The Energy Gap in Nuclear Matter

PDF Version Also Available for Download.

Description

The magnitude of the energy gap in nuclear matter associated with a highly correlated ground state of the type believed to be important in the theory of superconductivity has been evaluated theoretically. The integral equation of Cooper, Mills, and Sessler is linearized and transformed into a form suitable for numerical solution. The energy gap, calculated by using an appropriate single-particle potential and the Gammel-Thaler two-body potential, is found to be a very strong function of the density of nuclear matter, and of the effective mass at the Fermi surface. It is concluded that the magnitude of the energy gap for … continued below

Physical Description

15 p.

Creation Information

Emery, V. J. & Sessler, A. M. January 31, 1960.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The magnitude of the energy gap in nuclear matter associated with a highly correlated ground state of the type believed to be important in the theory of superconductivity has been evaluated theoretically. The integral equation of Cooper, Mills, and Sessler is linearized and transformed into a form suitable for numerical solution. The energy gap, calculated by using an appropriate single-particle potential and the Gammel-Thaler two-body potential, is found to be a very strong function of the density of nuclear matter, and of the effective mass at the Fermi surface. It is concluded that the magnitude of the energy gap for nuclear matter should not be compared directly with experimental values for finite nuclei, although the results suggest that if the theory is extended to apply to finite nuclei it probably would be in agreement with experiment.

Physical Description

15 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 31, 1960

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • May 12, 2021, 1:26 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Emery, V. J. & Sessler, A. M. The Energy Gap in Nuclear Matter, report, January 31, 1960; Berkeley, California. (https://digital.library.unt.edu/ark:/67531/metadc896385/: accessed September 12, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen