addition of ARP did not have any negative impacts on the acceptability and predictability of the variability study glasses. The results of the variability study indicate that all of the study glasses (both quenched and centerline canister cooled (ccc)) have normalized releases for boron that are well below the reference EA glass (16.695 g/L). The durabilities of all of the study glasses are predictable using the current Product Composition Control System (PCCS) durability models with the exception of SB4VAR24ccc (Case No.2 at 41%). PCCS is not applicable to non-homogeneous glasses (i.e. glasses containing crystals such as acmite and nepheline), thus SB4VAR24ccc should not be predictable as it contains nepheline. The presence of nepheline has been confirmed in both SB4VAR13ccc and SB4VAR24ccc by X-ray diffraction (XRD). These two glasses are the first results which indicate that the current nepheline discriminator value of 0.62 is not conservative. The nepheline discriminator was implemented into PCCS for SB4 based on the fact that all of the historical glasses evaluated with nepheline values of 0.62 or greater did not contain nepheline via XRD analysis. Although these two glasses do cause some concern over the use of the 0.62 nepheline value for future DWPF glass systems, the impact to the current SB4 system is of little concern. More specifically, the formation of nepheline was observed in glasses targeting 41 or 42% WL. Current processing of the Frit 510-SB4 system in DWPF has nominally targeted 34% WL. For the SB4 variability study glasses targeting these lower WLs, nepheline formation was not observed and the minimal difference in PCT response between quenched and ccc versions supported its absence.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-STI-2008-00149
  • Grant Number: DE-AC09-96SR18500
  • DOI: 10.2172/935219 | External Link
  • Office of Scientific & Technical Information Report Number: 935219
  • Archival Resource Key: ark:/67531/metadc896730

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 27, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 12, 2016, 12:17 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Raszewski, F; Tommy Edwards, T; David Peeler, D; David Best, D; Irene Reamer, I & Phyllis Workman, P. INITIAL SLUDGE BATCH 4 TANK 40 DECANT VARIABILITY STUDY WITH FRIT 510, report, May 27, 2008; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc896730/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.