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Abstract  Spherulites are spherical clusters of radiating crystals that occur naturally in 

rhyolitic obsidian. The growth of spherulites requires diffusion and uptake of crystal 

forming components from the host rhyolite melt or glass, and rejection of non-crystal 

forming components from the crystallizing region. Water concentration profiles measured 

by synchrotron-source Fourier transform spectroscopy reveal that water is expelled into 

the surrounding matrix during spherulite growth, and that it diffuses outward ahead of the 

advancing crystalline front. We compare these profiles to models of water diffusion in 

rhyolite to estimate timescales for spherulite growth. Using a diffusion-controlled growth 

law, we find that spherulites can grow on the order of days to months at temperatures 

above the glass transition. The diffusion-controlled growth law also accounts for 

spherulite size distribution, spherulite growth below the glass transition, and why 

spherulitic glasses are not completely devitrified.  
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Introduction 

Spherulites are polycrystalline solids that develop under highly non-equilibrium 

conditions in liquids (Keith and Padden 1963). Natural spherulites are commonly found 

in rhyolitic obsidian and have evoked the curiosity of petrologists for more than a century 



(e.g., Judd 1888; Cross 1891). Over the past several decades, numerous studies on 

spherulite morphology (Keith and Padden 1964a; Lofgren 1971a), kinetics of spherulite 

growth (Keith and Padden 1964b; Lofgren 1971b), disequilibrium crystal growth rates 

and textures (Fenn 1977; Swanson 1977), and field observations (Mittwede 1988; 

Swanson et al. 1989; Manley and Fink 1987; Manley 1992; Davis and McPhie 1996; 

MacArthur et al. 1998, and many others) have shed light on the conditions and processes 

behind spherulite nucleation and growth. Despite the long-standing interest, several 

fundamental questions persist. For example: On what timescales do natural spherulites 

form? At what degree of undercooling do spherulites begin to grow? Can spherulites 

grow below the glass transition? Why doesn't spherulite growth lead to runaway heating? 

And, why are spherulites spherical? In this paper, we revisit these questions and 

contribute a new quantitative approach for estimating spherulite growth rates.  

Qualitative description of spherulite growth 

Spherulites in rhyolitic obsidian are composed primarily of alkali feldspar and SiO2 

polymorphs. Spherulites are often mm-scale, but are known to range from 

submicroscopic to m-scale (e.g., Smith et al. 2001). They may be randomly distributed 

and completely isolated, or nucleate preferentially to form clusters or trains (e.g., Davis 

and McPhie 1996). Within a deposit, spherulitic textures and relationships may vary 

widely owing to local differences in emplacement temperature, flow depth, cooling rate, 

and surface hydrology (Manley 1992; MacArthur et al. 1998). Despite these 

complexities, the fact that spherulites occur almost exclusively in glasses seems to 

require conditions that yield slow nucleation rates yet relatively rapid crystal growth 

rates.  

As a melt cools below the liquidus temperature (T eq) for a given crystalline phase, an 

energy barrier must be overcome in order for the new phase to nucleate and grow. Just 

below T eq, this energy barrier is finite and decreases with decreasing temperature. A 

certain amount of undercooling is always necessary to nucleate a solid phase (Carmichael 

et al. 1974), where the degree of undercooling (∆T) is the difference between the 

equilibrium temperature T eq and the actual magmatic temperature T. In siliceous lavas, 



atomic mobility is sluggish and large ∆T can be achieved prior to nucleation. Once 

nucleation does occur, crystal growth proceeds and crystal growth rates are dictated by 

the magnitude of ∆T.  

Large undercoolings promote rapid crystallization, but are also associated with lower 

magmatic temperatures and slower elemental diffusivities. For crystals growing from a 

melt or glass of different composition, crystal growth rates are limited by the ability of 

melt components to diffuse towards or away from the crystallizing front. In the case of 

spherulites, it is has been shown that certain major- and trace-elements are rejected by 

crystallizing phases and concentrated at the spherulite–glass interface (Smith et al. 2001).  

