Quantitative representation of three-dimensional cell culturemodels

PDF Version Also Available for Download.

Description

Three-dimensional mammary cell culture models offer new opportunities for the development of computational techniques for segmentation, localization, and multicellular organization. Under normal conditions, these assays form a symmetrical, hollow structure, which is necessary for their functional operation. Often, the nuclear compartments are labeled, which provides context for quantitative protein localization or colony structure through fluorescent microscopy. These colonies are first delineated from the background using the level set method. Within each colony, nuclear regions are then bounded by their center of mass through iterative radial voting, and a local neighborhood for each nucleus is established through Voronoi tessellation. Finally, the ... continued below

Creation Information

Chang, Hang; Park, Catherine & Parvin, Bahram February 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Three-dimensional mammary cell culture models offer new opportunities for the development of computational techniques for segmentation, localization, and multicellular organization. Under normal conditions, these assays form a symmetrical, hollow structure, which is necessary for their functional operation. Often, the nuclear compartments are labeled, which provides context for quantitative protein localization or colony structure through fluorescent microscopy. These colonies are first delineated from the background using the level set method. Within each colony, nuclear regions are then bounded by their center of mass through iterative radial voting, and a local neighborhood for each nucleus is established through Voronoi tessellation. Finally, the level set method is applied again within each Voronoi region to delineate the nuclear compartment. The paper concludes with the application of the proposed method to a set of experimental data demonstrating a stable solution when iterative radial voting and level set methods are used synergistically. Furthermore, segmented colonies are characterized for architectural changes as a result of ionizing radiation.

Source

  • IEEE Int. Symp. on Biomedical Imaging, LakeTahoe, NV, April 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--62470
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 920355
  • Archival Resource Key: ark:/67531/metadc895934

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 30, 2016, 7:12 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chang, Hang; Park, Catherine & Parvin, Bahram. Quantitative representation of three-dimensional cell culturemodels, article, February 1, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895934/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.