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Abstract 

New synthetic procedures for the preparation of Ce(cot)2, cerocene, from [Li(thf)4][Ce(cot)2], and 

Ce2(cot)3 in high yield and purity are reported. Heating solid Ce(cot)2 yields Ce2(cot)3 and COT while 

heating Ce2(cot)3 with an excess of COT in C6D6 to 65 °C over four months yields Ce(cot)2. The solid 

state magnetic susceptibility of these three organocerium compounds shows that Ce(cot)2 behaves as a 

TIP (temperature independent paramagnet) over the temperature range of 5-300 K, while that of 

Ce2(cot)3 shows that the spin carriers are antiferromagnetically coupled below 10 K; above 10 K, the 

individual spins are uncorrelated, and [Ce(cot)2]- behaves as an isolated f1 paramagnet. The EPR at 1.5 

K for Ce2(cot)3 and [Ce(cot)2]- have ground state of MJ= ±1/2. The LIII edge XANES of Ce(cot)2 (Booth, 

C.H.; Walter, M.D.; Daniel, M.; Lukens, W.W., Andersen, R.A., Phys. Rev. Lett. 2005, 95, 267202) and 
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Ce2(cot)3 over 30-500 K are reported; the Ce(cot)2 XANES spectra show Ce(III) and Ce(IV) signatures 

up to a temperature of approximately 500 K, whereupon the Ce(IV) signature disappears, consistent 

with the thermal behavior observed in the melting experiment. The EXAFS of Ce(cot)2 and Ce2(cot)3 

are reported at 30 K; the agreement between the molecular parameters for Ce(cot)2 derived from 

EXAFS and single crystal X-ray diffraction data are excellent. In the case of Ce2(cot)3 no X-ray 

diffraction data are known to exist, but the EXAFS are consistent with a “triple-decker” sandwich 

structure. A molecular rationalization is presented for the electronic structure of cerocene having a 

multiconfiguration ground state that is an admixture of the two configurations Ce(III, 4f1)(cot1.5-)2 and 

Ce(IV, 4f0)(cot2-)2; the multiconfigurational ground state has profound effects on the magnetic 

properties and on the nature of the chemical bond in cerocene and, perhaps, other molecules.   

Introduction 

The initial synthesis of cerocene, Ce(η8-C8H8)2 or Ce(cot)2, over thirty years ago,1 caused little 

excitement or controversy since it was assumed to be the lanthanide analogue of thorocene and 

uranocene, both of which were known.1, 2 These cot-derivatives were formulated as being derived from 

two cyclooctatraene dianions, each of which contain 10 π-electrons and therefore are Hückel aromatic, 

which resulted in an oxidation number of four assigned to the metal atoms in these sandwich molecules, 

that is, the electronic structure of cerocene was expected to be Ce(IV, 4f0)(cot2-)2. This formulation is 

supported by ionic radii sum arguments and by the apparent diamagnetism as judged by the 1H NMR 

spectrum.1, 3 Further support was derived from gas phase photoelectron spectroscopic studies which 

showed that the He(I) and He(II) spectra are superimposable on those of Th(cot)2.3, 4 This simple and 

comfortable view of the bonding was challenged by quantum mechanical calculations at the 

intermediate neglect of differential overlap (INDO) level of theory in which the cerium ion was treated 

as a point charge, reported in 1989 by Neumann and Fulde.5 These authors postulated that the electronic 

configuration Ce(III, 4f1)(cot1.5-) was lower in energy than that of Ce(IV, 4f0)(cot2-)2 and that the ground 

state is an orbital singlet, and that the magnetic susceptibility of cerocene should show temperature 
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independent paramagnetism, χm > 0, rather than diamagnetism, χm < 0. The initial calculations were 

supported by high level multireference configuration interaction including single and double excitation 

(MRCISD) studies which predict that the ground state is an admixture of the two wave functions 

represented by Ce(III, 4f1)(cot1.5-)2 and Ce(IV, 4f0)(cot2-)2.6-9 Early experimental evidence supporting 

this hypothesis was provided by room temperature Ce K-edge X-ray absorption near edge (XANES) 

spectra of substituted cerocene derivatives, [1,4-(Me3Si)2C8H6]2Ce and [1,3,6-(Me3Si)3C8H5]2Ce, 

indicating that the K-edge position lies in the range found for various Ce(III) model compounds,10 and 

more recently by absorption, MCD and luminescence spectra on [1,4-(Me3Si)2C8H6]2Ce at variable 

temperatures, which are more consistent with a Ce(III) compound.11 We have recently published high 

resolution Ce LIII-edge XANES as a function of temperature; this study along with variable temperature 

magnetic susceptibility data support the model that the ground state of cerocene is multiconfigurational 

and not diamagnetic as χm is positive and temperature independent (TIP).12 These physical studies 

required a high-purity synthesis of Ce(cot)2, which was not available.  

This paper describes a convenient synthesis of Ce(cot)2 and Ce2(cot)3. In addition, their molecular 

structures are determined using the local structure extended X-ray absorption fine-structure (EXAFS) 

technique, providing the first evidence of the triple-decker structure of Ce2(cot)3. The Ce LIII edge of 

cerocene as a function of temperature provides experimental evidence for the multiconfiguration ground 

state advocated by the calculational studies.6-9 

   

Results and Discussion 

Previous synthetic studies. The initial synthesis of K[Ce(cot)2] used K2cot and CeCl3 in 

tetrahydrofuran.13 In our hands, this synthesis method did not produce useable quantities of K[Ce(cot)2]. 

Although a synthetic route from CeI3 and K2cot has recently been published, a difficulty is that 

K[Ce(cot)2] does not have an 1H NMR spectrum at room temperature in either thf-d8 or pyridine-d5 and 

the anion is insoluble in C6D6. Thus, the purity of the anion is not readily determined. The lithium and 

sodium salts of the cerate, [Li(thf)4][Ce(cot)2] and [Na(thf)3][Ce(cot)2], have been prepared, and more 
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importantly, these complexes display 1H NMR resonances.14  The potassium salt of the cerate is an 

important reagent since Ce(cot)2 is prepared from it by oxidation with AgI or allyl bromide.3, 15 

Alternatively, cerocene can be prepared from Ce(O-i-Pr)4•i-PrOH, C8H8 and Et3Al.1 However, this 

synthetic route requires large quantities of C8H8 as reagent and solvent, which is now very expensive. 

Since studies of the physical properties outlined in the Introduction require reasonable quantities of 

Ce(cot)2 in high purity, a good salt metathesis route is clearly desirable; a synthetic route is described 

below.  

 

Synthesis and Physical Properties of [Li(thf)4][Ce(cot)2]. Li2(cot) is prepared from Li-wire and 

cyclooctatetraene in tetrahydrofuran and purified by crystallization from that solvent. The light green 

crystals contain coordinated solvent, and its stoichiometry may be determined by integration of the 1H 

NMR spectrum in pyridine-d5. Anhydrous CeCl3 reacts cleanly with two equivalents of Li2(cot) in 

boiling tetrahydrofuran to give a deep green solution, from which [Li(thf)4][Ce(cot)2] may be 

crystallized as exceedingly air sensitive, green needles in good yield, eq. 1. 

