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ABSTRACT 
 

The objective of the proposed work was to develop a software package that can construct 
in three-dimensional core power distributions using the signals from constant temperature 
power sensors distributed in the reactor core. The software developed uses a model-based 
state/parameter estimation technique that is particularly attractive when there are model 
uncertainties and/or large signal noise.  The software yields the expected value of local 
power at the detector locations and points in between, as well as the probability 
distribution of the local power density. 
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1. PROJECT OBJECTIVES 
 
The objective of the project was to develop a software based method that will construct in 
real-time, three-dimensional core power distributions using the signals from power 
sensitive sensors distributed in the reactor core. While power distribution related 
quantities are used to specify operational thermal limits in nuclear reactors, none of these 
quantities are measured directly but rather inferred from flux measurements and local 
material properties.  Recent developments in detector technology have lead to sensors 
that can measure local power directly [1,2]. The research aimed at developing the 
software that will construct in real-time three-dimensional core power distributions using 
the signals from such devices distributed in the reactor core. The software yields the 
expected value of local power at the detector locations and points in between, as well as 
the probability distribution of the local power density.  Such data will be useful for risk-
informed regulatory process and may allow reduction in thermal margins (and 
subsequently increasing power extracted from the core) in view of the reduced 
uncertainty in the estimated local power densities.  The proposed work also investigated 
using the method to obtain radially averaged axial power distributions in pressurized 
water reactors (PWRs) using physically discrete, energy-sensitive ex-core flux detectors, 
such as described in [3]. 
 
2. BACKGROUND AND PROBLEM STATEMENT 
  
 The measures that are used to specify operational thermal limits in nuclear 
reactors include quadrant power tilt ratio (QPTR), heat flux hot channel factor (HFHCF) 
(i.e. maximum fuel rod linear power density divided by the average fuel rod linear power 
density), nuclear enthalpy rise hot channel factor (i.e. ratio of highest integrated fuel rod 
power to average integrated fuel rod power), maximum average planar linear heat 
generation rate, critical power ratio (i.e. ratio of the bundle fuel power to bundle power 
required to produce onset of transition boiling) all of which are based on local power.  
However, none of these quantities are directly measured in current applications.  For 
example, the QRPR in PWRs is found from the ratios of the signals received from the 
flux detectors placed outside the reactor vessel.  Again in PWRs, the HFHCF is found 
from the measured neutron flux, computed local fuel properties, and a computed cycle-
dependent function that accounts for power distribution transients encountered during 
normal operation and is corrected for fuel manufacturing tolerances and uncertainty in the 
flux measurement through a correction factor [4]. From a safety viewpoint, such an 
approach is satisfactory because the computations can be performed and correction 
factors can be chosen as conservatively as needed. On the other hand, an excessive 
margin in not desirable from an operational viewpoint since it may lead to an unnecessary 
power derating. 
 

A new in-core reactor power sensor has been under development at The Ohio 
State University since 1996. This feedback-controlled calorimetric instrument, which is 
referred to as a constant-temperature power sensor (CTPS), is capable of direct 
measurement of nuclear energy deposition [1,2].  This type of sensor is ideally suited for 
use in proposed Generation IV power systems, in which the sensors could become an 



 

  4

integral part of the fuel for the core lifetime. The CTPS concept is based on maintaining 
the temperature of a small mass of reactor fuel constant by adding heat through resistive 
dissipation of input electrical energy.  Work to date with the CTPS, however, indicates 
that the observed rate of nuclear energy deposition is sensitive to model uncertainties 
(e.g. local fuel thermal properties) and signal noise [5].  Although point estimators such 
as the least squares estimator (LSE) have been used to estimate the effect of model 
uncertainties and signal noise, they can yield results that are substantially different from 
the true value, with no indication of the magnitude of the error (LSE may not even 
converge when correlated noise is present [6]) 
 
A technique that provides reliable measures of uncertainty in the estimates is based on the 
cell-to-cell-mapping (CCMT) approach [7]. The CCMT represents dynamic system 
evolution in terms of transition probabilities between user specified magnitude intervals 
of the system variables/parameters to be estimated (cells).  These cells are similar to the 
computational cells used in finite difference and finite element techniques and can be 
chosen to envelope the noise in the dynamical variables or the uncertainties in the system 
parameters in general. The CCMT yields the probability of finding the system 
variables/parameters to be estimated in a given cell. The estimation methodology uses a 
recursive Bayesian procedure and has been developed into a system independent 
algorithm called DSD (Dynamic System Doctor) [8].  It can be shown that convergence 
to the correct value is guaranteed with sufficiently small cell sizes [7]. 
 
The report is organized as follows:  Section 4 overviews the CTPS.  Sections 5 and 6, 
respectively, describe how DSD is used to estimate the uncertainty in the observed power 
at in-core CTPS locations and how the uncertainty propagation between CTPS location is 
tracked.   Section 7 describes how power distribution may be inferred from ex-core 
measurements of physically discrete, energy-sensitive ex-core flux detectors. 
 
3. AN OVERVIEW OF CTPS [9] 
 

The CTPS consists of a UO2 pellet surrounded by electrical heating resistance wire 
(Fig.1).  The pellet and the wire form the sensor core (Node 2).  The core is surrounded 
by ceramacast which is an alumina based ceramic thermal insulator (Node 1).  Both the 
sensor core and the insulator are coated with thin layers of copper.  A feedback control 
loop is used to provide the exact amount of input electrical energy eq needed to keep 
Node 2 temperature T2 constant in time (t), well above the ambient temperature T0, 
regardless of nq . The sensor operation involves switching between the feedback-
controlled constant-temperature mode and the dynamic temperature decay mode 
following the opening of the feedback loop as described by 
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where kC  , ro (0.575 mm), ri ( 0.3mm) are, respectively,  the thermal conductivity, outer 
and inner radius of the copper layer between Node 1 and Node 2, hs is the height of the 
sensor, T2 is Node 2 temperature, and C1 and C2 are,  respectively, thermal capacitances 
of Node 1 and Node 2.  Other notation in Eq.(1) are as defined previously.  The model 
described by Eq(1) has been validated against a finite element code [3].  At steady-state 
Eq.(1) yields 
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which corresponds to the constant temperature mode operation of CTPS. 
 

 
Figure 1: The CTPS 

 
Previous work [9] to determine the local nuclear energy deposition rate nq with CTPS has 
used: a) an algebraic model obtained from the solution of the linearized differential 
equations describing the CTPS operation, and, b)  the software package DSD [8] to 
estimate the operation dependent model parameters.  The results of [9] indicated that the 
model is very sensitive to model and data uncertainties which is the main reason why a 
model more closely representing the operation of CTPS (i.e. Eqs.(1) and (2)) are being 
used in this study. 
 
4. AN OVERVIEW OF DSD [8, 10] 
 

The DSD is based on the representation of the system dynamics in terms of 
transition probabilities between user specified cells that partition the system 
parameter/state space during user specified time intervals. The DSD recursively 



 

  6

computes the probability )J|n,j(p kk that the state variables (e.g. T1(t), T2(t)) are in cell j 
( j = 1,...,J) and the unknown parameters (e.g. R2, T0) are in cell n (n = 1,...,N) during the 
data-sampling time period ττ )k(tk 1+≤≤ k (k = 0, 1, 2, ...), given that the possible set 
of cells the state variables can be in at this time is Jk (as observed from the monitored 
data), from 
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where )n,j|j(g ′  is the transition probability from state variable cell j′  to state variable 
cell j  during the period ττ )k(tk 1+≤≤ when the system parameters are within cell n. 
The )n,j|j(g ′  can be approximated by: 1) at time τk , selecting randomly or otherwise 
(e.g. equidistant) M ′ starting points from cell j′  for a given n, 2) using the given system 
model (e.g. Eq.(1)) to find the number M of trajectories that arrive within cell j at 

τ)k(t 1+=  (e.g. by integrating Eq.(1) over ττ )k(tk 1+≤≤ for each of the m′  = 1, 2, . . ,  
M ′ initial conditions), and, c) letting M/M)n,j|j(g ′=′ . A graphical illustration of this 
process is given in Fig.2 and some sufficient conditions for the convergence of DSD are 
given in [11].   
 
5. USE OF DSD TO ESTIMATE THE UNCERTAINTY IN THE OBSERVED 

POWER AT IN-CORE CTPS LOCATIONS  
 

If the values of the system parameters change in time, the DSD may lose track of the 
variables to be estimated, i.e. all the obtained from Eq.(3) will be zero. In the original 
DSD algorithm with this fixed partitioning scheme (FPS), the estimation process will 
reinitialize itself in this situation by starting from the initial probability and estimate the 
new parameter by the recursive use of Eq.(3) again by searching over all the cells. This 
approach may lead to excessive computational time if there are frequent parameter 
changes during system evolution and a large number of variables/parameters to be 
estimated. In that respect, a recursive algorithm was developed to overcome this 
limitation [12, 13]. The recursive partitioning scheme (RPS) reduces the computational 
time for reinitialization (as well as overall memory requirements for DSD) through 
following steps:  

 
1. Input parameter and state variable ranges of interest, RPS stopping rules and 

monitored data uncertainty. Read data from the monitors.  
2. Define the cells so as to contain the variation/noise on the monitored data, centered 

on their median values. Define the cells for the unmonitored variables by bisecting 
each state variable range of interest and each parameter range of interest. 

3. Specify ),(0 njp to be used to start the estimation process (usually uniform) 
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4. Determine the cell-to-cell transition probabilities by quadratures or by sampling over 
the cells specified in Step 2.  

5. Find ),( njpk from Eq.(3) 
6. If all, then bisect the cells and go to Step 3. Otherwise, normalize ),( njpk by 

dividing it by the total probability of finding the system in the search space, 
increment the time index k and go to Step 2. 

 

 
 

Figure 2: An example partitioning scheme and the illustration of the approximation of g(j| j’, n) for a 
hypothetical dynamical system with two state variables x1, x2 and one parameter α . The system is in cells j 
= 9( j1 − 1) + j2 = 60,58,29,22 at times kτ , (k + 1)τ , (k + 2)τ , (k + 3)τ respectively. If only x1 is monitored, 
the set of possible cells the system can be in are Jk = Jk+1 = { j = 55, . . . , 63}, Jk+2 = { j = 37,…,45} and Jk+3 
= { j = 10, . . . , 18} [ 14]. 
 

Steps 2 through 6 are repeated until convergence, i.e. ),( njpk are all zero except for 
the cells containing the actual system locations. It should be mentioned at this point that 
the algorithm may not converge for rapidly evolving systems during one data sampling 
interval) kτ <t< (k+1)τ. However, even in this situation [14] shows that the expected 
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values of the parameters/state variables to be estimated are often found to be close to 
their actual values.  Section 5.1 and 5.2 below describe, respectively, the implementation 
of the recursive algorithm to single CTPS [12] and a series of CTPS for direct estimation 
of power distribution in reactors for nuclear thermal space propulsion [13].  The other 
improvement to DSD was the reformulation of the cell-to-cell transition probabilities to 
account for the possible non-uniform distribution of the system location within the cells, 
described Section 5.3 below. 

