Engine Control Improvement through Application of Chaotic Time Series Analysis

PDF Version Also Available for Download.

Description

The objective of this program was to investigate cyclic variations in spark-ignition (SI) engines under lean fueling conditions and to develop options to reduce emissions of nitrogen oxides (NOx) and particulate matter (PM) in compression-ignition direct-injection (CIDI) engines at high exhaust gas recirculation (EGR) rates. The CIDI activity builds upon an earlier collaboration between ORNL and Ford examining combustion instabilities in SI engines. Under the original CRADA, the principal objective was to understand the fundamental causes of combustion instability in spark-ignition engines operating with lean fueling. The results of this earlier activity demonstrated that such combustion instabilities are dominated by ... continued below

Physical Description

457 Kb

Creation Information

Green, J.B., Jr. & Daw, C.S. July 15, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objective of this program was to investigate cyclic variations in spark-ignition (SI) engines under lean fueling conditions and to develop options to reduce emissions of nitrogen oxides (NOx) and particulate matter (PM) in compression-ignition direct-injection (CIDI) engines at high exhaust gas recirculation (EGR) rates. The CIDI activity builds upon an earlier collaboration between ORNL and Ford examining combustion instabilities in SI engines. Under the original CRADA, the principal objective was to understand the fundamental causes of combustion instability in spark-ignition engines operating with lean fueling. The results of this earlier activity demonstrated that such combustion instabilities are dominated by the effects of residual gas remaining in each cylinder from one cycle to the next. A very simple, low-order model was developed that explained the observed combustion instability as a noisy nonlinear dynamical process. The model concept lead to development of a real-time control strategy that could be employed to significantly reduce cyclic variations in real engines using existing sensors and engine control systems. This collaboration led to the issuance of a joint patent for spark-ignition engine control. After a few years, the CRADA was modified to focus more on EGR and CIDI engines. The modified CRADA examined relationships between EGR, combustion, and emissions in CIDI engines. Information from CIDI engine experiments, data analysis, and modeling were employed to identify and characterize new combustion regimes where it is possible to simultaneously achieve significant reductions in NOx and PM emissions. These results were also used to develop an on-line combustion diagnostic (virtual sensor) to make cycle-resolved combustion quality assessments for active feedback control. Extensive experiments on engines at Ford and ORNL led to the development of the virtual sensor concept that may be able to detect simultaneous reductions in NOx and PM emissions under low temperature combustion (LTC) regimes. An invention disclosure was submitted to ORNL for the virtual sensor under the CRADA. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

Physical Description

457 Kb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL95-0337
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/940373 | External Link
  • Office of Scientific & Technical Information Report Number: 940373
  • Archival Resource Key: ark:/67531/metadc896018

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 15, 2003

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 21, 2017, 7:39 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Green, J.B., Jr. & Daw, C.S. Engine Control Improvement through Application of Chaotic Time Series Analysis, report, July 15, 2003; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc896018/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.