Since the mineral phases that compose rhyolitic spherulites are nominally anhydrous, 

water is also rejected from the crystalline region. Among incompatible melt species, 

water is perhaps the most extensively studied because of its pronounced effects on 

magma viscosity and major-element diffusion coefficients. As a result, methods for 

determining water concentrations in rhyolitic glasses have been developed over the past 

25 years (e.g., Stolper 1982; Newman et al. 1986, Zhang et al. 1997) using Fourier 

transform infrared spectroscopy (FTIR). The goal of our measurements is to use FTIR to 

resolve water concentration gradients at the spherulite–glass interface with high spatial 

resolution (see Castro et al. 2005) to better understand the growth history of spherulites.  

Sample descriptions 

The spherulites analyzed in this study are from a hand sample of a rhyolitic vitrophyre 

that lies in the Quaternary Tequila volcanic field, western Mexico. Lavas that range in 

composition from basalt to rhyolite surround an andesite stratovolcano (Volcán Tequila) 

that formed about 200 kyr ago (Lewis-Kenedi et al. 2005). The rhyolites and obsidian 

domes are among the earliest erupted units, ranging in age from 0.23 to 1.0 Ma (Lewis-

Kenedi et al. 2005).  

Figure 1 is a photograph of the obsidian hand sample used in this study. The matrix is a 

dark, coherent glass that has not undergone post-magmatic hydration. It contains some 

visible but subtle “flow bands” reflecting shear flow of magmatic parcels containing 



variable microlite content (Gonnermann and Manga 2003). Isolated, light grey spherulites 

cross-cut flow bands and exhibit a range of sizes that are distributed homogeneously 

(Fig. 1).  

 
Fig. 1  a Photograph of a spherulitic obsidian from Tequila volcano. Spherulites ranging in size from 1.0 to 

8.0 mm in diameter are distributed homogeneously throughout. b Cathodilluminescence image showing 

fibrous alkali-feldspar crystals enclosed by oblate cristobalite masses within an individual spherulite. c 

Thin section image showing spherulites cross-cutting subtle flow bands  

 

Individual spherulites are host to three crystalline phases: 55–65% (by volume) feldspar 

fibers, ~30–40% oblate cristobalite masses, and <1% Fe- and Ti-oxides. The feldspar 

fibers are arranged in a radial habit about a central nucleus and are enclosed by the 

cristobalite masses. X-ray diffraction patterns indicate the feldspar is some form of alkali 

feldspar, but an exact determination could not be made. There is also a significant amount 

of void space due to the ~10% volume contraction associated with crystallization, which 

we neglect in our calculations.  

Sample preparation and measurements 



Four rectangular billets (~21 mm × 38 mm) of spherulitic obsidian were cut from a hand 

sample (Fig. 1) to be prepared for FTIR analysis. Each billet was ground down until at 

least one spherulite was sectioned through its center. The surface with the spherulite was 

polished to ~0.25 μm. The polished surface was mounted on a glass slide with epoxy and 

the billet was cut to a thickness of ~300 μm. The grinding and polishing procedure was 

repeated on the opposite surface to obtain a doubly polished wafer. Each of the samples 

was of uniform thickness (±<5% as determined by a digital micrometer with a precision 

of ±2 μm) so that infrared absorption data could be compared throughout the sample. 

Polished surfaces were necessary for minimizing infrared scattering and obtaining quality 

absorbance data.  

Water concentration measurements were made by synchrotron-source FTIR at the 

Advanced Light Source at Lawrence Berkeley National Laboratory. The instrument used 

was a Nicolet 760 FTIR spectrometer interfaced with a Spectra-Tech Nic-Plan IR 

microscope capable of spot sizes of 3–10 μm (Martin and McKinney 1998). Transects 

were oriented perpendicular to spherulite rims and measurements were made on the 

surrounding glassy matrix. Total water concentrations were determined from the intensity 

of the 3,570 cm−1 peak (Newman et al. 1986), which reflects the abundance of hydrous 

species (XOH) including molecular water (HOH). Hereafter, we refer to all hydrous 

species collectively as “water”. Analytical error is estimated to be ±0.005 wt% based on 

repeated measurements.  

Figure 2 shows data from a transect between two adjacent spherulites. At the rim–matrix 

interface of each spherulite, there is a local maximum in water content that decreases 

with distance into the surrounding matrix to background levels (~0.115 wt% in this case). 

Similar profiles were measured on seven spherulites ranging in size from 1.7 to 5.2 mm 

in diameter.  



 
Fig. 2 FTIR transect between two spherulites of different size illustrating the expulsion of water into the 

surrounding melt or glass during spherulite growth  

 

One of the samples was also analyzed using a Cameca SX-51 electron microprobe to 

characterize major-element variations. Due to the similarity in bulk composition between 

spherulites and their host, gradients in major elements could not be resolved 

quantitatively within detection limits. However, qualitative variations are resolved 

through detailed WDS X-ray mapping for three major elements taken on an individual 

spherulite (Fig. 3). A close look at the rim–matrix interface reveals a relative depletion in 

crystallizing components K and Si and concomitant enrichment in Na.  



 
Fig. 3 Cathodilluminescence image of a spherulite (upper left) and electron microprobe element maps on 

the same spherulite. Dark regions correspond to relatively low concentrations. Note the relative enrichment 

in Na and depletion in K and Si at the spherulite boundary  

 

Interpretation 

Spherulite growth from a liquid or glass of different composition requires diffusion of 

crystal-forming components, which become depleted over diffusive lengthscales around 

the crystallizing region. Figures 2 and 3 clearly illustrate this process and confirm that 

impurities are not trapped within crystals or interstitial voids. The outward rejection of 

water induces a concentration gradient down which water diffuses into the surrounding 

matrix, resulting in profiles like that shown in Fig. 2.  

For four of the seven spherulites analyzed, the data were clean enough to demonstrate 

that >95% of the water from the volume occupied by the spherulite could be accounted 

for in the water diffusion profile. This is noteworthy because it provides a stoichiometric 

relationship between the moles of water removed and moles of sanidine (or cristobalite) 

crystallized within the spherulite volume, thus allowing water rejection and diffusion to 

be used as a proxy for spherulite growth.  

Model for spherulite growth 



 

With each increment of spherulite growth, a known amount of water is expelled ahead of 

the advancing crystalline front. In this way, water diffusion into the matrix is in 

competition with the propagating spherulite boundary. Here we present a model that 

tracks the expulsion and diffusion of water during spherulite growth in the reference 

frame of the expanding spherulite rim. In this reference frame, the profiles in Fig. 3 can 

be modeled by solving numerically the advection–diffusion equation: 

 
(1)

where C is the concentration of water, is the velocity of the growing interface, and D 

OH(C,T,P) is the diffusivity of water in rhyolite melt or glass. Zhang and Behrens (2000) 

showed that D OH(C,T,P) varies linearly with water concentration at low total water 

contents (less than about 2 wt%), and we account for this effect in our model. However, 

we do not include variations in D OH(C,T,P) with temperature and pressure—a 

simplifying assumption discussed later. Taking advantage of the spherical symmetry of 

spherulites, (1) can be simplified and expressed as a function of the radial distance only: 

 
(2)

where D OH is updated at the beginning of each timestep. The velocity of the interface u r 

(u r  = dR/dt where R is the radius of the spherulite) is given by the choice of spherulite 

growth law. Keith and Padden (1963) found experimentally that at constant temperature, 

spherulites in polymer liquids generally grow according to a linear growth law whereby u 

r is constant and R scales with time as t: 

 (3)

where n is a free parameter that represents the competition between spherulite growth and 

water diffusion.  

A possible alternative is a diffusion-controlled growth law (Granasy et al. 2005), whereby 

the radius scales with time as t 1/2: 

 
(4)

where a is a free parameter analogous to n in the linear case.  



The appropriate boundary conditions for this problem are: (1) fixed concentration of 

water far from the growing interface and (2) time-dependent concentration of water at the 

rim–matrix interface that is related to the flux of water expelled during each increment of 

growth. The second boundary condition is implemented by ensuring mass conservation: 

 

(5)

where C(r,t) is the concentration of water at a distance r from the center of the spherulite, 

R is the spherulite radius, and represents the background concentration of water at 

some distance into the surrounding matrix. Equation (5) states that the water 

represented under the diffusion profile is equal to 100% of the water that once occupied 

the spherulite volume. Any difference between these two values is used to update C(R,t) 

after each timestep so that the equality is true. Figure 4 is a schematic illustration of the 

model setup.  

 
Fig. 4 Schematic diagram summarizing the 1D spherulite growth and water diffusion model. The dark 

black line represents actual (time-dependent) water concentration and dashed line represents the initial 

water concentration. The width of the vertical gray bar represents an increase in spherulite radius from R to 

R + dR, and the water within this region is removed and fluxed into the new boundary at R + dR. The model 

assumes perfectly efficient water expulsion  

 

Results 

 

The temporal evolution of model water concentration profiles depends strongly on the 

choice of growth law. Figure 5 compares model profiles using both the linear growth law 

(5a) and the diffusion-controlled growth law (5b) as a function of spherulite radius (i.e., 



time). In the linear regime, the concentration of water at the growing spherulite boundary 

increases progressively with time. This is a consequence of the spherical geometry, 

wherein the volume of water expelled increases with each (constant) growth increment 

dR. By contrast, in the diffusion-controlled regime the diffusion of water counterbalances 

the time-dependent growth increment dR such that the concentration of water at the 

spherulite boundary remains relatively constant with time.  

 
Fig. 5 Model calculations showing the evolution of water concentration away from spherulite boundaries 

assuming two different spherulite growth laws. Note the different scales for the x- and y-axes. The linear 

growth law (5a) leads to narrow profiles with a progressive build-up of water at the edge of the spherulite 

whereas the diffusion-controlled growth law (5b) leads to wider profiles and nearly steady values of water 

concentration at the spherulite edge  

 

Figure 6 compares model results to measured profiles from two spherulites of different 

size. The two profiles are representative of those measured in this study and include the 

largest and smallest spherulites examined. Figure 6a, b corresponds to data from a 

spherulite of radius 0.86 mm, while Fig. 6c, d correspond to data from a spherulite of 

radius 2.6 mm. The figures on the left (Fig. 6a, c) assume linear growth whereas the 

figures on the right (Fig. 6b, d) assume diffusion-controlled growth. Although the 

agreement between model curves and measured profiles is not very satisfying, it is clear 

that an equally good (or, for that matter, equally poor) fit can be achieved using either 

growth law for a given spherulite. However, there is one important distinction between 

the two growth models. Figure 6a, c shows that a smaller coefficient n is required in 

going from the smaller to the larger spherulite. In contrast, Fig. 6b, d shows that a larger 



coefficient a is required in going from the smaller spherulite to the larger spherulite. The 

significance of this is discussed in the next section.  