 
5.1 An Application of DSD with Recursive Partitioning Scheme to Constant 

Temperature Power Sensors [12] 
 
 Two cases were considered, one of normal operation with a switch between the 
operation modes of the sensor with constant coolant temperature 0T  (Case 1), and a 
second one, a slow transient with decreasing 0T  (Case 2). Node 1 and 2 temperatures for 
the estimation process were simulated using Eqs.(1) and (2) with the parameter values 
given in Table 1. 
 

 
Table 1: Steady-State Parameter Values Used for the Generation of Simulated CTPS Data  

 
T0(K) T2(K) C1(J/K) C1(J/K) R1(K/W) R2(K/W) qn(W) qe(W) 

1000.0 1085.9 0.00804 0.744 5.709 1.857 1.68 9.67 
 

The choice of the temperature data in Table 1 reflects the expected steady-state 
operational conditions in Generation 4 gas cooled reactors. 
 

Figures 3 and 4, respectively, show the estimation results for Case 1 and Case 2 using 
RPS. The spikes starting at around t=10 s in both Figs.2 and 3 at around indicate the time 
at which the initial switch from Mode 1 to Mode 2 is made.  The figures show that while 
DSD temporarily looses track of qn at the time of the switch, recovery is very rapid and 
DSD with the RPS is able to estimate qn with the desired accuracy (within 1% of the 
range of interest) for the rest of the time interval of interest (i.e. until 100 s).  Comparison 
of the run times and memory requirements to obtain the results in Figs.3 and 4 to those 
obtained using the original fixed partitioning scheme for comparable accuracy indicates a 
speedup by a factor of 5 in the run time with RPS and a reduction by a factor of 2 in 
memory requirements.  

 
5.2 Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space 

Propulsion [13] 
 
The example nuclear thermal propulsion reactor concept chosen to illustrate the 
utilization of the CTPS/DSD combination is the particle bed reactor (PBR) concept used 
in [15].  Figures 4 and 5, respectively, show a horizontal cross section of the reactor core 
and an axial cross section of a PBR fuel element.  The PBR uses fuel in the form of small 
diameter particles (100-500 μm) which consist of a highly enriched uranium kernel 
surrounded by multiple layers of pyrographite and sometimes additional ZrC or SiC 



 

  9

layers.  The fuel particles are held between two porous annuli ("frits") to form a fuel 
element (Fig.4) and the fuel elements are embedded in the moderator block in concentric 
rings to form the core (Fig.5).  The moderator block is surrounded by a pressure vessel, 
reflected radially and axially for neutron economy.  Hydrogen pumped from the 
propellant tank flows through an annulus located between the radial reflector and the 
pressure vessel before entering the core.  After entering the core, the coolant first passes 
through the outer cold frit (Zircaloy 2), then directly over the fuel particles and finally 
through the inner hot frit (ZrC) into the outlet plenum to be ejected through a nozzle to 
develop thrust.  Partial reactivity control is achieved by varying the hydrogen mass flow 
rate in the annulus. 
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Figure 3: Simulated and Estimated qn as a Function of Time for Case 1 
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Figure 4:  Simulated and Estimated qn as a Function of Time for Case 2 
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Figure 4:  The Particle Bed Reactor Core [15]. Figure 5:  A Particle Bed Reactor Fuel Element [15] 
 
For the PBR application, the CTPS is assumed to be imbedded in the fuel element 
between the hot and cold frit with sensor core (i.e. Node 2 in Fig.1) consisting of the 
same type of particles used in the fuel elements.  For the purposes of this illustration, the 
sensor heater wire and the Node 1 and 2 metal coatings were assumed to be tungsten.  
Table 2 shows the example power and temperature data used for the illustration.  The 
data in Table 2 have been generated with the MCNP [16]  and HEATING-5 [17] codes.  
Figure 6 shows the results of the estimation using DSD, assuming that the monitored 
variables are )(),( 21 tTtT (see Eq.(1)) and )(tqe (see Eq.(2)).  The bars in Fig.6 indicate 
100% credibility intervals.  The data for the estimation process was simulated using 
Eq.(1) with 1% noise in the monitored variables.   Figure 6 indicates that the credibility 
intervals contain the actual (i.e. simulated data) and also quantify the uncertainty in the 
estimation process. 

 
Table 2. Example Power and Temperature Data for the Particle Bed Reactor [15] 

 
Distance from 

Coolant 
Inlet  (cm) 

Power Density qn 
(W/cm3) 

Solid Temperature 
T1(0)=T2(0) (K) 

Coolant 
Temperature (K) 

5 960 480 455 
10 1440 635 610 
20 1888 1230 1208 
30 2040 1580 1560 
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40 1888 2104 2085 
50 1456 2521 2503 
55 976 2968 2950 

 
  

 
Figure 6: Estimated and Actual Values of the Local Power for the Data in Table 2 

 
5.3 SOME IMPROVEMENTS IN STATE/PARAMETER ESTIMATION 

USING CCMT [18] 
 

The original DSD estimation algorithm is based on the assumptions that the 
measurement noise is uniformly distributed and the measured variables are among of the 
state variables. From an implementation viewpoint, this assumption implies that arbitrary 
observers and measurement noise or model uncertainties with arbitrary distributions are 
not allowed.  A new theoretical basis for the DSD algorithm was developed which waives 
these assumptions using a Bayesian interpretation of CCMT based state/parameter 
estimation.  The new theoretical basis expands the applicability range of DSD and leads 
to improvements in the estimation algorithm, as well as providing a better understanding 
of the relationship of CCMT based state/parameter estimation to conventional 
state/parameter estimation techniques and of the origins of some unexplained phenomena 
encountered in previous work. 
 
 The new theoretical basis can be encapsulated as 
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where )( 11 ++ kkp yj is the probability that the system is in cell 1+kj at time t=(k+1)τ given 
observations kyyy ,,, 10 K  and kx is the true location of the system in the state space at 
time t=kτ.  The )( 1 kkg jj + as defined in Eq.(5) allows explicitly accounting for 
observation uncertainties, modeling uncertainties and noise through )|( 11 ++ kkp xy , 

)|( 1 kkp xx +  and ∫
k

kkkkk dpp
j

xyxyx )(/)( , respectively. 

6. TRACKING UNCERTAINTY PROPAGATION BETWEEN CTPS 
LOCATIONS 

 
The two methods were developed for the tracking process with the following 

assumptions [19]:  
 

• Method 1 assumes that, at every point in the reactor, the expected value of the power 
density/flux follows the diffusion theory. 

• Method 2 imposes the additional constraint that the power density/flux can achieve all 
possible values at any specified point in the reactor. 

 
Method 1 assumption implies that the origin of the uncertainty at the CTPS locations is 
random fluctuations in local power.  Method 2 accounts for the possibility that the 
uncertainty may originate from noise or measurement error. 
 

Method 1 yields [ 
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where p(h|y) is the probability distribution function (pdf) of power density/flux h at y, hn 
is the measured pdf of power density/flux at x = xn (or y = 1), 1+nh is the measured power 
density/flux at x = xn+1 (or y = 0) and 

22
1

2 )( Bxx nn −= +β          (8) 
 
with B being a function of the material properties between xn and xn+1. 
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Method 2 is a modification of the procedure proposed by [20] to search for neutral 
and charged Higgs bosons in electron-positron collisions.  Adapted to the problem under 
consideration in this study, it assumes that power density/flux varies linearly between 
detector locations and imposes the condition that 1)|( =∞ yF  at all y.  The procedure 
also requires that the cumulative distribution functions (Cdfs) 

( )∫=≡
h

nn dhhphFhF
0

'')()1|(   and  ( )∫ ++ =≡
h

nn dhhphFhF
0 11 '')()0|(  (9) 

at the two consecutive detector locations xn and xn+1, respectively, have the same value F 
as well as at all points between the detector locations, i.e. 

Fn (hn) = Fn+1 (hn+1) = F(h)  = F (10) 

Given ( )hpn and ( )hpn 1+ , the )|( yhp can then be constructed using the algorithm shown 
in Fig.7 

 
 

Figure 7: Method 2 Flowchart [19] 
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A one-dimensional reactor of length 2L = 300 cm with material properties given 
in Table 3 was considered for illustrative implementations. A gray control rod of 
thickness 2 cm and transmissivity 0.9 was assumed to be inserted in the reactor at x = 50 
cm away from the reactor midplane.  Data from detectors placed within the core at every 
10 cm starting from the reactor midplane were simulated by solving 1 ½ group neutron 
diffusion equation within Lx ≤≤0  and with 

 0
)(2)(1

00

==
== xx

dx
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xd φφ
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where )(1 xφ and )(2 xφ  are, respectively, the fast and thermal neutron fluxes and for 

criticality we must have B = 0.0242 cm-1. 

Table 3: Group constants for the example reactor [19] 
 

Group 
Group constant 

1 2 

fΣν (cm-1) 0.008476 0.18514 

aΣ (cm-1) 0.01207 0.1210 

D (cm) 1.2627 0.3543 

21 >−Σ (cm-1) 0.0141 - 

 
The monitored data from the detectors were assumed to be normally distributed 

with the expected value satisfying Eq.(12) and with a 1% standard deviation. Figure 8(a) 
shows the probability distributions and the expected values as obtained from Method 1. 
Figure 8(b) shows the same information, but as obtained by applying Method 2. In the 
region 40 < x < 60 cm were the existence of a control rod is assumed, the β coefficient in 
Eq.(8) was obtained through homogenization. 

It was noted that although the expected values predicted by both methods matched 
the simulated data well (see Fig.8), Method 1 may lead to a bimodal distribution and that 
the predicted expected value between detector locations may fall in a region of low 
probability.  Figures 9 and 10 show the pdfs of reactor power at x = 43 cm and x = 85 cm, 
respectively. The bimodal shape predicted by Method 1 in Fig.9 has also been observed 
in other studies [21] and is due to the fact that ( )hpn and ( )hpn 1+  are being concentrated in  
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(a)       (b) 
Figure 8: Relative power distribution h(x)/h(0) for the example reactor:  

a) Method 1, b) Method 2 [19]

     Figure 9: Probability distribution function  
         at location x = 43 cm [19] 

  Figure 10: Probability distribution function 
               at location x = 85 cm [19] 
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different regions of the state space. The unimodal shape of p(h|y) is due to the linearity 
assumption of Method 2.  Figure 10 shows that if the variation in the power density/flux 
is small with distance (e.g. at x = 85 cm as can be seen from Fig.8) and subsequently h(y) 
is close to linear, then p(h|y) obtained from both Method 1 and Method 2 are similar.   
 

In another study [22], Method 2 was applied to a 300X300X300 cm homogeneous 
cube, placed in vacuum and with diffusion parameters as given in [22] to illustrate the 
applicability of these methods to 3-dimensional cases.   
 

Figures 11(a) and 11(b), 
respectively, show the pdf 

)|( wp φ of the flux (φ) distribution 
at the normalized distance w 
between detector locations 
obtained from Method 1 and 
Method 2.  The bimodal nature of 
the pdf obtained from Method 1 in 
Fig.11(a) and the low probability 
region between detector locations  
reflects the large uncertainty in the 
flux value due to lack of 
observation in this region.  The 
expected value in Fig.11 (a) is still 
very similar to the local 3-
dimensional solution.  The 
difference between Fig.11 (a) and 
11(b) results is due to the condition 
imposed by Eq.(9) which assumes 
that the cumulative probability 
distribution of flux/power density 
is conserved between detector 
locations.  Another interpretation 
of this assumption is that the 
uncertainty in flux/power at the 
detector locations also propagates 
according to Eq.(4) between 
detector locations.  The assumption 
is justified if the uncertainty 
originates from possible 
flux/power fluctuations but not if it 

originates from electronic noise in the detection hardware.  
 
