Investigation of the Downwelling LW Differences Between the Niamey AMF Main and Supplementary Sites

PDF Version Also Available for Download.

Description

The overall average downwelling longwave (LW) measured at the Niamey supplementary facility (S1) is 6-8 Wm-2 less than that measured by the two instruments located at the ARM Mobile Facility (AMF) main (N1) site. Examination of all other data available at both sites does not reveal any overarching differences that suggest this should be the case. However, examination of the pyrgeometer case and dome temperatures do suggest that the S1 values are also anomalously low, which in turn would explain the downwelling LW anomaly since the LW is calculated using these temperatures. Our recommendation then is to normalize the S1 ... continued below

Creation Information

Long, CN; Gotseff, P & Dutton, EG April 1, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The overall average downwelling longwave (LW) measured at the Niamey supplementary facility (S1) is 6-8 Wm-2 less than that measured by the two instruments located at the ARM Mobile Facility (AMF) main (N1) site. Examination of all other data available at both sites does not reveal any overarching differences that suggest this should be the case. However, examination of the pyrgeometer case and dome temperatures do suggest that the S1 values are also anomalously low, which in turn would explain the downwelling LW anomaly since the LW is calculated using these temperatures. Our recommendation then is to normalize the S1 data to the average N1 value by applying an adjustment factor to the S1 downwelling pyrgeometer case and dome temperatures (in Kelvin), then recalculating the downwelling LW values. The adjustment factor (0.00305) has been determined as that factor that brings the overall average S1 LWdn to agree with the overall average of the two N1 LWdn data series. We note that there is no reason to expect that the two site averages would actually be exactly equal to one another, and thus our recommendation is viewed as likely moving the S1 data in the right direction and by normalizing to the N1 average will help facilitate more meaningful temporal variability studies at least. It is also strongly recommended that for all future AMF deployments where supplementary sites will also be deployed, that the supplementary instrument systems (complete) be assembled as they will be operated in the field and run for at least a few days beside the corresponding AMF main site instruments, both at the beginning and end of the AMF field campaign. This is absolutely crucial so that all the measurements can be compared pre- and post-experiment to properly relate these measurements and systems, and to detect measurement anomalies such as those discussed in this report.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/SC-ARM/TR-083
  • Grant Number: DE-AC05-76RL01830
  • DOI: 10.2172/948029 | External Link
  • Office of Scientific & Technical Information Report Number: 948029
  • Archival Resource Key: ark:/67531/metadc896649

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Feb. 17, 2017, 1:45 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Long, CN; Gotseff, P & Dutton, EG. Investigation of the Downwelling LW Differences Between the Niamey AMF Main and Supplementary Sites, report, April 1, 2008; United States. (digital.library.unt.edu/ark:/67531/metadc896649/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.