 
Fig. 6 Comparison between measured water concentration profiles and model calculations. a and c show 

results for two different spherulites using a linear growth law (i.e., u ~ D OH·t). b and d show results for two 

different spherulites using a diffusion-controlled growth law (i.e., u ~ (D OH/t)1/2). Clearly, indistinguishable 

results can be obtained using either growth law for a spherulite of given radius. Dark curves represent 

initial conditions for post-growth diffusion (see text), which leads to the profiles in Fig. 7  

 

A striking feature of all measured water concentration profiles is the “flattening” they 

exhibit near the rim–matrix interface, which may be attributed to post-growth diffusion of 

water. In order to account for this effect, we use the bold profiles from Fig. 6 as the initial 

condition for the post-growth model, and, as dR/dt = 0, (2) reduces to the diffusion 

equation with no-flux boundary conditions (i.e., water is not allowed to diffuse back into 

the spherulite). Results are summarized in Fig. 7 for the small and large spherulite. The 

duration of post-growth diffusion (in years) depends on D OH (i.e., temperature), and the 

values quoted in Fig. 7 arbitrarily assume T = 400°C. A lower temperature would simply 

require more prolonged post-growth diffusion in order to achieve an identical fit. The two 

most important points that arise from Fig. 7 are: (1) the agreement between measured and 



model profiles is markedly improved with inclusion of post-growth diffusion, and (2) the 

same duration of post-growth diffusion is required to fit profiles for both large and small 

spherulites.  

 
Fig. 7 Data versus model profiles after post-growth diffusion of water is included. Initial 

conditions are bold profiles in Fig. 6. The timescales correspond to the lower bound of 

the experimentally determined D OH (i.e., T = 400°C; Zhang and Behrens 2000). The 

same duration of post-growth diffusion is required to fit profiles for both large and small 

spherulites, which is expected assuming a common closure temperature for spherulites 

from a given locality  

 

Discussion 

The distinction between linear and diffusion-controlled growth laws is important as it 

pertains to several questions presented earlier about natural spherulites. Keith and Padden 

(1964b) studied spherulite growth kinetics under isothermal conditions in a range of 

polymer liquids and found that impurities often become trapped in the interstices of the 

crystalline region. Under these circumstances, impurities do not influence subsequent 

crystal growth and spherulite growth rates are linear in time (Keith and Padden 1964b). 

However, the linear growth law breaks down when rejected species are sufficiently 

mobile. That is, when diffusion of impurities occurs on the same timescale as crystal 

growth rates, the concentration of impurities at the crystalline interface increases 

progressively. As a consequence, spherulite growth rates decrease with spherulite size 

owing to the reduction in local concentrations of crystallizing components. Hence, we 

interpret the observation of rejected impurities outside the crystalline volume as evidence 



in itself for nonlinear growth kinetics. As discussed by Keith and Padden (1964b), the 

onset of nonlinear growth is favored by reducing the molecular weight of the impurity or 

by increasing the crystallization temperature to reduce the driving force for crystallization 

and to enhance impurity diffusivities. Water, the impurity of interest for natural 

spherulites, satisfies these conditions: it is relatively mobile, depresses the rhyolite 

liquidus, and enhances the diffusivity of other melt components.  

An additional argument can be made for diffusion-controlled growth from the results 

presented in Figs. 6 and 7. The model curves in Fig. 7 indicate that both spherulites 

experienced the same duration of post-growth diffusion of water, and hence, stopped 

growing at the same time or temperature. Intuitively, one would expect that the larger 

spherulite began growing earlier at higher temperatures—a possibility that is not 

explicitly accounted for in our model. Note, however, that we assume constant a, n, and 

D OH (constant with respect to temperature). Of these parameters, D OH is the only one 

that is likely to change with temperature during spherulite growth. The observed 

differences in a and n between spherulites may thus represent changes in D OH with 

temperature. In the diffusion-controlled growth model, a larger a translates into a higher 

average D OH (i.e., temperature) for the larger spherulite (a = 1.02) versus the smaller 

spherulite (a = 0.8), consistent with the expectation stated above. In contrast, if we 

assume a linear growth law, comparable fits between the larger spherulite (n = 0.0026) 

and smaller spherulite (n = 0.0052) correspond to lower temperatures (i.e., slower 

average growth rate) for the larger spherulite, which is difficult to reconcile with the 

assumption that both spherulites stopped growing at the same temperature. Indeed, using 

a slightly different modeling approach, Castro et al. (2008) found that larger spherulites 

experienced higher average growth rates than smaller spherulites. In their paper, 

however, this result was attributed to size-dependent growth rates versus our suggestion 

here that this reflects different temperature histories (i.e., temperature-dependent growth 

rates).  