 
 
 

Figure11: Flux comparison for the x-y diagonal direction (a) 
and corresponding )|( wp φ  obtained from Method 
1 (a) and Method 2 (b) 
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7. MATERIAL AND SOURCE IDENTIFICATION IN FINITE CYLINDRICAL 
GEOMETRIES USING THE SCHWINGER INVERSE METHOD [23] 

 
The objective of this activity was to investigate if burnup and power distribution in 

nuclear reactors can be inferred through measurements of unscattered gamma leakage 
from the reactor.  Schwinger inverse method was employed to study the feasibility of 
identifying the material composition and source distribution in finite cylindrical 
geometries which then would yield level of burnup through the fission product activity 
and power distribution in the reactor core from the spatial distribution of 235U and Pu 
gammas. 
 
7.1 Material Identification 
 

The following equation was used for the identification of the composition of an 
unknown layer with specified dimensions [24]: 
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In this equation, g

tΣ  is the total photon cross section in the current iteration for the 

unknown material at the energy corresponding to line g and g
t 1,Σ′  is the updated cross 

section that will be used in the next iteration.  The terms gψ , gψ∗ , and gM  are the 
forward flux, adjoint flux, and leakage calculated for line g in the current iteration; gq  is 
the source term for line g (γ/cm3-s); and gM 0  is the measured leakage for line g.  The 
integral in the numerator in Eq. (13) is over the entire problem, but the integral in the 
denominator is over the unknown material region only.  Once the G macroscopic cross 
sections are found, the unknown material is identified using cross section tables [24]. 
 
7.2 Source Weight Fraction Identification 
 

The following equation was used to iteratively determine the unknown weight 
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In Eq.(14), Sρ  is the mass density of the source material, AN  is Avogadro’s number, g

t,jσ  
is the total microscopic cross section for source isotope j and line energy g, and jA  is the 
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gram atomic weight of source isotope j.  The term jjj fff −′≡Δ  is the update to the 
weight fraction in the current iteration to obtain the weight fraction to use in the next. 
 
7.3 Test Problem 
 

The methods for source and shield identification were tested on the finite cylindrical 
geometry shown in Fig. 12.  A highly enriched uranium source is surrounded by a shield 
consisting of aluminum on the bottom and side of the cylindrical shield and nickel on the 
top.  The top of the shield is twice as thick as the bottom.  This axial asymmetry allows 
for more physically realistic test problems than were possible with the one-dimensional 
spherical problems of [24] and [25] .  

 

 
 
 

 
 

The quantities of interest were the total leakage (into 4π of four decay lines from 
natural uranium, 144, 186, 766, and 1001 keV.  The forward and adjoint angular fluxes of 
Eqs. (13) and (14) were calculated for each line using the PARTISN discrete-ordinates 
code [26] with no scattering. 

Leakage measurements were simulated in two ways. The first was by using 
PARTISN with the same angular (S8) and spatial discretizations as used to calculate the 
flux in the iterative calculation. Thus, these “measured” and calculated leakages were 
exactly consistent. The second way of simulating measured leakages was by using a 
Monte Carlo code, which simulated a real measurement of the total leakage.  These 
measurements are shown in Table 4. 
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Fig. 12.  Geometry for numerical test problems.  Dimensions are in 
cm.   
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7.4 Results 
 
7.4.1 Material Identification 
 

Converged cross sections on the left side of Eq. (13) were compared to known cross 
sections from a library of 40 candidate materials using a root-mean-squared (RMS) 
difference, where the RMS difference for material m is 
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The materials with the lowest RMS differences were considered candidates for the 
unknown.   

When S8 measurements in Table 4 were used, nickel was successfully identified as 
the only suitable candidate for the unknown layer, having an RMS difference two orders 
of magnitude smaller than any other material (see Table 5).  With Monte Carlo 
measurements, nickel was one of seven possible candidate materials. 

 
Table 5: Materials with the Lowest RMS Difference in the Shield Identification Problem (Actual 

Material Was Nickel, Initial Guess Was Lead)   
 

S8 Measurements Monte Carlo Measurements 
1  Nickel 8.612E-04 
2  Copper  2.952E-02 
3  Cobalt   8.705E-02 
4  SS316    1.967E-01 
5  Iron      2.390E-01 

 

1  Cobalt    2.947E-01 
2  SS316   3.159E-01 
3  Nickel   3.232E-01 
4  Iron      3.299E-01 
5  SS304    3.312E-01 
6  Carbon Steel  3.429E-01 
7  Copper   3.495E-01 

 
7.4.2 Source Weight Fraction Identification 
 

Initial guesses for the weight fractions of uranium in the source were: 235U: 0.5000, 
238U: 0.5000.  When S8 measurements were used, the actual source weight fractions (235U: 
0.9473, 238U: 0.0527) were found in one iteration of Eq.(14).  With Monte Carlo 
measurements, slightly less accurate weight fractions of 235U: 0.9524, 238U: 0.0476 were 
calculated in one iteration. 
 
 
 
 

Table 4:  Measured Leakages   
Line (keV) S8 Monte Carlo  

144 3.05349E+2  3.360E+2±5.45%
186 9.99298E+3 1.029E+4±1.02%
766 1.41914E+3 1.458E+3±2.65%
1001 3.53495E+1 4.60E+1±14.74%
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8. CONCLUSION 
 

The project achieved all its objectives.  The main contribution of the project to the 
state-of-the-art are is the development of an algorithm that can be used to determine the 
power distribution directly in a nuclear reactor core using the signals obtained from 
CTPS, as well as quantifying the uncertainty associated with the estimated power 
distribution.  The project results also indicate that it may be possible to determine burnup 
and power distribution in nuclear reactor cores using ex-core measurements of discrete 
gamma lines.   
 
 The project led to the completion of 4 M.S. theses [27-30] and initiated research 
that will lead to 2 Ph.D. degrees.  The publications resulting from the study are given in 
[10-14, 18, 19, 22-24, 31-36]. 
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Abstract 

 
The DSD (Dynamic System Doctor) is system independent, 
state/parameter estimation software that can be used for 
both point and interval estimation.  The DSD also yields 
useful information for risk informed regulation and risk 
monitoring of nuclear power plants. The relationship of 
DSD to some conventional estimation techniques is 
described and illustrated using a linearized model for the 
on-line calibration of the constant temperature power 
sensor, recently proposed for direct core power density 
distribution measurement in Generation IV reactors. 

1 Introduction 

The DSD (Dynamic System Doctor) is system independent, state/parameter 
estimation software [1]. The DSD uses a system representation scheme based on 
the transition probabilities between user specified computational cells that 
partition the system state space (cell-to-cell mapping).  These transition 
probabilities are obtained from the user supplied system model. The theoretical 
basis of the DSD and the current DSD algorithm are described in a companion 
paper [2]. The main advantage of the DSD over conventional estimators is that 
DSD is both a point and an interval estimator. In addition, the DSD yields the 
probability distribution of the system variables/parameters within the estimated 
bounds which provides a probabilistic measure to rank the likelihood of system 
faults in view of modeling uncertainties and/or signal noise. Such information is 
particularly useful for risk informed regulation and risk monitoring of nuclear 
power plants.  
 

The current DSD algorithm is based on the assumptions that: a) the 
measurement noise is uniformly distributed, and, b) the measured variables are 
part of the state variable vector.  Recent theoretical developments [3] have 
extended the applicability range of DSD to arbitrarily distributed (but known) 
signal noise and modeling uncertainties and arbitrary observers.  The new 
theoretical developments have also provided the framework which clarifies the 
previously unexplained relationship between DSD and conventional 
state/parameter estimation techniques.  The paper describes and illustrates the 
relationship of DSD to the generalized maximum likelihood estimator (MLE), 
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least squares estimator (LSE) and the Kalman filter approach.  

2 Overview of the Recent Developments 

The extended DSD algorithm accepts system equations of the form 
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L
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kv  system noise at time step τk ( ,...,,k 210= ) (e.g. due to stochastic 
variation of system parameters) or a measure of modelling uncertainties, 
in general 

kx   state vector at time step τk ( ,...,,k 210= ) 
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time step 
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kw   measurement uncertainty 

x~  a L - dimensional rule that maps onto (such as by the integration 
of a set of ordinary differential equations) 

kx 1+kx
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h  M - dimensional vector whose elements are known nonlinear functions 

 
The estimation process takes place in the discretized state/parameter space 
partitioned through the user-defined intervals 
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where )( 1 kkg jj + is the probability that the system will move from cell to 

cell during
kj

1+kj ττ )k(tk 1+<≤ .  It can be also shown that [3]: 
 
1. Eqs.(5) and (6) constitute a recursive Bayesian estimator (the original DSD 

algorithm is based on the Chapman-Kolmogorov equation), 
2.  if denotes the actual cell the system is in at time k,sj τkt = and 

)( 1 kkg jj + )( 1, kksg jj +< for all 1+kj ≠ 1, +ksj , )( 11 ++ kkp yj converges 

to the correct cell irrespective of the initial distribution used, and, 1, +ksj
3. if 

• for all 0=kv L,,,k 210= , 

• the probability )|(p kk yx  is uniform over each cell , kj
• ,  kk )( xxh =
• the integrals in Eq.(6) are approximated by a quadrature scheme, 

 
 Eqs.(5) and (6) reduce to the current DSD algorithm [2]. 
 
The )(p kk yj from Eq.(5) can be used to find all the statistical properties of the 
variables to be estimated at times τkt = , including expected values, standard 
deviations and credibility intervals.  Item 3 above indicates the limitations of the 
current DSD algorithm with respect to Eqs.(5) and (6).  Item 1 implies that [3] 
 

1. For constant )0,1,( L== kk θx , the mode of )(p kyθ yields the 

maximum likelihood estimate (MLE) of . θ



2. If in Eq.(1) and in Eq.(2) are both white Gaussian noise and Eq.(1) 
originates from a linear model for the evolution of , then the mean and 
covariance of 

kw
x

)( kkp yx obtained from Eq.(6) are equivalent to those 
obtained from a Kalman filter. 

3. The mean of )(p kyθ is also the least-squares estimate (LSE) of . θ
 
These implications are illustrated below using a linearized version of the model in 
[2] for the on-line calibration of the constant temperature power sensor (CTPS), 
proposed for direct core power density distribution measurement in Generation 4 
reactors. 