  

2 [Li(thf)x]2(C8H8) + CeCl3
THF

- 3 LiCl, 66 %
[Li(thf)4][Ce(C8H8)2] (1)

 

 

The physical properties of the anion are identical to those previously reported,14 with the exception of 

the 1H NMR spectrum. The cerate is insoluble in C6D6 and the 1H NMR spectra are obtained in either 

thf-d8 or pyridine-d5 in which the C8H8 resonances are observed at 20 °C at δ 1.50 (ν1/2 = 100 Hz) or δ 

2.44 (ν1/2 = 130 Hz), respectively, in addition to resonances at δ 1.6 and 3.5 due to thf-d0. The resonance 

due to the cot ligand is temperature dependent as expected for a paramagnetic compound, and the δ vs. 

T-1 plot is shown in Figure 1; the resonances due to thf are nearly temperature independent and they are 

shifted upfield relative to those of free thf by ca. 0.1 ppm. The reported 1H NMR spectrum in thf-d8 
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contains two resonances at δ 0.34 and 0.04;14 these two resonances have never been observed in any of 

our spectra, and we do not know their identity.   
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Figure 1. Chemical shift (δ) vs. T-1 plots of [Li(thf)4][Ce(cot)2] in thf-d8 and of Ce(cot)2 in toluene-d8. 

The low solubility of [Li(thf)4][Ce(cot)2] limited the accessible temperature regime to 255-355 K, 

whereas the 1H NMR spectra for Ce(cot)2 were collected from 206 to 375 K.  

 

Solid State Magnetism (SQUID) of [Li(thf)4][Ce(cot)2]. The reported magnetic moment of 

K[Ce(cot)2] in tetrahydrofuran solution of 1.88 μB (at 300 K)13 is thought to be incorrect, since 

cerium(III) is a 4f1 ion and the free ion term is 2F with a magnetic moment of 2.54 Bohr magnetons 

(μB).16-18 Spin-orbit coupling splits this state into two levels with J= 5/2 (ground state) and J= 7/2 

(excited state) with a separation in the free ion of ca. 2200 cm-1, so the J= 7/2 state is not populated at 

293 K (kT= 205 cm-1). The crystal field splits the ground state into three Kramer’s doublets with 

MJ=±1/2, ±3/2, and ±5/2, which are more conveniently represented using the |J,MJ> representation. 

Thus, the three Kramers doublets are |5/2, ±1/2>, |5/2,±3/2> and |5/2,±5/2>. These states are populated 

thermally according to the Boltzmann distribution, resulting in a χ-1 vs. T plot that is non-linear, i.e., it 

deviates from the Curie-Weiss law, χ-1 = C/(T−θ). The solid state magnetic susceptibility study on 
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[Li(thf)4][Ce(cot)2] was performed as previously reported,19 and an effective magnetic moment of 2.21 

μB at 300 K is observed (Figure 2). This value is in good agreement with the limiting value of 2.14 μB 

predicted by Warren.16, 17 

At T< 200 K, the plot of χT vs. T is linear with a sharp deviation at T< 10 K.  The reason for the non-

linear behavior at low T is unknown but is assumed to be due to intermolecular antiferromagnetic 

interactions.  The linear behavior of the χT vs. T is caused by mixing of a thermally isolated ground 

(MJ) state with a low-lying but thermally unpopulated excited state with ΔMJ = ±1 resulting in strong 

second-order Zeeman effects.  The value of μeff  for the ground state, 1.77 μB, may be determined by 

extrapolating χT to 0 K (μeff
2 = 7.997 χT). 
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Figure 2. χ (triangles) and χT (circles) vs. T plots for [Li(thf)4][Ce(cot)2] at 0.5 T.  

Electron Paramagnetic Resonance (EPR) spectrum and ground state of [Li(thf)4][Ce(cot)2].  The 

EPR spectrum and its simulation for [Li(thf)4][Ce(cot)2] is shown in Figure 3.  The g-values derived 

from fitting the spectrum are g1= 2.270, g2 = 2.274, and g3 = 1.123.  Since 4μeff
2 = g1

2 + g2
2 + g3

2, μeff 

derived from the EPR spectrum is 1.70 μB in good agreement with the value of 1.77 μB obtained from 

the SQUID measurements, which strongly supports the assertion that the state observed by EPR is 
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indeed the ground state.  The g-values obtained by fitting the spectrum describe an axial complex with 

g⊥ = 2.272 and g|| =1.123.   

 

Figure 3. EPR spectrum and simulation for [Li(thf)4][Ce(cot)2] at 1.5 K, g⊥ = 2.272 and g|| =1.123. 

As noted above, the ground state of Ce(III) is J=5/2, which is split by the crystal field into three 

Kramers’s doublets: |5/2,±1/2>, |5/2,±3/2>, and |5/2,±7/2>.  Each of these doublets has a characteristic 

EPR spectrum given by the following:20 

|5/2,±1/2>: g|| = 6/7 = 0.86, g⊥ = 18/7 = 2.57 

|5/2,±3/2>: g|| = 18/7 = 2.57, g⊥ = 0 

|5/2,±5/2>: g|| = 30/7 = 4.29, g⊥ = 0.  

The observed g-values are close to those for MJ = ±1/2, so the ground state of [Li(thf)4][Ce(cot)2] 

must largely consist of |5/2,±1/2>.  The disagreement between the observed g-values and those of 

|5/2,±1/2> are due to either mixing of |5/2,±3/2> and/or |5/2,±5/2> with |5/2,±1/2> or are due to mixing 

with the excited J=7/2 state, especially |7/2,±1/2>.21 Since an axial crystal field with symmetry Cn mixes 

states of MJ = ±n, no mixing of the different MJ levels for [Li(thf)4][Ce(cot)2] with D8h idealized 



 8

symmetry is expected.20  In reality, the site symmetry of [Li(thf)4][Ce(cot)2] is only C2, so mixing of the 

MJ levels is possible but will not be large as the local symmetry is very close to C8.  A more likely 

explanation is mixing of |7/2,±1/2> with the ground state producing a ground state of the form 

±a|5/2,±1/2> ± b|7/2,±1/2>, where a2 + b2 = 1. The best fit to the observed g-values yields a = 0.990 and 

b = 0.143, which yields g||(calc.) = 1.143 and g⊥(calc.) = 2.285 in good agreement with the observed 

values of 1.123 and 2.272, respectively.  Including an orbital reduction factor, k, to account for the 

small amount of covalence in this complex gives an exact fit to the data with a = 0.991, b = 0.131, and k 

= 0.990. 