Diffusion-controlled growth also has implications for the size distribution of spherulites. 

For instance, we should expect a greater abundance of larger spherulites because rapid 

initial growth allows smaller spherulites to catch up in size to those earlier-forming, 



larger spherulites. Qualitatively, this seems to be the case for our samples. However, no 

attempt was made to statistically analyze spherulite sizes because of the limited size of 

our hand sample and the challenge of sectioning spherulites through their center.  

On what timescales do natural spherulites form? 

Using water rejection as a proxy for crystallization rates, it is possible to calculate 

timescales for spherulite growth. This requires knowledge of the diffusivity of water (D 

OH) during spherulite formation, and one obvious shortcoming of the model is the 

assumption that D OH is fixed in a rhyolite undergoing cooling. Nevertheless, we calculate 

isothermal spherulite growth rates to bracket the true timescales for spherulite formation. 

Using D OH in rhyolite at conditions relevant to our samples (~0.1 wt% water and 

0.1 MPa; Zhang and Behrens 2000), the time required to grow a spherulite of given 

radius comes from the scaling relationship 

 
(6)

where R is the final radius of the spherulite. Results are summarized in Fig. 8, which 

shows the time required for a spherulite to reach a given radius at various fixed 

temperatures. For simplicity, these calculations assume that D OH is not dependent on 

water concentration. We justify this by noting that these values are within a factor of 2 to 

the values we calculate from our full advection–diffusion model for radii greater than 

about 1 mm.  

 



 
Fig. 8 Time required to grow a spherulite of given radius at various fixed temperatures assuming a 

diffusion-controlled growth law (6) and using a proportionality constant of a = 1.0. The shaded region at 

the top of the graph encompasses the range of possible ages for the host obsidian (Lewis-Kenedi et al. 

2005) and the dashed line indicates the size of the largest spherulite analyzed in this study. For spherulites 

to grow appreciably on cooling timescales, they must form at temperatures above about 400°C  

 

According to the diffusion-controlled growth model, a spherulite of 2.6 mm requires 

~300 days at 800°C, ~10 years at 600°C, or ~300 years at 400°C. These timescales are 

consistent with spherulites forming at temperatures above 600°C in parts of lava flows 

that cool on the order of years to decades in heat flow models that assume instantaneous 

emplacement of lava followed by static cooling (Manley 1992; Manley and Fink 1987). 

At temperatures below about 400°C, diffusion-controlled growth is extremely sluggish 

and we consider T = 400°C an approximate lower bound for spherulite growth during 

cooling. This can explain the absence of macroscopic spherulites along quench margins 

where rapid cooling has minimized the duration of high temperature growth rates. Of 

course, better estimates for timescales of spherulite growth require additional constraints 

on the temperature of spherulite formation and the cooling history of their host.  

At what degree of undercooling do spherulites begin to grow? 



Emplacement temperatures for rhyolite vary considerably (790–925°C; Carmichael et al. 

1974). At the time of emplacement, an anhydrous rhyolite lava may be significantly 

undercooled, as the liquidus in this system is ~1,000°C (Ghiorso and Sack 1995). Owing 

to nucleation lag times, which may be on the order of tens of years (Manley 1992), the 

degree of undercooling at which nucleation actually occurs is difficult to constrain. 