3 Implementation and Results 

The CTPS [2] can directly measure the local nuclear energy deposition and heat 
transfer rate. This design concept is based on the idea of adding heat through 
resistive dissipation of input electrical energy to a small mass of actual reactor 
fuel pellet analogue which constitutes the sensor core (Node 2). The core is 
surrounded by ceramacast, which is an alumina based ceramic thermal insulator 
(Node 1).  In Mode 1 operation, Node 2 is kept at constant temperature T2 by 
providing the exact amount of input electrical energy (in kW) through a 

feedback control loop irrespective of the nuclear energy (in kW) generated in 
Node 2. At steady state [2] 
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where Ti is the Node i (i=1,2) temperature (K), is the temperature of the 

surrounding coolant, (in K/kW) is the contact resistance between Node 1 and 

Node 2 and  (in K/kW) is the contact resistance between Node 1 and the 

coolant. In Eq.(7), ,  and are not known.  In the current design, only 

is measured. The calibration of the senor is accomplished through the 

determination of  and .  Then can be found from Eq.(7) with the 

measured ,  and known  . For calibration, the sensor is temporarily taken 
out of the control loop (Mode 2 operation), or practically, the supplied electrical 
current is reduced to 1% of the steady state value in Mode 1 operation. Then  

and can be obtained from the dynamic characteristics of the sensor 
temperature in decaying back from the steady state value in Mode 1 to its original 
level through [2] 
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For this study, the data with k=1,…,250 were generated using a finite element 

CTPS model
kT

 [4]. The noise in Eq.(2) was assumed to be Gaussian noise with 

mean 0 and the variance was calculated by the sample variance of which was 
found to be 0.1.   

kw
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Table 1 below summarizes the results of the comparison of DSD with LSE, MLE 
and Kalman filters. 
 

Parameter/Estimator 
1̂θ  2θ̂  3̂θ  4θ̂  

LSE 5.4854 0.2833 19.6994 2.7906 
MLE 5.4825 0.2831 19.7017 2.7897 
Kalman Filter 6.9525 0.3464 18.4278 3.2104 
DSD (Mode)1 5.4326 0.2798 19.6685 2.7865 
DSD (Mean)2 5.4663 0.2865 19.7247 2.7978 

1For comparison to LSE and MLE 2For comparison to Kalman Filter 

Table 1. Comparison of the Results for Different Estimators  

 
Table 1 shows that there is good agreement between DSD, LSE and MLE results, 
as expected.  In general, the differences between the DSD, LSE and MLE are 
small (within 0.1% to 1.2%).  The larger differences between the Kalman filter 
and other estimator results originate from the white Gaussian noise requirement 
of the Kalman filter.   The data generated for the estimation process using the 
finite difference model of [4] do not necessarily conform to the functional form of 
Eq.(7).  Subsequently, the differences between data behaviour and the functional 
form of Eq.(7) exhibit themselves as correlated noise. 

4 Conclusion  

The new theoretical developments show that DSD is equivalent to LSE, MLE and 
Kalman filter approach for stat/parameter estimation under certain conditions.  



The advantage of DSD is that it is both a point and interval estimator whereas the 
other estimators are only point estimators.  In addition, the DSD yields the 
probability distributions of the estimated quantities over their respective intervals 
which are useful information for risk informed regulation and risk monitoring of 
nuclear power plants. 
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least squares estimator (LSE) and the Kalman filter approach.  

2 Overview of the Recent Developments 

The extended DSD algorithm accepts system equations of the form 
  

),,,k()(~
kkk L2101 =+=+ vxxx  (1) 

 
and observers of the form 
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where 
 
x  -dimensional vector whose elements are the state variables or 

unknown model parameters 
L

),...,1( Llxl =  of the dynamic system 

kv  system noise at time step τk ( ,...,,k 210= ) (e.g. due to stochastic 
variation of system parameters) or a measure of modelling uncertainties, 
in general 

kx   state vector at time step τk ( ,...,,k 210= ) 

ky  M -dimensional vector whose elements are the measured data at 

time step 
ky

τk ( ,...,,k 210= ) 

kw   measurement uncertainty 

x~  a L - dimensional rule that maps onto (such as by the integration 
of a set of ordinary differential equations) 

kx 1+kx
L

h  M - dimensional vector whose elements are known nonlinear functions 

 
The estimation process takes place in the discretized state/parameter space 
partitioned through the user-defined intervals 
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 The specification of these intervals may be, for example, based on the 
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range of interest )L,...,l(bxa lll 1=≤≤  in the state/parameter space in a 
similar manner to those used by finite difference and finite element methods.   If 

 denotes the location of the cell in the discretized state-space, 
then it can be shown that [3] the probability  
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where )( 1 kkg jj + is the probability that the system will move from cell to 

cell during
kj

1+kj ττ )k(tk 1+<≤ .  It can be also shown that [3]: 
 
1. Eqs.(5) and (6) constitute a recursive Bayesian estimator (the original DSD 

algorithm is based on the Chapman-Kolmogorov equation), 
2.  if denotes the actual cell the system is in at time k,sj τkt = and 

)( 1 kkg jj + )( 1, kksg jj +< for all 1+kj ≠ 1, +ksj , )( 11 ++ kkp yj converges 

to the correct cell irrespective of the initial distribution used, and, 1, +ksj
3. if 

• for all 0=kv L,,,k 210= , 

• the probability )|(p kk yx  is uniform over each cell , kj
• ,  kk )( xxh =
• the integrals in Eq.(6) are approximated by a quadrature scheme, 

 
 Eqs.(5) and (6) reduce to the current DSD algorithm [2]. 
 
The )(p kk yj from Eq.(5) can be used to find all the statistical properties of the 
variables to be estimated at times τkt = , including expected values, standard 
deviations and credibility intervals.  Item 3 above indicates the limitations of the 
current DSD algorithm with respect to Eqs.(5) and (6).  Item 1 implies that [3] 
 

1. For constant )0,1,( L== kk θx , the mode of )(p kyθ yields the 

maximum likelihood estimate (MLE) of . θ



2. If in Eq.(1) and in Eq.(2) are both white Gaussian noise and Eq.(1) 
originates from a linear model for the evolution of , then the mean and 
covariance of 

kw
x

)( kkp yx obtained from Eq.(6) are equivalent to those 
obtained from a Kalman filter. 

3. The mean of )(p kyθ is also the least-squares estimate (LSE) of . θ
 
These implications are illustrated below using a linearized version of the model in 
[2] for the on-line calibration of the constant temperature power sensor (CTPS), 
proposed for direct core power density distribution measurement in Generation 4 
reactors. 

3 Implementation and Results 

The CTPS [2] can directly measure the local nuclear energy deposition and heat 
transfer rate. This design concept is based on the idea of adding heat through 
resistive dissipation of input electrical energy to a small mass of actual reactor 
fuel pellet analogue which constitutes the sensor core (Node 2). The core is 
surrounded by ceramacast, which is an alumina based ceramic thermal insulator 
(Node 1).  In Mode 1 operation, Node 2 is kept at constant temperature T2 by 
providing the exact amount of input electrical energy (in kW) through a 

feedback control loop irrespective of the nuclear energy (in kW) generated in 
Node 2. At steady state [2] 
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where Ti is the Node i (i=1,2) temperature (K), is the temperature of the 

surrounding coolant, (in K/kW) is the contact resistance between Node 1 and 

Node 2 and  (in K/kW) is the contact resistance between Node 1 and the 

coolant. In Eq.(7), ,  and are not known.  In the current design, only 

is measured. The calibration of the senor is accomplished through the 

determination of  and .  Then can be found from Eq.(7) with the 

measured ,  and known  . For calibration, the sensor is temporarily taken 
out of the control loop (Mode 2 operation), or practically, the supplied electrical 
current is reduced to 1% of the steady state value in Mode 1 operation. Then  

and can be obtained from the dynamic characteristics of the sensor 
temperature in decaying back from the steady state value in Mode 1 to its original 
level through [2] 
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In Eq.(8),  is Node 2 temperature at time t)(2 ktT k The parameters 1θ through 

4θ are known functions of , sensor properties and Mode 1 node 

temperatures. Once
en qq ,

41 or  θθ  are estimated, then can be found from [2] 2R
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For this study, the data with k=1,…,250 were generated using a finite element 

CTPS model
kT

 [4]. The noise in Eq.(2) was assumed to be Gaussian noise with 

mean 0 and the variance was calculated by the sample variance of which was 
found to be 0.1.   

kw

kT

 
Table 1 below summarizes the results of the comparison of DSD with LSE, MLE 
and Kalman filters. 
 

Parameter/Estimator 
1̂θ  2θ̂  3̂θ  4θ̂  

LSE 5.4854 0.2833 19.6994 2.7906 
MLE 5.4825 0.2831 19.7017 2.7897 
Kalman Filter 6.9525 0.3464 18.4278 3.2104 
DSD (Mode)1 5.4326 0.2798 19.6685 2.7865 
DSD (Mean)2 5.4663 0.2865 19.7247 2.7978 

1For comparison to LSE and MLE 2For comparison to Kalman Filter 

Table 1. Comparison of the Results for Different Estimators  

 
Table 1 shows that there is good agreement between DSD, LSE and MLE results, 
as expected.  In general, the differences between the DSD, LSE and MLE are 
small (within 0.1% to 1.2%).  The larger differences between the Kalman filter 
and other estimator results originate from the white Gaussian noise requirement 
of the Kalman filter.   The data generated for the estimation process using the 
finite difference model of [4] do not necessarily conform to the functional form of 
Eq.(7).  Subsequently, the differences between data behaviour and the functional 
form of Eq.(7) exhibit themselves as correlated noise. 

4 Conclusion  

The new theoretical developments show that DSD is equivalent to LSE, MLE and 
Kalman filter approach for stat/parameter estimation under certain conditions.  



The advantage of DSD is that it is both a point and interval estimator whereas the 
other estimators are only point estimators.  In addition, the DSD yields the 
probability distributions of the estimated quantities over their respective intervals 
which are useful information for risk informed regulation and risk monitoring of 
nuclear power plants. 
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INTRODUCTION 
 

Different techniques have been developed and 
used to predict the flux/power density between 
measurement points, namely, using cubic splines to 
interpolate between measured data [1], fittings by 
modal expansions [2, 3], artificial neural networks 
[4], and, finally, least-square fittings [5].  Also, 
there have been few attempts to directly 
incorporate the measurement uncertainty into the 
flux/power shape reconstruction process [6-9].  

Recent work [8,9] has described such a one-
dimensional (1-D) reconstruction procedure which 
leads to computational simplicity when there are a 
large number of observations.  This procedure can 
be also used with a wide range of fitting schemes, 
from simple linear interpolation between data 
points to model based fittings, as well as a variety 
of probability distribution functions (pdfs) to 
represent the measurement uncertainty. 
      The objective of this paper is to demonstrate 
that the 1-D procedures of [8] and [9] can be used 
for three dimensional (3-D) power/flux shape 
construction by decomposing the reconstruction 
process into three 1-D problems locally.  
 
PROCEDURE 
 
    Consider a cube whose vertices are detector 
locations and which also contains another detector 
at its center.  We will assume that thermal neutron 
flux/power density satisfies the Helmholtz equation 
within the cube, i.e. 