The primarily |5/2,±1/2> ground state of [Li(thf)4][Ce(cot)2] may be more clearly represented using 

|Ml,Ms> rather than |J,MJ> to better illustrate the interaction between the cot2- ligand and Ce atomic 

orbitals.  As previously shown by Gourier, ±|5/2, 1/2> in |J,MJ> can be transformed to  ±0.65|0,1/2> ± 

0.76|1,1/2> in  |Ml,Ms>;22 in other words, the unpaired electron in ±|5/2, 1/2> has approximately equal 

fz
3

 and (fzx
2, fyz

2) character (Table 1).  This observation may seem counterintuitive as the (fx(x
2

-3y
2

), fy(3x
2

-

y
2

)) orbitals have the correct symmetry to interact with the lowest lying unoccupied orbitals of the cot2- 

ligands although the overlap is expected to be small.  The implicit assumption that makes the orbital 

energy ordering seem counterintuitive is that the Ce 4f orbitals are an appropriate basis from which to 

examine bonding with the ligand orbitals. However, spin-orbit coupling is expected to be significantly 

larger than the bonding interactions between the cot2- ligands and the Ce(III) center;20, 21 therefore, the 

J=5/2 states and not the 4f orbitals are the appropriate basis.  In [Li(thf)4][Ce(cot)2], as in U(C7H7)2
-, 

only the fxyz and f(x
2

-y
2

)z orbitals have the proper symmetry and sufficient overlap to interact strongly 

with the ligands, which makes the orbital ordering easily understood,  The orbitals most destabilized by 

interaction with the filled ligand orbitals are those with the most fxyz and f(x
2

-y
2

)z character.  Therefore, 

|5/2, ±3/2> will be most destabilized, and |5/2. ±1/2> will be lowest in energy as observed.  The orbital 

that will be most stabilized by interaction with the empty ligand orbitals, (fx(x
2

-3y
2

), fy(3x
2

-y
2

)), belongs to 

the J=7/2 state with MJ=7/2 and is destabilized by ~2200 cm-1 relative to the J=5/2 states due to spin-

orbit coupling.  
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Table 1. Composition of the J=5/2 ground state in terms of the 4f states22 

J=5/2 state fz3  (%) 

fσ 

( fxz2 , fyz2 )(%

) 

fπ 

fxyz , f(x 2 −y2)z (%)

fδ 

fx (x 2 −3y2 ), fy(3x 2 −y2) (%

) 

fφ 

|5/2. ±1/2> 42.9 57.1   

|5/2, ±3/2>  28.6 71.4  

|5/2, ±5/2>   14.2 85.8 

 

 

Oxidation of [Li(thf)4][Ce(cot)2] to give Ce(cot)2. The synthesis of [Li(thf)4][Ce(cot)2] provides a 

convenient starting material in high purity, and various oxidizing reagents for the preparation of 

cerocene are investigated. In our hands, [Cp2Fe][PF6] in tetrahydrofuran or p-benzoquinone (ratio 1:1) 

in toluene oxidize the cerate cleanly (Scheme 1).23 These two reagents are excellent oxidizing reagents 

in cerium chemistry.24 

 

Scheme 1. 

Li[Ce(C8H8)2] Ce(C8H8)2

O O

[Cp2Fe][PF6]

Li / THF

-LiPF6, - Cp2Fe

- Li(O2C6H4)  

 

A complete conversion of Li[Ce(cot)2] is not achieved with 1:0.5 ratio of  p-benzoquinone. The 

facility of this oxidation is demonstrated by the fact that Li[Ce(cot)2] reacts with p-benzoquinone even 

in the solid state as indicated by a color change from light green to deep purple-red, when the two 
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reactants are mixed in a flask before solvent is added. Cerocene, Ce(cot)2, is obtained by continuous 

extraction with boiling toluene,25 from which it crystallizes in moderate yield and high purity, as dark 

red needles, sparingly soluble in aromatic hydrocarbons and tetrahydrofuran. The absence of lithium 

containing by-products was verified by a negative flame test. In the solid state it inflames immediately 

in the presence of oxygen. Its physical properties are as previously reported.1, 3, 15 The 1H and 13C{1H} 

NMR spectra of cerocene in C6D6 as solvent consist of a single sharp resonance at 5.79 ppm (1H) and 

114.9 ppm (13C), and the 1H NMR chemical shift shows only a small temperature dependence (Figure 

1).  

Although a molecular ion with the correct isotope pattern is observed in the EI mass spectrum for 

Ce(cot)2, it does not sublime in diffusion pump vacuum, in sharp contrast to Th(C8H8)2 and U(C8H8)2;26, 

27 instead it decomposes, see below. This is rather surprising considering that powder diffraction data 

suggested that Ce(C8H8)2 is isostructural and isomorphous to Th(C8H8)2 and U(C8H8)2;1 a single crystal 

X-ray structure has recently appeared, and Ce(cot)2 is indeed isomorphous with Th(C8H8)2 and 

U(C8H8)2.28 The unexpected lack of volatility observed for Ce(cot)2 compared to its uranium and 

thorium analogues warranted further investigations of its thermal properties; see below.  

 

Solid State Magnetism (SQUID) of Ce(cot)2. The temperature dependence of the magnetic 

susceptibility is shown in Figure 4 as χ and χT vs. T plots. In the published χ vs. T plot, the diamagnetic 

contribution from the C8H8 rings is removed using Pascal´s constants.12 In Figure 4, the diamagnetic 

contribution is removed using the published high-temperature data (50-300 K) for thorocene, which is 

diamagnetic.29 The TIP value of 1.7(2) × 10-4 emu/mol compares well with the published value of 1.4(2) 

× 10-4 emu/mol using Pascal´s constants.      
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Figure 4. χ and χT vs. T plots for Ce(cot)2.  

 

Thermal conversion of Ce(cot)2 to Ce2(cot)3. Unlike Th(cot)2, which sublimes at 135-160 °C in 

vacuum,27, 30, 31 and U(cot)2, which sublimes at 140-210 °C in vacuum,26, 32, 33 cerocene does not sublime 

when heated under diffusion pump vacuum. Instead, a red film forms on the cold walls of the sublimator 

when heated rapidly in vacuum,25 while most of the material formed a green powder insoluble in all 

common organic solvents. This unusual temperature behavior was investigated in the following way. 

When cerocene is heated in a melting point capillary, sealed under nitrogen, the solid did not melt but 

changed color from dark red to green and a yellow liquid formed in the head space at 290-292 °C.31 

Opening the capillary and examining the volatile material by 1H NMR spectroscopy shows it to be free 

C8H8. The insoluble green powder was identified by IR spectroscopy as Ce2(cot)3.1 Thus, the clean 

thermal decomposition of cerocene provides an excellent synthesis of the dicerium triple-decker 

sandwich compound, eq. 2. It is noteworthy that storage of Ce(cot)2 in a glass ampoule at room 

temperature in the dark for 140 weeks also resulted in formation of Ce2(cot)3 (ca. 10 %, an estimate 

based on magnetic susceptibility measurements). The reverse process is achieved by suspending 

Ce2(cot)3 in a ca. 70-fold excess of C8H8 in C6D6 at 65 °C and monitoring the 1H NMR spectrum. Over 

a time span of 4 months, the formation of Ce(cot)2 is complete. In the presence of catalytic amounts of 
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Al(C2H5)3 and a 70-fold excess of COT at 130 °C, the conversion is complete within 1 h.1  The rate 

difference may be explained by the insolubility of Ce2(cot)3 in C6D6 at 65 °C. The thermal behavior is 

similar to that of Ti2(C8H8)3.34 

 

2 Ce(C8H8)2 Ce2(C8H8)3 +  C8H8 (2)  

 

The original synthesis reported by Greco and co-workers is shown in Scheme 2. It seems reasonable 

to suggest that Ce2(cot)3 is formed along with Ce(cot)2 but it is rapidly converted to cerocene under the 

conditions employed, i.e., with C8H8 acting as reactant and solvent.1 Alternatively, this molecule has 

been prepared by co-condensation of cerium metal atoms and C8H8 at –196 °C.35  

 

Scheme 2. Synthesis of Ce(cot)2 and Ce2(cot)3.1 

Ce(O-i-Pr)4 . i-PrOH + 5 (C2H5)3Al Ce(C8H8)2 + 5 (C2H5)2Al(O-i-Pr) + C2H6 

+ (4 C2H5
.)