Nevertheless, textural relationships can provide a first-order estimate. For example, 

crystal morphologies have been shown to correlate with the degree of undercooling in the 

NaAlSi3O8–KAlSi3O8·H2O system (Fenn 1977). Feldspars grown in this system formed 

as (1) isolated tabular crystals at low undercoolings (∆T < 40°C), (2) coarse, open 

spherulites at moderate undercoolings (∆T ~ 75–145°C), and (3) fine, closed spherulites 

at higher undercoolings (∆T ~ 245–395°C) (Fenn 1977). This latter group of textures 

corresponds to the spherulites pictured in Fig. 1. From this information, a minimum ∆T 

on the order of 150°C (corresponding to a maximum T = 850°C) seems reasonable for the 

onset of spherulite growth, providing a minimum growth time of ~100 days. Larger ∆T 

associated with longer nucleation lag times are certainly possible and are probably 

common given that spherulites are generally smaller than the cooling timescales of 

decades would otherwise allow.  

Do spherulites grow below the glass transition? 

The glass transition signals an abrupt change in the physical properties of a melt, namely 

a change from liquid-like to solid-like behavior. The temperature at which this takes 

place depends on composition and cooling rate. For anhydrous rhyolite, the glass 

transition temperature (T g) lies somewhere between 620 and 750°C (based on values in 

Swanson et al. 1989; Manley 1992; Westrich et al. 1988), and it has been suggested that 

T g may provide a minimum temperature for spherulite growth (Ryan and Sammis 1981; 

Manley 1992; Davis and McPhie 1996). Indeed, certain field observations such as 

deformation of spherulites (Mittwede 1988), boudinage of flow bands by spherulites 

(Manley 1992; Stevenson et al. 1994), and inflation of lithophysal cavities (Swanson et 

al. 1989) suggest that spherulite growth takes place in melts above T g. However, these 

features are not always observed. The spherulites used in this study, for instance, are 



underformed and cross cut flow bands, raising the possibility that they grew, at least in 

part, below the glass transition.  

Since we assume that spherulite growth is governed by diffusion of components across 

spherulite boundaries, the question of whether spherulites grow below T g is really a 

question of how elemental diffusivities are affected by the glass transition. Based on the 

study by Zhang and Behrens (2000), the diffusivity of water appears to vary smoothly 

across the glass transition. Figure 9 shows diffusivities for other various chemical species 

in rhyolitic obsidian as a function of temperature. Across the range of possible glass 

transition temperatures, there is no evidence for significant changes in the diffusivity 

mechanisms for any of the components shown. This is consistent with the notion that 

rhyolite liquids are structurally similar to rhyolite glasses, as evidenced by only minor 

changes (~5%) in heat capacity across the glass transition (Neuville et al. 1993). Hence, 

there is no reason to believe that the glass transition represents an abrupt barrier to 

spherulite growth. However, it is apparent from the diffusion-controlled growth model 

that growth rates become prohibitively slow below about 400°C.  

 
Fig 9 Temperature-dependence of diffusivities for various chemical species in obsidian. Dark line for H2O 

is from Eq. (12) in Zhang and Behrens (2000) and grey lines for H2O are from obsidian hydration 

experiments (see Freer 1981). All other lines are from the compilation by Freer (1981). The main point is 

that major- and trace-element diffusivities appear to be insensitive to the glass transition in melts of 

rhyolitic composition (region shown in grey)  



Why doesn’t spherulite growth lead to runaway heating? 

An issue we have not yet addressed is the release and transport of latent heat as 

spherulitic crystallization progresses (cf. Lofgren 1971a). Diffusion of latent heat into the 

surrounding matrix could insulate growing spherulites, prolonging their exposure to 

elevated temperatures. Latent heat could also, in principle, lead to increased growth rates 

and the release of more latent heat in a positive feedback loop (Carmichael, personal 

communication). Obviously, this runaway heating does not take place since almost all 

spherulite-bearing rocks are vitrophyric. In order to explain this, we again turn to 

diffusion-controlled growth. We have already shown that spherulite growth is limited by 

the mobility of chemical species, and that spherulite growth rates proceed on the same 

timescale as water diffusion rates. A maximum D OH of about 10−6 mm2/s in rhyolite 

corresponds to T = 850°C. This is seven orders of magnitude lower than thermal 

diffusivity in obsidian, which is on the order of 10−1 mm2/s over the temperature range 0–

800°C (Riehle et al. 1995). Hence, latent heat is carried away long before it can influence 

spherulite growth rates.  