022 =+∇ )(B)( rr ϕϕ    (1) 

where the vector denotes the spatial location 
within the cube and 
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for 1 ½ group diffusion theory representation of the 
flux/power distribution under uniform material 
composition within the cube (e.g. through a 
homogenization process).  The symbols in Eq.(2) 
have their conventional definitions.  The solution 
of Eq.(1) using separation of variables yields 
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where iφ is the measured flux/power density at 
detector location i = 1,…,9 and xi, yi, zi are the 
coordinates of the measurement point i.  The other 
quantities in Eq.(3) are arbitrary constants.  These 
constants are determined from the system of 9 non-
linear equations given by Eq(3) using non-linear 
least squares estimation and the mean values of the 
measured pdfs for iφ (e.g. by taking repeated 
measurements for steady-state operation or for 
slow transients or using the procedure described in 
[10]).  Once these constants are determined, then 
two methods can be used to move to the 
probabilistic domain and interpolate between the 
measured pdfs.  Method 1 [8] assumes that the 
expected value )(sϕ  of the flux/power at a point 

ds ≤≤0  between two detector locations i and j 
satisfies again the Helmholtz equation  

0)()( 22 =+∇ sBs ϕϕ    (4) 

with iφ and jφ as boundary conditions and: a) B = 
BBx, By ,Bz if the detectors are placed on the x-, y-and 
z-edges of the cube, respectively, 
b) , and  if 
the detectors are placed on the diagonals of the x-y, 
x-z and y-z surfaces of the cube, respectively, and, 
c)  if the detectors are placed on 
the diametrically opposite vertices of the cube.  For 
Eq.(4) with 
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iφ and jφ as boundary conditions it can 
be shown that [8] 
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with w = s/d (w=0 at location i), where )|( wp φ is 
the pdf of φ  at w. Method 2 [9] imposes the 
additional condition  
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for all w, where iφ , jφ and φ denote the 
corresponding quantities in Eq.(5) for specified 

 .10 ≤≤ F
 

IMPLEMENTATION 
 
      The hypothetical assembly considered for 
illustration was a 300X300X300 cm homogeneous 
cube, placed in vacuum and with diffusion 
parameters as given in [8].  The overall flux 
distribution in the cube was determined 
analytically from Eqs.(1) and (2).  Then the iφ  in 
Eq.(3) were determined from this flux distribution 
for a 30X30X30 cm virtual test cube randomly 
placed in the assembly. 
      The comparison of the overall flux/power 
distribution (S1) with the flux/power distribution 
obtained from the solution of Eq.(3) (S2) was 
carried out for a fixed plane 10cm above the mid x-
y plane.  Figure 1 below shows that the maximum 
relative error (S1-S2)/S1 did not exceed 0.8%.   

 
 

 

Fig.1: Relative error (S1-S2)/S1 10cm above the mid x-y 
plane of the virtual test cube 

Figure 2(a) shows comparison of the solutions 
obtained from Eqs.(3) and (4) for the x-y diagonal 
on  the same plane and indicates good agreement 
(less than 2.5%) difference between the 3-D and 1-
D solutions. 

     For the )|( wp φ  , it was assumed that the  
and 

)(φip
)(φjp  in Eq.(5) are Gaussian with means equal 

to iφ  and , respectively, and 1% standard 
deviation.  Figures 2(b) and 2(c), respectively, 
show the 

jφ

)|( wp φ obtained from Method 1 and 
Method 2.  The bimodal nature of the pdf obtained 
from Method 1 in Fig.2(b) and the low probability 
region between detector locations  reflects the large 
uncertainty in the flux value due to lack of 

observation in this region.  Note that expected 
value in Fig.2 (b) is still very similar to the local 
3D solution shown in Fig.2 (a).   
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Fig.2: Flux comparison for the x-y diagonal direction (a) 

and corresponding )|( wp φ  obtained from Method 
1 (b) and Method 2 (c) 

 
The difference between Fig.2(b) and 2(c) results is 
due to the condition imposed by Eq.(6) which 
assumes that the cumulative probability 
distribution of flux/power density is conserved 
between detector locations.  Another interpretation 



of this assumption is that the uncertainty in 
flux/power at the detector locations also propagates 
according to Eq.(4) between detector locations.  
The assumption is justified if the uncertainty 
originates from possible flux/power fluctuations 
but not if it originates from electronic noise in the 
detection hardware. 
 
CONCLUSION 

 
This study shows that uncertainty on the 
flux/power density between detector locations in a 
3-D problem can be quantified by: 

• locally decomposing in flux/power density 
construction into three 1-D problems, and, 

• using Method 1 or Method 2. 

It is not clear at this point in time whether Method 
1 or 2 should be the method of choice.  Work is 
underway to study Methods 1 and 2 with simulated 
data obtained from actual production codes. 
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Abstract. A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the 
local power deposition rate in nuclear reactor cores proposed for space thermal propulsion.  Such a capability reduces 
the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine.  The 
CTPS operation is sensitive to the changes in the local thermal conditions.  A procedure is described for the automatic 
on-line calibration of the sensor through estimation of changes in thermal .conditions. 

INTRODUCTION  

Substantial effort has been spent since the 1950s on the design and testing of highly enriched uranium fuelled, 
graphite moderated reactor cores for nuclear thermal space propulsion. Due to their compact size and high operating 
temperatures, very strong coupling exists between the nuclear and thermal hydraulic behavior of such cores (Aithal, 
Aldemir, and Vafai, 1994).  Accurate modeling of this coupling in both ground testing of the cores and in-flight 
operation is usually difficult because of the uncertainties in local material compositions, coolant flow paths, reactor 
operation history and possibly nuclear data.  On the other hand, accurate prediction of core power distribution is 
important to determine the local power peaking factors and hence the operating limits of the nuclear engine.  A 
recently proposed constant temperature power sensor (CTPS) (Radcliff, Miller, and Kauffman, 2000a) has the 
capability to measure local core power directly.  While the measurement process is sensitive to local temperature 
and flow variations, such variations can be accounted for using the estimation procedure DSD (Dynamic System 
Doctor) (Wang, Chen, and Aldemir, 2002).   This paper describes how the CTPS-DSD combination can be applied 
to space reactors for accurate prediction of core power distribution.  Three important features of the CTPS-DSD 
combination for space reactors are the following: 

• The sensor core can blend with the fuel matrix of a number of reactor concepts proposed for nuclear 
thermal propulsion, such as the particle bed concept (Powell et al., 1991) or cermet fuel (Kruger, 1991), 
reducing material compatibility problems at high temperatures and high temperature gradients. 

• The measurement procedure is self-calibrating.  This feature is particularly important for space reactors 
where sensor calibration though external means may not be feasible.  

• The measurement process yields point estimates for the power densities as well as credibility intervals for 
these point estimates so that the uncertainty in the estimated quantities is an automatic output of the 
estimation process.  Such data provide useful inputs for pre-launch determination mission reliability and for decision 
making during the mission. 

THE SENSOR 

As designed for testing purposes, the sensor consists of a fuel pellet surrounded by electrical heating resistance wire 
(see Fig.1). (Radcliff, Miller, and Kauffman, 2000a) The pellet and the wire form the sensor core (Node 2).  The 
core is surrounded by ceramacast which is an alumina based ceramic thermal insulator (Node 1).  Both the sensor 
core and the insulator are coated with thin layers of copper.  A feedback control loop is used to provide the exact 
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amount of input electrical energy qe needed to keep Node 2 temperature T2 constant in time t, well above the 
ambient temperature T0, regardless of nuclear energy deposited (qn). The CTPS is ideally suited for use in the 
proposed nuclear thermal space systems in which the sensors need to be an integral part of the core for the mission 
duration and where sensor calibration though external means may not be feasible. 

The sensor operation involves switching between the feedback-controlled constant-temperature mode (Mode 1) and 
the dynamic temperature decay mode following the opening of the feedback loop (Mode 2) as described by 
(Burghelea and Aldemir, 2003; Liu, Miller, Li,  and Radcliff, 2002;   Radcliff, Miller, and Kauffman,  2000a) 
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Equation (1) has been validated against the results from a finite element code (Liu, Miller, Li, and Radcliff, 2002). 

 

FIGURE 1. The Constant Temperature Power Sensor. 

At steady-state Eq.(1) yields: 
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which corresponds to the constant temperature mode (i.e. Mode 1) operation of the CTPS.  Under linearity 
assumptions Eq.(1) yields for Mode 2 
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where 0θ through 4θ are known functions of 0T , )0(2T  and the parameters of Eq.(1).  In the implementation, C1, C2, 

R1 in Eq.(1) are assumed to be known.  The estimation of nq consists of the following steps: 

1. In Mode 1, measure qe , T1(0) and T2(0) 

2. Switch to Mode 2 and measure T1(t), T2(t)  

3. Assume a value nq′ for nuclear energy deposition rate. 

4. Estimate T0 and R2 from Eq.(1) or 0θ through 4θ  from Eq.(3) using Step 1 through Step 3 results and the 
estimation software described in the next section. Once 0θ through 4θ are estimated, T0 and R2 can be 
determined from these estimates and given C1, C2 and R1 (Radcliff, Miller, and Kauffman, 2000b). 

5. Determine qn from Eq.(2) using Step 4 results. 

6. Compare nq from Step 5 to its Step 3 value nq′ . 

7. If 01.0/)( <′− nnn qqq stop (convergence), otherwise go to Step 3 with nn qq =′ . 

Steps 1 though 4 account for changes in the local temperature and flow variations which affect T0 and R2 in Eq.(1) 
and hence are equivalent to the on-line calibration of the sensor 

THE ESTIMATON SOFTWARE 

The DSD is based on the representation of the system dynamics in terms of transition probabilities between user 
specified cells that partition the system parameter/state space during user specified time intervals ττ )1( +≤≤ ktk  (k 
= 0, 1, 2, ...), such as between data sampling times. These cells are obtained by partitioning the range of interest 

lll bxa ≤≤  for the state variable ),,1( Llxl L=  into 1,,1 −= ll Jj L intervals 1,, 1 +<≤
ljljl axa and the range of 

interest mmm ba
~~ ≤≤α  for the parameter ),,1( Mmm L=α   into 1,,1 −= mm Nn L intervals 1,,

~~
+<≤

mm nmnm axa , in 
a manner similar to those used in finite difference or finite difference methods.  The partitionings are provided as 
user input to DSD. The DSD recursively computes the probability )|,( kk Jnjp that the state variables (e.g. T1(t), 
T2(t)) are in cell j ( j = 1,...J=J1J2…JL) and the unknown parameters (e.g. R2, T0) are in cell n (n = 1,...,N=N1N1…NM) 
during ττ )1( +≤≤ ktk , given that the possible set of cells the state variables can be in at this time is Jk (as observed 
from the monitored data), from 
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 is the transition probability from state variable cell j′  to state variable cell j  during the period 
ττ )1( +≤≤ ktk while the system parameters remain within cell n′ . The quantity ),,(~ τn′′ αxx in Eq.(5) indicates the 

arrival point in the state-space at time τ)1( +k of the trajectory that has departed at time τk from point x′ in 
cell j′ with the system parameters at n′α within cell n′ , as determined from a user provided system model (e.g. 

Eq.(1)).  In applications, the ),|( njjg ′ are usually approximated using a j~′  -point quadrature scheme, i.e. 

1) at time τk , selecting randomly or otherwise (e.g. equidistant) j ′~ starting points from cell j′  for a given n,  

2) from the user provided system model, find the number j~  of trajectories that arrive within cell j at 

τ)1( += kt  (e.g. by integrating Eq.(1) over ττ )1( +≤≤ ktk for each of the j ′~ initial conditions), and,  

3) letting jjnjjg ~/~),|( ′=′ .  

A graphical illustration of this process, along with an example partitioning scheme, is shown in Fig.2 for a second 
order system where only one state variable is monitored. Some sufficient conditions for the convergence of Eq.(4) 
are given in (Wang and Aldemir, 1999)  An important advantage of DSD is that it yields point estimates of the 
system variables to be determined as well as credibility intervals for these point estimates (i.e. state variable and 
parameter ranges inferred from j and n with )0),( ≠njpk  so that the uncertainty in the estimated quantities is an 
automatic output of the estimation process.  

