Cryogenic Neutron Spectrometer Development

PDF Version Also Available for Download.

Description

Cryogenic microcalorimeter detectors operating at temperatures around {approx}0.1 K have been developed for the last two decades, driven mostly by the need for ultra-high energy resolution (<0.1%) in X-ray astrophysics and dark matter searches [1]. The Advanced Detector Group at Lawrence Livermore National Laboratory has developed different cryogenic detector technologies for applications ranging from X-ray astrophysics to nuclear science and non-proliferation. In particular, we have adapted cryogenic detector technologies for ultra-high energy resolution gamma-spectroscopy [2] and, more recently, fast-neutron spectroscopy [3]. Microcalorimeters are essentially ultra-sensitive thermometers that measure the energy of the radiation from the increase in temperature upon absorption. ... continued below

Physical Description

4 p. (0.2 MB)

Creation Information

Niedermayr, T.; Hau, I. D.; Friedrich, S.; Burger, A.; Roy, U. N. & Bell, Z. W. March 8, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Cryogenic microcalorimeter detectors operating at temperatures around {approx}0.1 K have been developed for the last two decades, driven mostly by the need for ultra-high energy resolution (<0.1%) in X-ray astrophysics and dark matter searches [1]. The Advanced Detector Group at Lawrence Livermore National Laboratory has developed different cryogenic detector technologies for applications ranging from X-ray astrophysics to nuclear science and non-proliferation. In particular, we have adapted cryogenic detector technologies for ultra-high energy resolution gamma-spectroscopy [2] and, more recently, fast-neutron spectroscopy [3]. Microcalorimeters are essentially ultra-sensitive thermometers that measure the energy of the radiation from the increase in temperature upon absorption. They consist of a sensitive superconducting thermometer operated at the transition between its superconducting and its normal state, where its resistance changes very rapidly with temperature such that even the minute energies deposited by single radiation quanta are sufficient to be detectable with high precision. The energy resolution of microcalorimeters is fundamentally limited by thermal fluctuations to {Delta}E{sub FWHM} {approx} 2.355 (k{sub B}T{sup 2}C{sub abs}){sup 1/2}, and thus allows an energy below 1 keV for neutron spectrometers for an operating temperature of T {approx} 0.1 K . The {Delta}E{sub FWHM} does not depend on the energy of the incident photon or particle. This expression is equivalent to the familiar (F{var_epsilon}E{sub {gamma}}){sup 1/2} considering that an absorber at temperature T contains a total energy C{sub abs}T, and the associated fluctuation are due to variations in uncorrelated (F=1) phonons ({var_epsilon} = k{sub B}T) dominated by the background energy C{sub abs}T >> E{gamma}. The rationale behind developing a cryogenic neutron spectrometer is the very high energy resolution combined with the high efficiency. Additionally, the response function is simple and the instrument is transportable. We are currently developing a fast neutron spectrometer with 0.1% energy resolution at 1 MeV neutron energy with an efficiency of > 1%. Our fast-neutron spectrometers use boron-based and {sup 6}LiF absorber crystals with Mo/Cu thermistors readout. They have achieved an energy resolution of 5.5 keV FWHM for 2.79 MeV deposited in {sup 10}B by thermal neutron capture (fig. 1), and 46 keV FWHM for fast (MeV) neutrons absorbed in {sup 6}LiF (fig. 2). Since the energy resolution does not depend on the neutron energy, we expect a similar energy resolution for MeV neutron energies. The response function is given simply by the cross section of the capture reaction, offset from zero by the Q-value of the capture reaction. This allows straightforward discrimination against gamma-events, most of which deposit less that Q{sub 6Li} = 4.79 MeV in the {sup 6}LiF absorber, and easy deconvolution of the neutron spectrum, since there is only a single capture reaction in {sup 6}Li and the spectrum is not affected by edge effects or geometric broadening. The current challenge for microcalorimeters is their necessarily small effective pixel area, {approx}1cm{sup 3} for neutron spectrometer pixels, and their slow decay time, {approx}10ms for neutron spectrometers. The pixel size is limited by the requirement for low Cabs for high energy resolution; the decay time is set by the intrinsically weak thermal coupling between materials at low temperatures. Both issues can be addressed by fabricating large detector arrays. This will enable high-precision neutron spectrometry with high statistics, such as simulated for Pu analysis in fig 3.

Physical Description

4 p. (0.2 MB)

Notes

PDF-file: 4 pages; size: 0.2 Mbytes

Source

  • Presented at: The 11th Symposium on Radiation Measurements and Applications, Ann Arbor, MI, United States, May 23 - May 25, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-219829
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 928539
  • Archival Resource Key: ark:/67531/metadc895798

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 8, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • April 13, 2017, 5:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Niedermayr, T.; Hau, I. D.; Friedrich, S.; Burger, A.; Roy, U. N. & Bell, Z. W. Cryogenic Neutron Spectrometer Development, article, March 8, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc895798/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.