C8H8 (excess)

140 °C, 1h, 65 %

Ce2(C8H8)3 + 10 (C2H5)2Al(O-i-Pr) + 2 C2H6

+ (8 C2H5
.)

67 %

30 min
2 Ce(O-i-Pr)4 . i-PrOH + 10 (C2H5)3Al + 3 C8H8

C8H8, (C2H5)3Al

 

 

EPR Spectrum and ground state of Ce2(cot)2. As shown in Figure 5, Ce2(cot)3 has the characteristic 

spectrum of a spin triplet state with axial symmetry, which is clearly indicated by the present of the 

half-field peak with g=4.83.20  The zero-field splitting of g⊥ disappears as the sample temperature is 

increased above ~3 K, presumably due to exchange narrowing (see Supporting Information, Figure 

S1).36  The ground state of Ce2(cot)3 is very similar to that of [Li(thf)4][Ce(cot)2] and has similar g 

values: g⊥ = 2.335 and g|| = 0.974.  Using the approach described above, the ground state for Ce2(cot)3 is 

±a|5/2,±1/2> ± b|7/2,±1/2>, with a= 0.999, b= 0.051, and k= 0.967, which yields g-values identical to 
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the observed ones. Like the g-values, the zero-field splitting (ZFS) for this system is anisotropic with 

|D||| = 0.020 cm-1 and |D⊥| = 0.014 cm-1, which is not surprising as the anisotropy in g makes the ZFS 

due to both dipole-dipole coupling and exchange coupling anisotropic.36  

 

 
 

Figure 5. EPR spectrum of Ce2(cot)3 at 1.5 K, g|| = 0.974, g⊥ = 2.335, |D||| = 0.020 cm-1 and 

|D⊥| = 0.014 .cm-1 

 

Solid State Magnetism (SQUID) of Ce2(cot)3. The magnetic properties of the triple-decker complex 

were determined in order to explore the question of exchange coupling across the cot2- ligand. The 

paramagnetic cerium(III), f1, spin carriers are separated by about 4 Å, as estimated from the EXAFS 

data, see below. The solid state magnetic susceptibility was recorded from 2-300 K, see Figure 6. At 

high temperature, the 1/χ vs. T plot is as expected for two uncorrelated spin carriers and yields an 

effective magnetic moment of 2.8 μB per molecule (2.0 μB per Ce(III) center) at 300 K. At low 

temperature, the value of χ increases normally with decreasing temperature until a maximum is reached 
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and then declines rapidly with decreasing temperature. This behavior is indicative of antiferromagnetic 

spin exchange interaction, and the temperature at which the maximum susceptibility occurs is the Néel 

temperature (TN), which occurs at 8 K (Figure 6).  
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Figure 6. Magnetic susceptibility (triangles) and χT (circles) of Ce2(cot)3 at 4 T. The fit of the data to 

eq. 4 with J’/k = -3.2 K is shown in the solid lines. 

 

The susceptibility may be modeled using the approach developed by Lines for modeling coupling 

between two ions with unquenched orbital angular momentum.37  Briefly, the Lines approach treats 

each ion as an effective spin, S
~

, 1/2 system in which the spins are coupled isotropically (Heisenberg 

coupling, Hex=2J’(S
~

•S
~

)). In addition, the g-factor in the usual equation for Heisenberg coupling is 

replaced by a fictitious, temperature dependent g(T).  For a dimetallic system, as we have here, the 

equation for susceptibility is given by eq. 3, where the symbols have their usual meanings, and J’ is the 

coupling constant for the fictitious S=1/2 system.  Although Lines cautions that g(T) is not the same as 

that due to an isolated ion due to exchange splitting of the higher energy states, in the case of Ce2(cot)3, 

the exchange splitting is weak, and the coordination environment of Ce is likely to that found in 

[Li(thf)4][Ce(cot)2].  Therefore, g(T) for [Li(thf)4][Ce(cot)2] should be a good model for g(T) for 
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Ce2(cot)3, and eq. 3 may be rewritten in a simpler form as eq. 4 where χmono is the susceptibility of 

[Li(thf)4][Ce(cot)2].  As shown in Figure 6, this model provides an excellent fit to the susceptibility of 

Ce2(cot)3.  As noted above, the susceptibility of [Li(thf)4][Ce(cot)2] was not recorded at T<5K, and χ 

was estimated using the Curie Law fit for 5 K < T < 80 K for use in eq. 4; these points were not used in 

the fit and are included to illustrate that the fit to the data for Ce2(cot)3 is very good even when this 

approximation is made for χmono at T < 5 K. 

χ =
N[g(T)]2μB

2

4kT
8

3+ e−2 ′ J kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟      (3) 

χ = χmono
8

3+ e−2 ′ J kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       (4) 

The coupling constant for the true spin system, J, can be determined from J’ if the ground state is 

known since J’x = (gx/gJ)2(gJ-1)2J and J’=(1/3)(Jx’+Jy’+Jz’) where gJ is the Landé g-value.20  As shown 

above, the ground state for Ce2(cot)3 is mainly |5/2,1/2> for which g|| ≈ gJ = 6/7 and g⊥ ≈ 3gJ. Therefore, 

J/k is approximately equal to 147J’/19 or -26 K for the coupling of the true spins (as opposed to the 

effective spins) in Ce2(cot)3. 

A reasonable microscopic explanation for the coupling is a polarization model,38 which is an 

electrostatic model introducing spin correlation through polarization, rather than a molecular orbital 

model based on the interactions through orbitals. It is impossible to decide which model is more 

appropriate, but the polarization model has the virtue that it is simple to use and understand. It can be 

applied to this molecule in the following way. In a linear arrangement, Ce(1)-L-Ce(2), where Ce 

symbolizes the (C8H8)Ce(III) fragment and L symbolizes the bridging dianionic [C8H8]2- ligand, the 

spins on the two Ce(III) fragments can be orientated in two ways: Ce(α)…Ce(α) and Ce(α)…Ce(β). 

Placing the spin-paired bridging group, represented by L(αβ), between the two Ce(III) fragments, four 

possible arrangements of the four spins will result: α(αβ)α, α(βα)α, α(αβ)β, and α(βα)β. The 

difference in energy between these microstates is small, and the state with the α(αβ)β orientation is 
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slightly energetically preferred, since there are two favorable exchange interactions between spins on 

the Ce(III) fragments with the spins on the bridging ligand. The spins are therefore polarized, with the 

result that the spin on each Ce(III) is antiferromagnetically aligned below the Néel temperature. 