IMPLEMENTATION 

The example nuclear thermal propulsion reactor concept chosen to illustrate the utilization of the CTPS/DSD 
combination is the particle bed reactor (PBR) concept used in (Aithal, Aldemir, and Vafai, 1994).  Figures 3 and 4, 
respectively, show a horizontal cross section of the reactor core and an axial cross section of a PBR fuel element.  
The PBR uses fuel in the form of small diameter particles (100-500 μm) which consist of a highly enriched uranium 
kernel surrounded by multiple layers of pyrographite and sometimes additional ZrC or SiC layers.  The fuel particles 
are held between two porous annuli ("frits") to form a fuel element (Fig.4) and the fuel elements are embedded in 
the moderator block in concentric rings to form the core (Fig.3).  The moderator block is surrounded by a pressure 
vessel, reflected radially and axially for neutron economy.  Hydrogen pumped from the propellant tank flows 
through an annulus located between the radial reflector and the pressure vessel before entering the core.  After 



entering the core, the coolant first passes through the outer cold frit (Zircaloy 2), then directly over the fuel particles 
and finally through the inner hot frit (ZrC) into the outlet plenum to be ejected through a nozzle to develop thrust.  
Partial reactivity control is achieved by varying the hydrogen mass flow rate in the annulus. 

 

25.04/1)2,22|29(,5.04/2)1,22|29(,0)2,29|58(,75.04/3)1,29|58( ======= gggg  

FIGURE 2. An example partitioning scheme and the illustration of the approximation of g( j| j’, n) for a hypothetical dynamical 
system with two state variables x1, x2 and one parameterα . The system is in cells 22,29,58,602)11(9 =+−= jjj at 

times ττττ )3(,)2(,)1(, +++ kkkk respectively.  If only x1 is monitored, the set of possible cells the system can be in are Jk = 
Jk+1 = { j = 55, . . . , 63}, Jk+2 = { j = 37,…,45} and Jk+3 = { j = 10, . . . , 18} (adapted from Dinca, 1997). 
 

For the PBR application, the CTPS is assumed to be imbedded in the fuel element between the hot and cold frit with 
sensor core (i.e. Node 2 in Fig.1) consisting of the same type of particles used in the fuel elements.  For the purposes 
of this illustration, the sensor heater wire and the Node 1 and 2 metal coatings were assumed to be tungsten.  Table 1 
shows the example power and temperature data used for the illustration.  The data in Table 1 have been generated 
with the MCNP (Breimeister, 1989) and HEATING-5 (Turner, Elrod, and Siman-Tov, 1977) codes.  Figure 5 shows 
the results of the estimation using DSD, assuming that the monitored variables are )(),( 21 tTtT and )(tqe .  The 
bars in Fig.5 indicate 100% credibility intervals.  The data for the estimation process was simulated using Eq.(1) 
with 1% noise in the monitored variables.   Figure 5 indicates that the credibility intervals contain the actual (i.e. 
simulated data) and also quantify the uncertainty in the estimation process. 



 

 

FIGURE 3.  The Particle Bed Reactor Core 
(Aithal, Aldemir, and Vafai, 1994). 

FIGURE 4.  A Particle Bed Reactor Fuel Element (Aithal, Aldemir, 
and Vafai, 1994). 

 
 
 
TABLE 1. Example Power and Temperature Data for the Particle Bed Reactor (Aithal, Aldemir, and Vafai, 1994). 
 

Distance from 
Coolant 

Inlet  (cm) 

Power Density qn 
(W/cm3) 

Solid Temperature 
T1(0)=T2(0) (K) 

Coolant Temperature 
(K) 

5 960 480 455 
10 1440 635 610 
20 1888 1230 1208 
30 2040 1580 1560 
40 1888 2104 2085 
50 1456 2521 2503 
55 976 2968 2950 

 

CONCLUSION 

Obtaining accurate power profiles in both ground testing and in-flight operation or reactor cores for nuclear thermal 
propulsion is usually difficult because the strong neutronic-thermal hydraulic coupling of the cores and uncertainties 
in local material compositions, coolant flow paths, reactor operation history and possibly nuclear data. This study 
shows that using CTPS modeled through Eq.(1) and DSD may be a feasible option to obtain direct estimates of the 
power distribution as well as quantifying the uncertainty in the estimated power profiles.  The advantages of the 
CTPS-DSD combination with respect to space reactors are: a) it reduces material compatibility problems at high 



temperatures and high temperature gradients, b) the measurement procedure is self-calibrating, and, c) it provides 
useful inputs for pre-launch determination mission reliability and for decision making during the mission. 

 

 

FIGURE 5. Estimated and Actual Values of the Local Power for the Data in Table 1. 

 

NOMENCLATURE 

Ci = thermal capacitance of Node i (i =1,2) (J/m3K) 
g(j,n|j’,n’) = transition probability from cell pair (j’,n’ ) to cell pair (j,n ) during kτ <t<(k+1)τ (k=0,1,2,..) 
h  = sensor height (m) 
k  

= 
thermal conductivity of the contact layer between Node 1 and 2 (W/m.K) 

pk(j,n)  = probability that the system variables are in cell j (j=1,…,J) and the system parameters are in cell n 
(n=1,…,N) at time t=kτ 

qn  = nuclear energy deposition rate (W/m3) 
qe  = electrical energy deposition rate (W/m3) 
ri = inner radius of the layer between Node 1 and  Node 2(m) 
r0  = outer radius of the layer between Node 1 and Node 2 (m) 
R1 = thermal resistance between Node 1 and 2 (K.m3/W) 
R2 = thermal resistance between Node 1 and the coolant (K.m3/W) 
t    = time (s) 
Ti  = temperature of Node i (i =1,2) (K) 
T0  = coolant temperature (K) 
xl   = system state variable (l=1,…,L) 
αm = system parameter (m=1,…,M) 

* actual value 

|   estimated value 



REFERENCES 

Aithal, S.M., Aldemir, T., and Vafai, K., “Assessment of the Impact of Neutronic/Thermal-Hydraulic Coupling on the Design 
and Performance of Nuclear Reactors for Space Propulsion,” Nucl. Technol. 106, 15-30 (1994). 

Breimeister, J. S. “MCNP-A General Monte Carlo Code For Neutron and Photon Transport, Version 3B,” LA 7396-M, Los 
Alamos National Laboratory, New Mexico (1989). 

Burghelea, A., and Aldemir, T., “In-Core Power Detection with CTPS Using a Non-Linear Model,” Trans. Am. Nucl. Soc., 88, 
314-316 (2003). 

Dinca, L., “A Probabilistic Approach to Parameter Estimation towards Fault Diagnosis in Non-Linear Dynamic Systems,” Ph.D 
Thesis, The Ohio State University (1997). 

Kruger,G., “A Cermet Fuel Reactor for Nuclear Thermal Propulsion,” Nuclear Thermal Propulsion, NASA Conference 
Publication 10079, 165-184 (1991). 

Liu, H.-Y., Miller,  D. W., Li, D.-X.,  and Radcliff, T. D., “A Novel Method to On-Line Monitor Reactor Nuclear Power and In-
Core Thermal Environments,” Proceedings of the International Congress on Advanced Nuclear Power Plants (ICAPP), 
Paper #1212, CD-ROM, American Nuclear Society, La Grange, IL (2002).  

Powell, J., Ludewig, H., Mughabghab, S., Perkins, K. Selcow, E., Schmidt, E., and, Horn, F., “A Nuclear Thermal Rocket Engine 
Design Based on the Particle Bed Reactor Suitable for a Mars Mission,” AIAA-91-3508, AIAA/NASA/OAI Conference on 
SEI Technologies, Cleveland, Ohio (1991). 

Radcliff, T. D., Miller, D. W., and Kauffman, A. C., “Constant-Temperature Calorimetry for In-Core Power Measurement”, 
Nucl. Technol., 132, 240-255 (2000a). 

Radcliff, T. D., Miller, D. W., and Kauffman, A. C., “Modeling Of A Constant-Temperature Power Sensor”, Proceeding of 8th 
International Conference on Nuclear Engineering (ICONE-8), Paper #8098, American Society of Mechanical Engineers, 
New York, N.Y. (2000b). 

Turner, W. D., Elrod, D. C., Siman-Tov, I. I., “HEATING-5,” ORNL/CSD/TM-15, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee (1977). 

Wang, P., and Aldemir, T., “Real Time Xenon Estimation in Nuclear Power Plants,” Trans. Am. Nucl. Soc., 81, 154-156 (1999). 
Wang, P., Chen, X. M., and Aldemir, T., “DSD: A Generic Software Package For Model-based Fault Diagnosis in Dynamic 

Systems,” Reliab. Engng & System Safety, 75, 31-39 (2002). 



Forth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls 
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio,  September, 2004 

QUANTIFYING THE MEASUREMENT UNCERTAINITY PROPAGATION IN 
FLUX/POWER RECONSTRUCTION 

 
 

Mihaela Biro, Tunc Aldemir 
The Ohio State University, Nuclear Engineering Program 

Bldg 1, Rm 130B, Suite 255, 650 Ackerman Road, Columbus, OH 43202 
biro.6@osu.edu; aldemir.1@osu.edu 

 
 

Keywords: diffusion theory, core power distribution, probability distribution function 
 
ABSTRACT 

This paper presents a theoretical approach combining the 1 ½ group diffusion 
theory with statistical techniques to estimate the flux/power shape probability distribution 
based on statistical interpolation between measured data. Two methods for estimating the 
statistical properties of power density/flux between measurement points are described 
and illustrated on a hypothetical steady state one-dimensional reactor. Results are 
reported using simulated measured data from 15 hypothetical power sensors placed 
within the core. 

1.   INTRODUCTION 

In nuclear reactors, it is important to have knowledge of the power/flux shape at 
all times during the reactor lifetime. This information is, for example, used for 
determining fuel burnup history and is strictly necessary for ensuring safe operation of 
the reactor. Currently, in power reactors, the flux/power map is reconstructed based on 
the signals from out of core or in-core detectors, using diffusion codes and employing 
different methods of flux reconstruction, such as: piecewise cubic splines to interpolate 
between measured data (Han, 1999), fittings based on modal expansions (Pomerantz, 
2002; Fu, 1997), artificial neural networks (Lee, 2002) and least-squares fittings (Lee, 
2003). 
 

There have been relatively few studies that explicitly consider the probability 
distribution of the measurement uncertainty in the flux/power shape construction process 
(Bryson, 1993). The proposed approaches are limited to linear relationships between 
flux/power and location, often requiring long computation times and large memory 
(Bryson, 1993). 

The objective of this research is to develop an approach that can be used to obtain 
the probability distribution function (pdf) of the flux/power distribution at all points in 
the reactor using monitored data from in-core power detectors. The proposed approach 
yields all the statistical properties of the flux/power distribution in the core, including 
expected values and credibility intervals.  Such data could be useful for risk-informed 
regulatory process and may allow reduction in operational thermal margins (and 
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subsequently increasing the power extracted from the core) in view of the reduced 
uncertainty in the estimated local power densities.   

Two possible methods of obtaining the pdfs between detectors locations are 
investigated in this study, both combining the diffusion theory with statistical techniques.  

Section 2 describes the theoretical basis.  Application on a hypothetical steady 
state one-dimensional reactor is presented in Section 3. A discussion of the results is 
given in Section 4. 