Why are spherulites spherical? 

Natural spherulites are host to multiple crystalline phases with very different individual 

morphologies (Fig. 1). On the whole, however, spherulites are almost perfectly spherical. 

The simplest explanation is that their host glass or melt is homogeneous, thus offering no 

preferred direction in which to grow. As we noted earlier, however, some spherulites 

cross cut bands of textural and compositional heterogeneities (Gonnermann and Manga 

2003). An alternative explanation can be found by invoking sufficiently rapid diffusion of 

water.  

As spherulites grow outwards and water is rejected into the surrounding matrix, there is a 

local reduction in the relative abundance of crystal-forming components. Since water 

content decreases with distance (over diffusion lengthscales) from the spherulite rim, any 

crystalline protrusion will grow into a melt at a higher supersaturation (i.e., higher 

undercooling) and respond by growing faster. This runaway effect can lead to dendritic 



crystals or “cellular” morphologies (Kirkpatrick 1975). However, there is an increase in 

surface energy associated with breaking the spherical symmetry of a growing spherulite. 

The stability of a spherical interface with finite surface tension is determined by a 

competition between growth rate and diffusion rate. At low growth rates, surface tension 

and diffusion act to maintain a minimum surface energy configuration (i.e., spherical). 

With increasing growth rate, however, there comes a critical point described by the 

Mullins–Sekerka instability at which diffusion and surface tension can no longer prohibit 

dendritic growth (Mullins and Sekerka 1963; Langer 1980). As one might expect, the 

transition from spherical to dendritic morphology depends on the diffusion length over 

which the crystallizing components are depleted. Qualitatively, for large diffusion lengths 

the increase in supersaturation surrounding a protrusion is minor compared to the rest of 

the spherulite. In this regard, we attribute the sphericity of spherulites in our samples to 

the high mobility of water (in relation to reaction kinetics) throughout their growth 

history.  

Conclusions 

Water concentration profiles adjacent to spherulite rims provide information about the 

growth history of spherulites in rhyolitic vitrophyres. We have shown that these profiles 

can be modeled assuming a combination of diffusion-controlled spherulite growth 

kinetics and post-growth diffusion of water. Qualitatively, this model can resolve 

temperature differences at which different spherulites grew and it accounts for why 

spherulites are spherical. We find that the glass transition is not a barrier to spherulite 

growth because chemical diffusivities are not sensitive to this transition. Furthermore, 

because thermal diffusivities are much faster than chemical diffusivities, spherulite 

crystallization does not lead to runaway heating and complete crystallization or 

devitrification of rhyolitic vitrophyres.  

Our model also provides timescales for spherulite growth. Swanson (1977) was the first 

to show that crystals can grow to large sizes (mm-scale) on surprisingly short timescales 

(on the order of days) in systems with more than one phase. We have inferred that this 

holds true in the natural setting where spherulites can grow to large sizes on the order of 



days at eruptive temperatures. However, spherulite growth rates decrease exponentially 

with temperature and become prohibitively slow at temperatures below about 400°C.  

Lastly, we emphasize that the results presented here are based on spherulites from a 

single locality. A similar approach applied to spherulites from elsewhere will be useful in 

the future. In particular, we would like to compare timescales of during- and post-growth 

diffusion of water between spherulites that experienced different cooling histories. 

Information such as this may lead to an explanation for how and when spherulite growth 

and water diffusion become decoupled.  
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