According to the Boltzmann distribution, the other spin alignments get populated with increasing 

temperature, and increases until the populations of each state are equal (Néel temperature). At higher 

temperatures, the magnetic susceptibility decreases with increasing temperature, since the spins are 

uncorrelated. A similar polarization model was used to rationalize the antiferromagnetic coupling in 

{[(C5Me5)2Yb(III)]2(bipyrimidine)}39 and {[(MeC5H4)3U]2(μ-1,4-N2C6H4)}40  

 

Ce LIII edge XANES Results. Although the degree of f-involvement in bonding in most lanthanide 

compounds is very low due to the strongly localized character of the 4f orbitals, this situation is not 

necessarily the case in cerium-based compounds. For instance, in the formally tetravalent-cerium 

compounds CeO2 and CeF4, clear features are present in both41 Ce LIII X-ray absorption42 and X-ray 

photoelectron spectra that indicate a fractional f-occupancy, nf, near 0.5. Anderson model calculations43 

agree with these measurements which find that the remaining f-weight is delocalized over the ligands. 

More recently, we have found that cerium in cerocene is similarly intermediate valent with nf= 0.89.12  

Figure 7 shows these data together with Ce LIII XANES from a Ce2(cot)3 sample and from the Ce(cot)2 

sample after heating to about 565 K. The first (main) peak near 5722 eV is due to a 2p3/2 electron 

transition to a 5d excited state in the presence of the 4f1 state, that is, a 2/32 p 4f15d final state (trivalent 

cerium component). The feature in cerocene near 5734 eV is due to a 2/32 p 4f05d final state (tetravalent 

cerium component). Interestingly, in Ce2(cot)3, these data show no tetravalent cerium component. All 

the data show that cerium is trivalent in Ce2(cot)3. After cerocene was heated to 500 K, the data 

similarly shows dominant trivalent cerium character. Differences in the main peak height are likely due 

to differences in the crystal structure of Ce(cot)2 and Ce2(cot)3. The conversion from Ce(cot)2 to 

Ce2(cot)3, which occurred in the melting experiment at 290-292 °C, appears to be time dependent. The 
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XANES spectra collected a various temperatures clearly indicate that the conversion already occurs at 

about 400 K, but is complete at 500 K (see Supporting Information for details, Figure S2). 
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Figure 7. Ce LIII-edge X-ray absorption near-edge spectra for Ce(cot)2, Ce2(cot)3 and Ce(cot)2 after 

heating to 500 K. The energy is calibrated by placing the first inflection point of the CeO2 edge at 5723 

eV. 

 

Ce LIII edge EXAFS Results. Figure 8 shows the k2χ(k) data for both the Ce(cot)2 and the Ce2(cot)3 

samples, as well as the cerocene sample that was heated above 500 K. The initial fits to the cerocene 

data (not shown) are consistent with the known crystal structure, and similar fits to the Ce2(cot)3 data 

are consistent with the nominal triple-decker structure. The following results therefore assume the 

known coordination environment for cerocene, that is, the relative number of neighbors in each 

scattering shell is constrained to its nominal value. For instance, the number of Ce-H neighbors near 3 Å 

is constrained to be equal to the number of Ce-C pairs near 2.7 Å. Therefore, deviations from this model 

are vetted by the bond length distribution variance, σ2, and the bond length, R, for each peak, and by the 

overall S0
2 and ΔE0 parameters. In addition for the Ce2(cot)3 fit, we include a single Ce···Ce pair near 4 

Å. We include this pair to give a possible measure of the potential Ce···Ce distance, and the fit is 
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improved by its inclusion.  However, we do not claim that this fit is evidence for Ce···Ce scattering, as 

its inclusion does not pass a Hamilton test. In particular, Ce-C and multiple scattering peaks overlap 

strongly with the possible Ce···Ce scattering, rendering a reliable measurement impossible with these 

data. 
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Figure 8. The EXAFS function k2χ(k) vs. k for the same samples as in Figure 7. The EXAFS for 

Ce2(cot)3 and the Ce(cot)2 sample after heating to 500 K are nearly identical. 

 

Systematic errors in EXAFS bond lengths are often quoted as 0.005 Å for the nearest neighbors, 

larger for further neighbors, and similarly the nearest neighbor σ2 errors are about 10%. These estimates 

have been made by direct comparisons to standard crystalline materials,44 and vary somewhat with the 

atomic number Z. Hydrogen, however, is a largely unexplored case. We therefore expect that systematic 

errors in this scattering shell in the fit may be substantially larger that in the other scattering shells. 
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Figure 9. Fourier transforms (FT) of k2χ(k) data in Figure 8, transformed between 2.5 and 10.3 Å-1, and 

Gaussian narrowed by 0.3 Å-1. The data and fit of Ce2(cot)3 that was heated to 500 K and then cooled to 

30 K are nearly identical to those from Ce2(cot)3 data, and so are not shown for clarity (see Figure 7). 

 

The final results in Table 2 and Figure 9 indicate that the 16 nearest-neighbors carbons to Ce are at 

2.68 Å and have a narrow σ2. For comparison, Table 3 lists structural information on Ce(cot)2 and 

related compounds obtained from single crystal X-ray diffraction experiments. S0
2 is allowed to vary in 

these fits, and we obtain a value of 0.8. A similar quality fit is obtained for Ce2(cot)3, except that the Ce-

C distance is 2.73(1) Å, and that pair’s σ2 is much wider. This result is expected in a triple-decker 

molecule, as the middle cot ring should be more loosely bound than the outer cot rings. The size of the 

shift in bond length and the magnitude of the increased pair-distance variance are both consistent with a 
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2.68 Å distance from the Ce to the outer cot carbons and a 2.78 Å distance to the inner cot carbons. 

Interestingly, the Ce-H contribution near 3 Å is necessary to fit the high-r shoulder on the main Ce-C 

peak in the Fourier transforms. It is rare in EXAFS analysis that hydrogen has a large enough relative 

scattering amplitude to be required in a fit, but since this Ce-H shell has 16 hydrogens at nearly the 

same distance, they combine to form an important contribution (their presence is confirmed by a 

Hamilton-test).45 

 

Table 2. Fit results from Ce LIII-edge EXAFS data for Ce(cot)2 and Ce2(cot)3 samples. Overall scale 

factors are measured to be 0.84(13) and 0.80(8), and threshold energy shifts ΔE0=-7.7(10) eV and –

5.6(8) eV, respectively. Reported errors for EXAFS results are determined by a Monte Carlo method. 

Data are transformed as in Figure 6 and are fit between 1.2 and 5.0 Å. Multiple scattering shells are 

included in the fit. 