2. METHODS 

The two methods considered in this study differ in the assumptions made:  

• Method 1 assumes that, at every point in the reactor, the expected value of the 
power density/flux follows the diffusion theory. 

• Method 2 imposes the additional constraint that the power density/flux can 
achieve all possible values at any specified point in the reactor. 

2.1  Method 1 

Consider a one–dimensional steady state reactor as described by 1 ½ group 
diffusion theory: 
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where denotes the reactivity control cross section (poison and/or control rods) and 
all the other symbols have their conventional definitions.  Solution of Eq.(1) for constant 
B
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where  is the measured power density/flux at x = xnh n (or y = 1), is the measured 
power density/flux at x = x

1+nh
n+1 (or y = 0) and 

22
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2 )( Bxx nn −= +β  (5) 

Imposing the condition that the expected values of 1φ  and 2φ  satisfy Eq.(1), the pdf of 
the power density/flux, , for given )|( yhp nphp =)1|( , 1)0|( += nphp and at a given 0 
< y < 1  can be written as  
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It can be seen from Eq.(6) that the resulting inferred pdf of power density/flux at location 
xn< x < xn+1 is a weighted sum of the pdfs of power density/flux at locations xn and xn+1. 
This result may be extended for the multigroup case, where energy discriminant detectors 
need to be used to determine the boundary conditions. 

2.2  Method 2 

Integration of Eq.(6) over all possible values of h yields 
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where F(h|y) is the cumulative distribution function (Cdf) for power density/flux at a 
specified y.  It can be seen from Eq.(7) that, for all y, 1)|( =∞ yF  only for small β , and 
not for all β values as would be intuitively expected. Method 2 is a modification of the 
procedure proposed by Read (1999) to search for neutral and charged Higgs bosons in 
electron-positron collisions.  Adapted to the problem under consideration in this study, it 
assumes that power density/flux varies linearly between detector locations and imposes 
the condition that  at all y.  The procedure also requires that the Cdfs 1)|( =∞ yF
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at the two consecutive detector locations xn and xn+1, respectively, have the same value F 
as well as at all points between the detector locations, i.e. 

Fn (hn) = Fn+1 (hn+1) = F(h)  = F (9) 

Given and , the can then be constructed using the algorithm shown 
in Fig.1 
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Fig.1: Method 2 Flowchart 

3.  EXAMPLE RESU

 one-dimensional reactor of length 2L = 300 cm with material properties given 
in Table 1 was considered. A gray control rod of thickness 2 cm and transmissivity 0.9 
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was assumed to be inserted in the reactor at x = 50 cm away from the reactor midplane.  
Data from detectors placed within the core at every 10 cm starting from the reactor 
midplane were simulated by solving Eqs.(1) and (2) within Lx ≤≤0  and with 
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where for criticality we must have B = 0.0242 cm-1. 

Table 1  Group constants for the example reactor 
 

Group 
Group constant 

1 2 
(cm-1) 0.008476 0.18514 fΣν
(cm-1) 0.01207 0.1210 aΣ

D (cm) 1.2627 0.3543 
(cm-1) 0.0141 - 21 >−Σ

 
The monitored data from the detectors were assumed to be normally distributed 

with the expected value satisfying Eq.(11) and with a 1% standard deviation. Figure 2(a
shows the probability distributions and the e
Figure 2(b) shows the s e 

0 <
Eq.(4) was obtained through homogenization.

It was noted that although the expected values predicted by both methods 
matched the simulated data well (see Fig.2), Method 1 may lead to a bimodal distribution 
and that the predicted expected value between detector locations may fall in a region of 
low probability.  Figures 3 and 4 show the pdfs of reactor power at x = 43 cm and x = 85 
cm, respectively. The bimodal shape predicted by Method 1 in Fig.3 has also been 
observed in other studies (Bursal, 1996) and is due to the fact that and are 
being concentrated in different regions of the state space. The unimodal shape of p(h|y) is 
due to the linearity assumption of Method 2.  Figure 4 shows that if the variation in the 
power density/flux is small with distance (e.g. at x = 85 cm as can be seen from Fig.2) 

) 
xpected values as obtained from Method 1. 

ame information, but as obtained by applying Method 2. In th
region 4  x < 60 cm were the existence of a control rod is assumed, the β coefficient in 
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and subsequently h(y) is close to linear, then p(h|y) obtained from both Method 1 and 
Method 2 are similar.   

 

 

(a)       (b) 

Fig. 2 Relative power distribution h(x)/h(0)
M

Fig.3  
         at location x = 43 cm 

              Fig. 4  Probability distribution function 
                            at location x = 85 cm 

 for the example reactor: a) Method 1, b) 
ethod 2 

Method 2

Probability distribution function  

 

assuming steady state behavior and 1 ½ group diffusion theory. Such data may be useful 

4.  CONCLUSIONS 

Two methods for estimating the statistical properties of power density/flux 
between measurement points are described and illustrated in a 1-dimensional reactor 
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for risk informed regulation, as well as for establishing meaningful margins on 
operational power levels and setpoints.  

e study show the following: 

 Method 2 estimate the expected value of the power 
s well. 

 a bimodal distribution with the uncertainty on the expected 
e midpoint between detector locations.   

3. odal distribution with the mode of the 
d value. 

idpoint between detector locations is the one 
 2 is not counter-intuitive.  However, it leads to 

ifficulties from a practical viewpoint since credibility intervals for the expected value of 
y/flux in reactor regions away from the detector locations cannot be obtained 

in a meaningful manner.  While Method 2 does not have this problem, it is not clear how 
ffects the results.  One conclusion that arises from these results 

d 1 and Method 2 results as a function of xn allows the 
optimal choice of detector locations. 

NOMENCLATURE 

D 
ν  number of neutrons emitted per fission  

The results of th

1. Both Method 1 and
density/flux between measurement point

2. Method 1 may lead to
value being very large at th

Method 2 always leads to a unim
distribution close to the expecte

Considering the fact that the m
furthest away from the detectors, Result
d
power densit

the linearity assumption a
is that comparison of Metho

 diffusion coefficient 

)(xiφ  neutron flux 
 fission cross section Σf(x) 

h 
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F ve distribution function 
 

1 roup 
2 thermal neutrons group 

REFE

F. H. Bursal, 1996. On Interpolating between Probability Distributions, Applied 
Mathematics and Computation, 77, 213-244.  

 Σa(x) absorption cross-sections 
)( group transfer cross-section 21 x→Σ

)(xbΣ    reactivity control cross section 
 power density 
 probability distribution function 
 cumulati

Subscripts 

fast neutrons g
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1. INTRODUCTION 

 

A new in-core reactor power sensor has been under development at The Ohio State University since 1996. 

This feedback-controlled calorimetric instrument, which is referred to as a constant-temperature power 

sensor (CTPS), is capable of direct measurement of nuclear energy deposition [1]. The CTPS is ideally 

suited for use in the proposed Generation IV power systems in which the sensors become an integral part of 

the fuel for the core lifetime. Previous work [2] to determine the local nuclear energy deposition rate 

with CTPS has used: a) an algebraic model obtained from the solution of the linearized differential 

equations describing the CTPS operation, and, b)  the software package DSD [3] to estimate the operation 

dependent model parameters.  The results of [2] indicated that the model is very sensitive to model and data 

uncertainties. This study directly uses the non-linear differential equations describing the CTPS behavior 

and DSD to estimate the operation dependent model parameters as well . Sections 2 and 3, respectively, 

describe the sensor model and give an overview of the estimation procedure. Section 4 presents the 

implementation and results. 

nq

nq

 

2. THE CTPS  

 

The CTPS consists of a UO2 pellet surrounded by electrical heating resistance wire.  The pellet and the wire 

form the sensor core (Node 2).  The core is surrounded by ceramacast which is an alumina based ceramic 

thermal insulator (Node 1).  Both the sensor core and the insulator are coated with thin layers of copper.  A 

feedback control loop is used to provide the exact amount of input electrical energy needed to keep 

Node 2 temperature T

eq

2 constant in time (t), well above the ambient temperature T0, regardless of . The 

sensor operation involves switching between the feedback-controlled constant-temperature mode and the 

dynamic temperature decay mode following the opening of the feedback loop as described by 

nq
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where kC  , ro (0.575 mm), ri ( 0.3mm) are, respectively,  the thermal conductivity, outer and inner radius of 

the copper layer between Node 1 and Node 2, hs is the height of the sensor, T2 is Node 2 temperature, and 

C1 and C2 are,  respectively, thermal capacitances of Node 1 and Node 2.  Other notation in Eq.(1) are as 

defined previously.  The model described by Eq(1) has been validated against a finite element code [3].  At 

steady-state Eq.(1) yields 
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2
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R
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which corresponds to the constant temperature mode operation of CTPS. 

 

3. AN OVERVIEW OF DSD [4] 

 

The DSD is based on the representation of the system dynamics in terms of transition probabilities between 

user specified cells that partition the system parameter/state space during user specified time intervals. The 

DSD recursively computes the probability that the state variables (e.g. T)J|n,j(p kk 1(t), T2(t)) are in 

cell j ( j = 1,...,J) and the unknown parameters (e.g. R2, T0) are in cell n (n = 1,...,N) during the data-

sampling time period ττ )k(tk 1+≤≤ k (k = 0, 1, 2, ...), given that the possible set of cells the state 

variables can be in at this time is Jk (as observed from the monitored data), from 
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where  is the transition probability from state variable cell )n,j|j(g ′ j′  to state variable cell j  during 

the period ττ )k( 1+≤tk ≤ when the system parameters are within cell n. The  can be 

approximated by: 1) at time

)n,j|j(g ′

τk , selecting randomly or otherwise (e.g. equidistant) M ′ starting points from 



cell  for a given n, 2) using the given system model (e.g. Eq.(1)) to find the number M of trajectories 

that arrive within cell j at 

j′

τ)k(t 1+=  (e.g. by integrating Eq.(1) over ττ )k(t 1+k ≤≤ for each of 

the  = 1, 2, . . ,  m′ M ′ initial conditions), and, c) letting M/M)n,j|j(g ′=′ . A graphical illustration 

of this process is given in [5] and some sufficient conditions for the convergence of DSD are given in [6].   

nq τk=

n′ q

0<n nq

 

4. IMPLEMENTATION AND RESULTS 

 

In the implementation, C1, C2, R1 in Eq.(1) are assumed to be known.  T1, T2 and qe are assumed to be 

measured.  The estimation of for each data sampling time t (see Section 3) was carried out 

iteratively through the following steps: 1) Assume ; 2) Estimate Tnq

q

0 and R2 from Eq.(1); 3) Determine qn 

from Eq.(2) using Step 2 results; 4) Compare n  to its previous value q ; 5) If ( /)nn q′−  

stop (convergence), otherwise go to Step 2 with .  The T01.q 1(t) and T2(t) data for the estimation 

were generated from Eq.(1) with T0=700 K, T1(0)=721.095 K, T2(0)=782.538 K, C1=0.008041 J/K, 

C2=0.744024 J/K, R1=5.41 K/W, R2=1.85 K/W, qn=1.68 W qe=9.6766 W and superimposed 1%random 

noise on the observed data (i.e. T1 and T2 ).  The k as a function of TCu 2 was represented by a third order 

polynomial. Figure 1 shows the estimation results, as well as the partitioning scheme used with Eq.(3).  

