Geometric metastability, quivers and holography

PDF Version Also Available for Download.

Description

We use large N duality to study brane/anti-brane configurations on a class of Calabi-Yau manifolds. With only branes present, the Calabi-Yau manifolds in question give rise to N=2 ADE quiver theories deformed by superpotential terms. We show that the large N duality conjecture of hep-th/0610249 reproduces correctly the known qualitative features of the brane/anti-brane physics. In the supersymmetric case, the gauge theories have Seiberg dualities which are represented as flops in the geometry. Moreover, the holographic dual geometry encodes the whole RG flow of the gauge theory. In the non-supersymmetric case, the large N duality predicts that the brane/anti-brane theories ... continued below

Physical Description

56

Creation Information

Aganagic, Mina; Aganagic, Mina; Beem, Christopher & Freivogel, Ben September 6, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We use large N duality to study brane/anti-brane configurations on a class of Calabi-Yau manifolds. With only branes present, the Calabi-Yau manifolds in question give rise to N=2 ADE quiver theories deformed by superpotential terms. We show that the large N duality conjecture of hep-th/0610249 reproduces correctly the known qualitative features of the brane/anti-brane physics. In the supersymmetric case, the gauge theories have Seiberg dualities which are represented as flops in the geometry. Moreover, the holographic dual geometry encodes the whole RG flow of the gauge theory. In the non-supersymmetric case, the large N duality predicts that the brane/anti-brane theories also enjoy such dualities, and allows one to pick out the good description at a given energy scale.

Physical Description

56

Source

  • Journal Name: Nuclear Physics B; Journal Volume: 795; Related Information: Journal Publication Date: 7 December 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-386E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 934496
  • Archival Resource Key: ark:/67531/metadc895978

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 6, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 3, 2016, 4:18 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Aganagic, Mina; Aganagic, Mina; Beem, Christopher & Freivogel, Ben. Geometric metastability, quivers and holography, article, September 6, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895978/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.