Stability of Galactic Gaseous Disks and the Formation of Massive Clusters

PDF Version Also Available for Download.

Description

We study gravitational instabilities in disks, with special attention to the most massive clumps that form because they are expected to be the progenitors of globular-type clusters. The maximum unstable mass is set by rotation and depends only on the surface density and orbital frequency of the disk. We propose that the formation of massive clusters is related to this largest scale in galaxies not stabilized by rotation. Using data from the literature, we predict that globular-like clusters can form in nuclear starburst disks and protogalactic disks but not in typical spiral galaxies, in agreement with observations.

Creation Information

Escala, Andres & Larson, Richard B. August 21, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We study gravitational instabilities in disks, with special attention to the most massive clumps that form because they are expected to be the progenitors of globular-type clusters. The maximum unstable mass is set by rotation and depends only on the surface density and orbital frequency of the disk. We propose that the formation of massive clusters is related to this largest scale in galaxies not stabilized by rotation. Using data from the literature, we predict that globular-like clusters can form in nuclear starburst disks and protogalactic disks but not in typical spiral galaxies, in agreement with observations.

Source

  • Journal Name: Astrophysical Journal Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13376
  • Grant Number: AC02-76SF00515
  • DOI: 10.1086/592271 | External Link
  • Office of Scientific & Technical Information Report Number: 937176
  • Archival Resource Key: ark:/67531/metadc896570

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 21, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 2, 2016, 12:31 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Escala, Andres & Larson, Richard B. Stability of Galactic Gaseous Disks and the Formation of Massive Clusters, article, August 21, 2008; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc896570/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.