 Ce(cot)2 Ce2(cot)3 

 N R(Å) σ2(Å2) N R(Å) σ2(Å2) 

Ce-C 16 2.68(1) 0.001(1) 16 2.73(1) 0.007(1) 

Ce-H 16 2.93(6) 0.0001(1
) 

16 3.10(3) 0.0001(1
) 

Ce-Ce    1 4.04(5) 0.006(6) 

 

 

Table 3. Selected Bond Distances (Å) and Angles (°) for [Li(thf)4][Ce(C8H8)2], Ce(C8H8)2 and 

Ce(MeC8H7)2 and [1,3,6-(Me3Si)3C8H5]2Ce. 

Compound [Li(thf)4][Ce(C8H8)2] a Ce(C8H8)2 b Ce(MeC8H7)2 c [1,3,6-
(Me3Si)3C8H5]2Ce d 

 Ce-C (mean) 2.74(1) 2.674(5) 2.692(6) 2.704(7) 

Ce-Cent 2.04 1.97 1.97 1.98 

Cent-Ce-Cent 180 180 176 176 
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a ref. 14, b ref. 28, c ref. 46, d ref. 47 

 

As discussed above for the Ce LIII XANES data, the Ce(cot)2 sample was heated to approximately 500 

K and then cooled to 30 K, where we remeasured the EXAFS. Figure 8 shows that the local structure 

around Ce in the heated sample of Ce(cot)2 is practically identical with the authentic Ce2(cot)3, a result 

that is consistent with the melting experiment described above. 

To summarize the X-ray absorption results, Ce(cot)2 is found to have an f-occupancy nf=0.89, while 

cerium in Ce2(cot)3 is trivalent and nf=1. The local structure around cerium in cerocene is consistent 

with that found in the crystal structure (Table 2 and 3), including the surprising result that the Ce-H near 

neighbors must be included in the fitting model to obtain fits of reasonable quality. The local cerium 

structure in Ce2(cot)3 indicates a broadened and lengthened Ce-C pair-distance distribution, consistent 

with the nominal triple-decker model where Ce-C distances are 0.1 Å longer toward the inner cot ring 

than the outer cot rings. 

 

The Kondo Model applied to Cerocene. The original calculational result suggesting that the ground 

state of cerocene is not identical to that of the isoelectronic thorocene, Th(cot)2, as inferred from Xα 

calculations48 and PES data3 was published by Neumann and Fulde.5 This calculation makes the 

provocative claim that the ground state configuration of cerocene is [Ce(III, f1(e2u
1)][(COT-1.5)2 (e2u

3)], 

which is an open-shell orbital singlet of 1A1g symmetry (in D8h symmetry) and is therefore non-

magnetic. This configuration is lowered in energy relative to the triplet state (3E2g) due to configuration 

interaction with the closed-shell configuration, [Ce(IV) f0(e2u
0)][(COT-2)2(e2u

4)] also of 1A1g symmetry.  

Multireference configuration interaction including single and double excitation (MRCISD) calculations 

are fully consistent with the original calculational results, but extends and amplifies them.6-8 Thus, the 

currently accepted calculational model of the ground state configuration of cerocene is an admixture of 

the two 1A1g configurations [Ce(III, f1(e2u
1)][(cot-1.5)2(e2u

3)] and [Ce(IV) f0(e2u
0)][(cot-2)2(e2u

4)] in an 

approximate ratio of 80:20, respectively. These calculational results are fully consistent with the 
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experimental data derived from XANES and magnetic susceptibility studies as a function of 

temperature.12 The LIII edge XANES data show signatures for the Ce(III) and Ce(IV) wave functions 

and the relative populations are approximate 90:10, respectively, in agreement with calculation. The 

magnetic susceptibility data show that cerocene is a temperature independent paramagnet (TIP) to 300 

K, also consistent with calculation. 

The original notion advanced by Neumann and Fulde, viz., that cerocene is a molecular analogue of a 

Kondo singlet, is a model that is unfamiliar to molecular chemists.49 The Kondo model has been used by 

solid state physicists to rationalize the experimental facts that certain metal alloys, for example CeAl3, 

are ground state singlets with a mixed-configuration ground state. Using language that is more familiar 

to molecular chemists, the Kondo singlet is synonymous with an open-shell singlet (S = 0) that is lower 

in energy than the open-shell triplet as a result of an admixture of the two configurations [Ce(III, 

f1(e2u
1)][(cot-1.5)2 (e2u

3)] and [Ce(IV), f0(e2u
0)][(cot-2)2(e2u

4)]. Thus, the term Kondo singlet means that 

the ground state is a multiconfigurational open-shell singlet state. As the temperature of the system is 

increased, the triplet state becomes populated, and at higher temperature (the Kondo temperature) the 

spins become uncorrelated. Clearly cerocene behaves as a Kondo singlet to 300 K but decomposes to 

Ce2(cot)3 and COT before the triplet state becomes populated. 

Recently, gas-phase photoelectron spectra for (C5H5)3Ce,50 and LIII edge X-ray absorption 

spectroscopy and magnetic susceptibility studies, as a function of temperature, have been reported for 

bis(hexamethylpentalene)cerium, (Me6C8)2Ce.51 These data are consistent with a model that these 

organometallic compounds have a multiconfigurational ground state, similar to that found in cerocene. 

More recently, similar spectroscopic studies were reported on the tri-i-propylsilyl analogue, (1,4-(i-

Pr3Si)2C8H4)2Ce, and related derivatives.52 These authors, however, advance the proposition that “it 

seems appropriate to retain the formal description of these multiconfigurational ground state species as 

Ce(IV)”, a proposition with which we disagree. Clearly, the configuration that dominates in cerocene is 

[Ce(III, f1(e2u
1)][(cot-1.5)2 (e2u

3)], and therefore we advocate the view that these organometallic 

molecules are thought of as open-shell singlet molecules in which the oxidation number of cerium is 
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ambiguous and they are representatives of intermediate valence compounds using the term as defined by 

the physics community.53   

 

Epilog 

In this work, [Li(thf)4][Ce(cot)2], Ce(cot)2 and Ce2(cot)3 have been synthesized by reproducible 

synthetic procedures in moderate to good yield and high purity. Ce(cot)2 is synthesized by oxidizing the 

anion, [Ce(cot)2]-, with ferrocenium salts or p-benzoquinone. Cerocene is less thermally stable than 

either thorocene or uranocene, since in the solid state, it eliminates C8H8 on heating to give Ce2(cot)3. 

On the synthetic scale, this is an excellent route to the Ce(III) triple-decker complex, [Ce(III)]2[(cot)2-]3. 

This thermal process was verified by Ce LIII EXAFS and XANES experiments on solid state samples. 

The Ce-C distance in Ce2(cot)3 derived from EXAFS increases to 2.74 Å, compared to the Ce-C 

distance of 2.69 Å for Ce(cot)2.  

