FREE ELECTRON LASERS

PDF Version Also Available for Download.

Description

The free electron laser (FEL) uses a high quality relativistic beam of electrons passing through a periodic magnetic field to amplify a copropagating optical wave (1-4). In an oscillator configuration, the light is stored between the mirrors of an open optical resonator as shown in Figure 1. In an amplifier configuration, the optical wave and an intense electron beam pass through the undulator field to achieve high gain. In either case, the electrons must overlap the optical mode for good coupling. Typically, the peak electron beam current varies from several amperes to many hundreds of amperes and the electron energy ... continued below

Physical Description

54 p.

Creation Information

Colson, W.B. & Sessler, A.M. January 1, 1985.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The free electron laser (FEL) uses a high quality relativistic beam of electrons passing through a periodic magnetic field to amplify a copropagating optical wave (1-4). In an oscillator configuration, the light is stored between the mirrors of an open optical resonator as shown in Figure 1. In an amplifier configuration, the optical wave and an intense electron beam pass through the undulator field to achieve high gain. In either case, the electrons must overlap the optical mode for good coupling. Typically, the peak electron beam current varies from several amperes to many hundreds of amperes and the electron energy ranges from a few MeV to a few GeV. The electrons are the power source in an FEL, and provide from a megawatt to more than a gigawatt flowing through the resonator or amplifier system. The undulator resonantly couples the electrons to the transverse electrical field of the optical wave in vacuum. The basic mechanism of the coherent energy exchange is the bunching of the electrons at optical wavelengths. Since the power source is large, even small coupling can result in a powerful laser. Energy extraction of 5% of the electron beam energy has already been demonstrated. The electron beam quality is crucial in maintaining the coupling over a significant interaction distance and of central importance to all FEL systems is the magnetic undulator. The peak undulator field strength is usually several kG and can be constructed from coil windings or permanent magnets. In the top part of Figure 2, the Halbach undulator design is shown for one period. The field can be achieved, to a good approximation, using permanent magnets made out of rare earth compounds; a technique developed by K. Halbach (5), and now employed in most undulators. The undulator wavelength is in the range of a few centimeters and the undulator length extends for a few meters, so that there are several hundred periods for the interaction (6-8). The polarization of the undulator can be either linear or circular or a combination (9). The optical wave has the same polarization as the undulator driving it. This is an illustration of the FELs most important attribute, the flexibility of its design characteristics.

Physical Description

54 p.

Source

  • Journal Name: Annual Reviews of Nuclear and Particle Science

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-18905
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1146/annurev.ns.35.120185.000325 | External Link
  • Office of Scientific & Technical Information Report Number: 937110
  • Archival Resource Key: ark:/67531/metadc896040

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1985

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 11:55 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Colson, W.B. & Sessler, A.M. FREE ELECTRON LASERS, article, January 1, 1985; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc896040/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.