Reconstruction of Sedimentary Rock Based on MechanicalProperties

PDF Version Also Available for Download.

Description

We describe a general, physics-based approach to numericalreconstruction of the geometrical structure and mechanical properties ofnatural sedimentary rock in 3D. Our procedure consists of three mainsteps: sedimentation, compaction, and diagenesis, followed by theverification of rock mechanical properties. The dynamic geologicprocesses of grain sedimentation and compaction are simulated by solvinga dimensionless form of Newton's equations of motion for an ensemble ofgrains. The diagenetic rock transformation is modeled using a cementationalgorithm, which accounts for the effect of rock grain size on therelative rate of cement overgrowth. Our emphasis is on unconsolidatedsand and sandstone. The main input parameters are the grain sizedistribution, the ... continued below

Creation Information

Jin, Guodong; Patzek, Tad W. & Silin, Dmitry B. May 4, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We describe a general, physics-based approach to numericalreconstruction of the geometrical structure and mechanical properties ofnatural sedimentary rock in 3D. Our procedure consists of three mainsteps: sedimentation, compaction, and diagenesis, followed by theverification of rock mechanical properties. The dynamic geologicprocesses of grain sedimentation and compaction are simulated by solvinga dimensionless form of Newton's equations of motion for an ensemble ofgrains. The diagenetic rock transformation is modeled using a cementationalgorithm, which accounts for the effect of rock grain size on therelative rate of cement overgrowth. Our emphasis is on unconsolidatedsand and sandstone. The main input parameters are the grain sizedistribution, the final rock porosity, the type and amount of cement andclay minerals, and grain mechanical properties: the inter-grain frictioncoefficient, the cement strength, and the grain stiffness moduli. We usea simulated 2D Fontainebleau sandstone to obtain the grain mechanicalproperties. This Fontainebleau sandstone is also used to study theinitiation, growth, and coalescence of micro-cracks under increasingvertical stress. The box fractal dimension of the micro-crackdistribution, and its variation with the applied stress areestimated.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL--55038
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/929000 | External Link
  • Office of Scientific & Technical Information Report Number: 929000
  • Archival Resource Key: ark:/67531/metadc896139

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 4, 2004

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 30, 2016, 2:30 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jin, Guodong; Patzek, Tad W. & Silin, Dmitry B. Reconstruction of Sedimentary Rock Based on MechanicalProperties, report, May 4, 2004; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc896139/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.