The experimental data reported in this article and in an earlier one12 and calculational results reported 

even earlier,8 agree that the electronic structure of cerocene is multiconfigurational begets the question 

of why its electronic structure is so different from that of thorocene, Th(cot)2, which is described by a 

single configuration wave function [Th(IV), f0(e2u
0)][(cot-2)2(e2u

4)].8 The physical properties of 

thorocene have been summarized,29, 31 but the key electronic structure data are that Th(cot)2 is 

diamagnetic, χm= −2.0(1) x 10-4 cm3 mol-1, over the temperature range 26-300 K, and the calculation 

shows that it is a closed-shell singlet of 1A1g symmetry. A Mulliken population analysis of the SCF 

wave function shows that the 5f and 6d orbitals play a significant role in the thorium to ring bonding, 

which is consistent with early PES data.4 Thus, the ground state electronic structure is “normal”, which 

makes the electronic structure of cerocene so very unusual and fascinating. The differences may be 

traced to the relative energy of the electrons in the 4f and 5f shell and how the different metals deal with 

the requirements of the Pauling electroneutrality principle.54 

The energy difference between the experimental 4th ionization energy for the free ions in the gas 

phase for Ce3+/4+
(g) and Th3+/4+

(g) is 36.8 eV and 28.8 eV, respectively.55, 56 Thus, the 5f1 electron is 
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destabilized relative to the 4f1 electron by about 8 eV, i.e., the 4f1 electron is a core electron, a result that 

is consistent with the larger relativistic effects on the nuclei with larger values of Z, which destabilizes 

the 5f and 6d shells.6, 57 One ramification of this is that the energy involved in making M(IV)(cot-2)2, 

with a f0(e2u
0) (cot-2)2(e2u

4) configuration requires less energy for thorium than for cerium. In Th(cot)2 

the enthalpy penalty is compensated by transfer of electron density from e2u
4 and e2g

4 ligand molecular 

orbitals to thorium by way of the 6f and 5d atomic orbitals, respectively, so that the charge on thorium 

is not +4. A Mulliken population analysis on the SCF wave functions estimates that the charge on 

thorium is +1.2, i.e. Th(cot)2 is covalent: it shares its valences in order to reduce the charge on the 

metal. Cerium in Ce(cot)2, however, does not share its valence as readily; the Mulliken population 

analysis estimates that the charge on cerium is +1.8 in the multiconfigurational wave function, in which 

the Ce(III):Ce(IV) configurations are weighted 80:20.8 The difference in charge density at the metal 

may be thought of as a way in which these two metals in M(cot)2 deal with the restrictions of the 

Pauling electroneutrality principle. In the case of M = Th, the net charge density on the metal is reduced 

by covalent bonding. When M = Ce, the reduced covalence within the requirement of the 

electroneutrality principle means that the [Ce(III), f1(e2u
1)][(cot-1.5)2 (e2u

3)] structure must dominate the 

[Ce(IV), f0(e2u
0)][(cot-2)2(e2u

4)] structure, in valence bond language, which is equivalent to the molecular 

orbital language used above. In this manner, the abnormal behavior of cerocene, relative to thorocene, 

may be explained in language that is familiar to molecular chemists. 

The proposed mechanism for the multiconfigurational ground state is a lowering of the Ce(III, 

4f1)(cot1.5-)2 configuration energy due to an antiferromagnetic interaction between the local f1 orbital 

hybridized with the π electrons on the COT ring. This mechanism should not be unique to cerocene, and 

may be an important component for understanding chemical bonding and magnetism in a very wide 

range of molecular organometallic compounds. The extension of the concept of multiconfigurational 

ground states to other 4f-block metal compounds will bring this topic, which is currently in the domain 

of physicists, into the chemistry community. One such extension is to Yb(II) compounds, as mentioned 

by Neumann und Fulde;5 a specific example is the magnetic behavior of (C5Me5)2Yb(bipy).12 These 
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concepts are controversial despite the above calculations and measurements;6-9, 12 however, cerocene 

stands apart from these other materials because of its high symmetry (D8h), which makes the high-level 

CI calculations manageable, and because of cerocene’s status as the first molecule where the 

multiconfigurational interaction concept has been seriously considered. 

 

Experimental Section 

   General Comments. All reactions, product manipulations and characterizations have been carried 

out as previously described.19, 58 Magnetic measurements were conducted in a 7 T Quantum Design 

MPMS magnetometer utilizing a superconducting quantum interference device (SQUID). Between 10 

and 25 mg of sample were sealed in evacuated quartz tubes while held in place with ~5 mg of quartz 

wool. This method provided a very small and reliable container correction, typically of about -2 × 10-5 

emu/mol. The data were also corrected for the overall diamagnetism of the molecule using Pascal 

constants.59 For a more detailed description see ref. 19. Electron paramagnetic resonance (EPR) spectra 

were obtained with a Varian E-12 spectrometer equipped with an Oxford ESR10 continuous flow 

helium cryostat, an EIP-547 microwave frequency counter, and a Varian E-500 gaussmeter, which was 

calibrated using 2,2-diphenyl-1-picrylhydrazyl (DPPH, g = 2.0036). The EPR sample space was 

continuously pumped, and temperature was controlled by changing the pressure in the sample space. 

The temperature was recorded using a thermocouple in the cold He stream just below the sample space, 

and the actual temperature of the sample is assumed to be slightly greater.  The low temperature spectra 

were fit using a version of the code ABVG modified to fit spectra in the frequency regime as suggested 

by Pilbrow and to fit spectra using the Levenberg-Marquardt method.60-62 

 

Li2(C8H8)(thf)1.7.63 Cyclooctatetraene (3.8 mL, 3.52 g, 32.5 mmol) was added to lithium wire (0.46 g, 

66.2 mmol), cut into small pieces, in 50 mL of tetrahydrofuran at room temperature. The reaction 

mixture became warm, and changed color to brown, then green while it was stirred overnight at room 

temperature. The solution was filtered, concentrated to ca. 30 mL and cooled to -25 °C. Two crops of 
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light green crystals were isolated and exposed to dynamic vacuum for 2 hours at room temperature. 

During this desolvation process the crystals collapsed to a grey-yellow powder that still contained 

coordinated tetrahydrofuran, Li2(C8H8)(thf)1.7 (4.38 g, 18.2 mmol, 56 %). The tetrahydrofuran content 

was established by 1H NMR spectroscopy in pyridine-d5. Warning: Dry sodium and potassium salts of 

cyclooctatetraene react explosively with air, whereas the lithium salt is less reactive with air, but it must 

be handled with care. The lithium salt can be stored at room temperature in a well-sealed Schlenk tube 

under a nitrogen atmosphere. 

 

[Li(thf)4][Ce(C8H8)2].14  Li2(C8H8)(thf)1.7 (2.95 g, 12.3 mmol) and anhydrous CeCl3 (1.51 g, 6.15 

mmol) were weighed into a Schlenk flask under nitrogen, suspended in tetrahydrofuran (60 mL) and 

stirred at reflux overnight. During this time the color changed to lime green and the suspension was 

allowed to cool to room temperature. The deep green tetrahydrofuran solution was filtered through a 

glass fiber filter, concentrated to ca. 40 mL and cooled to –20 °C. Two crops of light green needles were 

isolated (2.62 g, 4.07 mmol, 66 %). The crystals obtained were exceedingly sensitive to moisture and 

air. Even trace amounts of oxygen caused a significant color change to deep red, before turning yellow. 

