Scaling Properties of Hyperon Production in Au + Au Collisions at sqrt sNN = 200 GeV

PDF Version Also Available for Download.

Description

We present the scaling properties of Lambda, Xi, and their anti-particles produced at mid-rapidity in Au+Au collisions at RHIC at psNN = 200 GeV. The yield of multi-strange baryons per participant nucleon increases from peripheral to central collisions more rapidly than the Lambda yield, which appears to correspond to an increasing strange quark density of matter produced. The value of the strange phase space occupancy factor gamma s, obtained from a thermal model fit to the data, approaches unity for the most central collisions. We also show that the nuclear modification factors, RCP, of Lambda and Xi are consistent with ... continued below

Physical Description

7

Creation Information

Adams, J. June 8, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present the scaling properties of Lambda, Xi, and their anti-particles produced at mid-rapidity in Au+Au collisions at RHIC at psNN = 200 GeV. The yield of multi-strange baryons per participant nucleon increases from peripheral to central collisions more rapidly than the Lambda yield, which appears to correspond to an increasing strange quark density of matter produced. The value of the strange phase space occupancy factor gamma s, obtained from a thermal model fit to the data, approaches unity for the most central collisions. We also show that the nuclear modification factors, RCP, of Lambda and Xi are consistent with each other and with that of protons in the transverse momentum range2.0< pT< 5.0 GeV/c. This scaling behaviour is consistent with a scenario of hadron formation from constituent quark degrees of freedom through quark recombination or coalescence.

Physical Description

7

Source

  • Journal Name: Physical Review Letters; Journal Volume: 98

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1270E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 943587
  • Archival Resource Key: ark:/67531/metadc895898

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 8, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 30, 2016, 7:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Adams, J. Scaling Properties of Hyperon Production in Au + Au Collisions at sqrt sNN = 200 GeV, article, June 8, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895898/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.