A brief survey of decarboxylation reactions and carboxylation reactions that are known or presumed in biological systems will be presented. While a considerable number of amino acid decarboxylations are known, their mechanisms will not be included in the present discussion but will be reserved for a later paper in the symposium. The remaining decarboxylation reactions may be subdivided into oxidative and nonoxidative decarboxylations. In most cases, these reactions are practically irreversible except when coupled with suitable energy-yielding systems. The carboxylation reactions which are useful in the formation of carbon-carbon bonds in biological systems seem to fall into two or three …
continued below
Publisher Info:
"Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States)"
Place of Publication:
Berkeley, California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
A brief survey of decarboxylation reactions and carboxylation reactions that are known or presumed in biological systems will be presented. While a considerable number of amino acid decarboxylations are known, their mechanisms will not be included in the present discussion but will be reserved for a later paper in the symposium. The remaining decarboxylation reactions may be subdivided into oxidative and nonoxidative decarboxylations. In most cases, these reactions are practically irreversible except when coupled with suitable energy-yielding systems. The carboxylation reactions which are useful in the formation of carbon-carbon bonds in biological systems seem to fall into two or three groups: those which exhibit an apparent ATP requirement, and those which exhibit a reduced pyridine nucleotide requirement, and those which exhibit no apparent ATP requirement. Of the first group at least four cases, and possibly six or seven, are known, and one interpretation of them involves the preliminary formation of 'active' carbon dioxide, generally in the form of a carbonic acid-phosphoric acid anhydride. Those exhibiting no apparent ATP requirement seem to be susceptible to classifications as enol carboxylations in which the energy level of the substrate compound is high, rather than that of the carbon dioxide. There appear to be at least three examples of this latter type known, amongs them being the carboxy-dismutase reaction of ribulose diphosphate with carbon dioxide.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.