The dark red compound was identified as Ce(C8H8)2 by 1H NMR spectroscopy. The crystals lost 

coordinated tetrahydrofuran at elevated temperature on exposure to dynamic vacuum; the 

tetrahydrofuran content was established either by integration of the 1H NMR spectrum in pyridine-d5 or 

after hydrolysis of a sample with D2O in C6D6. M.p. 330 °C (dec.). 1H NMR (C5D5N, 20 °C): δ 3.66 

(16H, t, 3JCH = 6.0 Hz, α-CH2), 2.44 (16H, ν1/2 = 130 Hz, C8H8), 1.61 (16H, 3JCH =  6.0 Hz, β-CH2). 1H 

NMR (C4D8O, 20 °C): δ 3.60 (16H, br. s, α-CH2), 1.66 (16H, br. s, β-CH2), 1.50 (16H, ν1/2 = 100  Hz, 

C8H8). IR (Nujol mull; CsI windows; cm-1): 1815 (br. w), 1700 (w), 1580 (br. w), 1555 (br. vw), 1341 

(m) 1305 (vw), 1260 (vw), 1180 (vbr. w), 1200 (sh), 1045 (vs), 920 (m), 895 (vs), 800 (vw), 762 (m), 

740 (m), 722 (sh), 701 (m), 681 (vs), 610 (vw), 470 (sh), 425 (br. m), 370 (sh), 340 (br. s), 232 (vs). 
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[Ce(C8H8)2]. ][Li(thf)4][Ce(C8H8)2] (2.57 g, 4.0 mmol) was exposed at 100 °C to dynamic vacuum for 

2 hours to ensure the complete removal of the coordinated tetrahydrofuran. During desolvation the 

green crystals collapsed to a fine green powder. Freshly sublimed p-benzoquinone (0.43 g, 4.0 mmol) 

was added; even in the solid state an immediate color change to brown-purple was observed. Toluene 

(40 mL) was added and the suspension was stirred at 80 °C for 1 h, then the solvent was slowly 

removed under dynamic vacuum. The residue was placed into an extraction frit and the material was 

continuously extracted with boiling toluene for 12 hours, at which time the toluene extracts were 

colorless. The deep red toluene extracts were allowed to cool slowly to room temperature, during which 

time deep red crystals formed. The mother liquor was separated from the crystals by filtration and 

cooled to –25 °C to yield a second crop of red needles (0.80 g, 2.30 mmol, 58 %). M.p. 290 °C (dec.). 

The absence of lithium containing by-products was verified by a negative flame test. In the solid state it 

inflamed in air.  1H NMR (C6D6, 20°C): δ 5.79 (ν1/2 = 2.4 Hz). 13C{1H} NMR (C6D6, 20°C): δ  114.9. 

The E.I. mass spectrum showed a molecular ion at m/e= 348 amu. The parent ion isotopic cluster was 

simulated: (calcd. %, observd. %): 348 (100,100), 349 (18,17), 350 (14,14), 351 (2,2). IR (Nujol mull; 

CsI windows; cm-1):  1880 (vw), 1780 (vw), 1318 (m), 1260 (vw), 1162 (vw), 1098 (vw), 898 (s), 785 

(m), 742 (s), 730 (sh. m), 688 (vs), 249 (s). 

 

[Ce2(C8H8)3].  Ce(C8H8)2 (0.25 g, 0.72 mmol) was placed into a Schlenk tube, exposed to dynamic 

vacuum and then heated to 300 °C over a period of 15 min. During this time the color changed from 

dark red to light green and the crystals collapsed to a light green powder (0.2 g, 0.34 mmol, 94 %). M.p. 

> 340 °C. The light green material was insoluble in aromatic hydrocarbons, and the IR spectrum was 

identical to that reported.1 IR (Nujol mull; CsI windows; cm-1): 1880 (vw), 1838 (vw), 1772 (vw), 1728 

(vw), 1580 (vw), 1427 (m), 1312 (m), 1262 (m), 898 (s), 850 (sh), 845 (w), 800 (m), 742 (s), 728 (s), 

695 (vs), 682 (vs), 240 (sh), 232 (vs), 210 (s). In an NMR tube, Ce2(C8H8)3 was suspended in C6D6 and 

an excess of C8H8 was added and the NMR tube was heated at 65 °C. Over a period of 4 months the 
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quantity of Ce(C8H8)2 increased steadily, as the green solid, Ce2(C8H8)3, dissolved and the C6D6 

solution turned deep red. 

 

EXAFS/XANES Experiments. In order to perform X-ray absorption measurements on these air and 

moisture sensitive samples, an aluminum sample holder out of aluminum with machined slots was 

designed. X-ray windows are pressed onto this holder body with an intervening lead or indium wire 

seal. Although aluminized mylar windows worked well for protecting the samples from oxygen, for this 

study pinhole-free 0.001 inch-thick aluminum windows were used. Such windows allowed for heating 

the samples above 500 K while still allowing a reasonable transmission of X-rays. Samples were placed 

in an argon-filled inert atmosphere glove box, ground, mixed with dry boron nitride, packed into the 

holder slots and sealed. These holders were placed in argon-filled containers, which were not opened 

until it was time to load the holders into the liquid helium flow cryostat at the Stanford Synchrotron 

Radiation Laboratory (SSRL). The holder exteriors were exposed to air for a few minutes while they 

were loaded into the cryostat, which was then evacuated, flushing several times with He gas. In any 

case, these holders have been shown to be robust enough to suffer exposure to air for much longer 

periods of time before the sample is compromised. Data were collected on BL 10-2 at SSRL using a 

double Si(111) crystal monochromator to reject the second harmonic energy. Higher-order harmonics 

were rejected by detuning the second crystal by about 50%. Data were collected in transmission mode at 

T=30 K, and the change in absorption at the Ce LIII edge corresponds to about 0.7 absorption lengths. 

Samples of Ce(cot)2 and Ce2(cot)3 were measured, in addition to repeating the measurement on Ce(cot)2 

after transforming the sample by heating above 500 K. Data reduction and fitting procedures follow 

standard procedures.44 In particular, the absorption threshold E0 was estimated by taking the energy at 

the half-height of the edge, and the photoelectron wave vector k was then calculated from h2k2=2me(E-

E0), where E is the incident photon energy and me is the electron rest mass. The EXAFS oscillations 

χ(k) are then extracted by subtracting the so-called embedded atom absorption μ0(k) and normalizing by 

it: χ(k)=(μ(k)-μ0(k))/μ0(k).These k-space data are then Fourier transformed into r-space. Peaks in the 
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Fourier transforms (FT’s) generally correspond to neighboring scattering shells. Actual bond lengths are 

shifted on the measured r-axis by phase shifts of the photoelectron at the absorbing and backscattering 

atoms, and the scattering amplitudes are complicated functions of k and r. These functions are 

calculated by the FEFF7 code,64 and actual structural information is obtained by using these calculated 

function in fits to the EXAFS data. These fits are performed in r-space using the RSXAP fitting 

package.65, 66 Error estimates use a Monte Carlo technique.  
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Ce(cot)2 after heating to > 290 °C
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Ce(cot)2 is not diamagnetic, but a temperature independent paramagnet. The individual spin carriers, 

Ce(III, f1) in Ce2(cot)3 are correlated below 10 K, but uncorrelated at higher temperatures. 
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