Convergence on qn was obtained in 12 iterations on the average per data sampling interval.  The results 

indicate that the estimation scheme works well for both constant and time-varying ambient temperature T0.  

 

5. CONCLUSION 

  

The results of the study show that DSD be used with CTPS to estimate the local power density in nuclear 

reactor cores both for steady-state and transient conditions with noisy data. 
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Fig.1:  Estimation results (bars) for constant and time-varying T0: a) constant T0; b) qn for constant T0; c) 

time-varying T0; b) qn for time-varying T0.  Solid lines indicates the true values. 
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INTRODUCTION OVERVIEW OF DSD WITH RPS 
  
The DSD (Dynamic System Doctor) is dynamic 
system state/parameter estimation software [1] 
that can automatically account for modeling 
uncertainties/signal noise in the estimation 
process.  This capability is accomplished through 
the representation of system evolution in terms 
of probability of transitions within a user 
specified time interval τ  (e.g. data sampling 
interval) between sets of user defined 
parameter/state variable magnitude intervals (or 
cells) that partition the search space.  The DSD 
yields the probability that the 
parameters are in cell and the state variables 
are in cell at time

)j,n(kp
n

j τk=t .  Then  
can be used to determine the lower and upper 
bounds on the estimated values of state 
variables/parameters, as well as their probability 
distribution within these bounds.   

)j,n(kp

The RPS philosophy is to progressively 
eliminate the regions of the search space where 

through the on-line definition of 
the cells.  Figure 1 shows the DSD algorithm 
with RPS.  The DSD assumes that a system 
model is available which can be used the system 
location is state space at time 

0=)j,n(kp

τ)k(t 1+=  
),,k( 210= from the knowledge of its location 

at time τkt = and the known values of the 
system parameters. The algorithm consists of the 
following steps: 
 

Specify, respectively, the state variable and 
parameter ranges of interest, RPS stopping 
rules and monitored data uncertainty.  The 
parameter and state variable ranges of 
interest define the search space for the 
estimation process.  The RPS stopping rules 
define the smallest cell size that needs to be 
used for the estimation of the unmonitored 
state variables/parameters. The choice of 
such a cell is usually based on the accuracy 
level desired for the variables/parameters to 
be estimated. 

1. 

2. 

 
A potential limitation in the implementation of 
DSD is that excessively long run times and large 
memory requirements may result for large or 
rapidly evolving systems if the cell definitions 
are provided as fixed initial input. Recently a 
recursive partitioning scheme (RPS) for cell 
definitions was proposed that substantially 
reduces the estimation time and memory 
requirements [2]. This paper investigates the 
sensitivity of the RPS to the ranges of interest for 
the state variables/parameters to be estimated 
using the constant temperature power sensor 
(CTPS) [3]. The CTPS has been proposed for 
direct measurement of local power density in 
nuclear reactor cores and requires the on-line 
estimation of ambient conditions for reliable 
operation.   A practical implication of such a 
parametric search is the determination of the 
power range the CTPS can be operated in. 

Read data from the monitors at each time 
point τkt = ),,k( 210= . 
Define the intervals for the monitored 
variables so as to contain the variation/noise 
on the monitored data, centered on their 
median values.   

3. 

4. 

5. 

Define the intervals for the unmonitored 
variables and the parameters by bisecting 
each range of interest.  Along with the 
intervals defined in Step 3, these intervals 
form the cells that partition the search space. 
Input the initial probability distribution 

to be used to start the estimation 
process.  The is usually chosen as 
the uniform distribution, however, results of 
the estimation are not dependent on the 
choice of . 

)j,n(p0

)j,n(p0

)j,n(p0
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Determine the cell-to-cell transition 
probabilities  by: a) selecting 

points in cell  at time
)n,j|j(g ′′

j′J ′ τkt = , b) 
finding the number of arrival points J in cell 
j at time τ)k( 1+=

′

t from the system 
model, assuming that the system parameters 
remain in their cell n at time τk=

J
t , and, 

c) letting  . )n,j|j ′′ J=(g /′

6. Steps 2 through 8 are repeated until  
converges in the probability sense, i.e.  
are all zero except for the cells containing the 
actual system locations in the system state and 
parameter spaces It should be mentioned at this 
point that the algorithm may not converge for 
rapidly evolving systems during one data 
sampling interval

)j,n(pk

,n(pk )j

ττ )k(tk 1+<≤ .  However, 
even in this situation, previous work shows that 
the expected values of the parameters/state 
variables to be estimated are often found to be 
close to their actual values [4]. 

Find from )j,n(pk7. 

8. 

)j,n(kp
j n

)n,j|j(g)j,n(kp ′′−∑
′
∑
′

′′= 1  
 

If all , then subdivide each and 
go to Step 3. Otherwise, 
normalize by dividing it by the total 
probability of finding the system in the 
search space, increment the time index k and 
go to Step 2. The probability of finding the 
system in the search space is not necessarily 
1, because the system may leave the search 
space during 

0=)j,n(pk

)j,n(pk

ττ )k( 1+<tk ≤ depending on 
its location at τkt = . 

THE CTPS  
 
The CTPS consists of a UO2 pellet surrounded 
by electrical heating resistance wire.  The pellet 
and the wire form the sensor core (Node 2).  The 
core is surrounded by ceramacast which is an 
alumina based ceramic thermal insulator (Node 
1).  Both the sensor core and the insulator are 
coated with thin layers of copper.  A feedback 
control loop is used to provide the exact amount 
of input electrical energy  needed to keep 
Node 2 temperature T

eq
2 constant in time, well 

above the ambient temperature T0, regardless of 
. The sensor operation involves switching 

between the feedback-controlled constant-
temperature mode (Mode 1) and the dynamic 
temperature decay mode (Mode 2) following the 
opening of the feedback loop as shown below in 
Fig.2. 

nq

 

 

 

 Fig.1: DSD Algorithm with RPS Fig.2: CTPS Operation  



The quantities C1, C2 and R1 in Fig.2 are 
assumed to be known.  T1, T2 and qe are assumed 
to be measured. 
 
IMPLEMENTATION AND RESULTS 
 
In the implementation, the estimation of for 

each data sampling time 
nq

τk=t  was carried out 
iteratively as shown in Fig.2. The T1(t) and T2(t) 
data for the estimation were generated from the 
equations describing the dynamic temperature 
decay mode in Fig. 2 with T0=700 K, 
T1(0)=721.095 K, T2(0)=782.538 K, 
C1=0.008041 J/K, C2=0.744024 J/K, R1=5.41 
K/W, R2=1.85 K/W, qn=1.68 W qe=9.6766 W 
and superimposed 1% random noise on the 
monitored data (i.e. T1 and T2 ).  The noise level 
is substantially larger than the anticipated 
measurement uncertainty during the operation of 
the sensor.  The in Fig.2 as a function of TCuk 2 
was represented by a third order polynomial. 
Table 1 shows the estimation results.  The last 
row shows the average number of switches 
between Mode 1 and Mode 2 for convergence in 
qn and indicates that the computational demand 
for RPS is relatively insensitive to the size of the 
search space, however, increases with the 
refinement of the stopping rule as also expected 
from DSD applications with progressively 
refined fixed partitioning schemes. 
 
CONCLUSION 
  
The results of the study show that DSD with 
RPS be used with CTPS to estimate the local 
power density in nuclear reactor cores for fuel 
temperature ranges within 300 K to 1000 K.  
Similarly, the estimation scheme works within 
the coolant temperature range of (i.e. T0) of 300 
– 1000K.  While these temperatures ranges 
include most of the operational range of current 
reactors, further studies are needed to investigate 

the suitability of measurement scheme to high 
temperature, gas cooled Generation IV reactors.  
 

Table 1 
Estimation Results for RPS 

Case  
1 2 3 

T0 Range (K) 
 

650-
850 500-900 300-

1000 
T1/T2 Range (K) 

 
50-

1250 300-900 300-
1000 

R2 Range (K/W) 0-5 0-5 0-5 
Stopping Rule 
(%of range) 1 2.0/1.0 1.5 

Average Number 
of Intermodal 

Iterations 
7.25 8.94/11.

47 8.63 
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INTRODUCTION

The Schwinger inverse method [1], a novel solution 
method for solving inverse transport problems, was 
recently developed and tested in one-dimensional 
spherical geometries [1, 2]. In this paper, the method is 
applied to solving the inverse problems of source weight 
fraction identification and shield composition 
identification in finite two-dimensional cylindrical 
geometries.   

THE SCHWINGER INVERSE METHOD 

The Schwinger inverse method [1] was derived from 
a perturbation-theory approach to the inverse transport 
problem. Instead of calculating the effect of a system 
perturbation on a quantity of interest (the usual use of the 
Schwinger functional), the quantity of interest was 
assumed to be given (from a measurement) and the 
Schwinger functional was manipulated to produce an 
equation for the system perturbation. The equation is 
applied iteratively. The quantity of interest is the leakage 
of a discrete gamma-ray line from radioactive decay, 
which implies that the scattering term in the transport 
equation can be ignored.  

Shield Material Identification 

The method was used to derive the following 
equation for the composition of an unknown shield layer 
[2]: 
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In this equation, g
t  is the total photon cross section in 

the current iteration for the unknown material at the 
energy corresponding to line g and g

t  is the updated 
cross section that will be used in the next iteration. The 
terms g , g , and gM  are the forward flux, adjoint 
flux, and leakage calculated for line g in the current 
iteration; gq  is the source for line g ( /cm3·s); and gM 0  is 
the measured leakage for line g. The integral in the 

numerator in Eq. (1) is over the entire problem, but the 
integral in the denominator is over the unknown material 
region only. Once the G macroscopic cross sections are 
found, the unknown material is identified using cross 
section tables [2]. 

Source Weight Fraction Identification 

The method was also used to derive an equation for 
unknown isotope weight fractions in a gamma-emitting 
source material [1]: 
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In this equation, S  is the mass density of the source 
material, AN  is Avogadro’s number, g

t,j  is the total 
microscopic cross section for source isotope j and line 
energy g, g

iq  is the source strength of isotope i for line g,
and jA  is the gram atomic weight of isotope j. The term 

jjj fff  is the update to the weight fraction in the 
current iteration to obtain the weight fraction to use in the 
next. 

TEST PROBLEM 

The methods for source and shield identification were 
tested on the finite cylindrical geometry shown in Fig. 1. 
A highly enriched uranium source is surrounded by a 
shield consisting of aluminum on the bottom and side of 
the cylindrical shield and nickel on the top. The top of the 
shield is twice as thick as the bottom. This axial 
asymmetry allows for more physically realistic test 
problems than were possible with the one-dimensional 
spherical problems of Refs. 1 and 2.  

The quantities of interest were the total leakage (into 
4 ) of four decay lines from uranium, 144, 186, 766, and 
1001 keV. The forward and adjoint angular fluxes of Eqs. 
(1) and (2) were calculated for each line using the 
PARTISN discrete-ordinates code [3] with no scattering. 

(1)

(2)
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Leakage measurements were simulated in two ways. 
The first was by using PARTISN with the same angular 
(S8) and spatial discretizations as used to calculate the 
flux in the iterative calculation. Thus, these “measured” 
and calculated leakages were exactly consistent. The 
second way of simulating measured leakages was by 
using a Monte Carlo code, which simulated a real 
measurement of the total leakage. These measurements 
are shown in Table I.  

Schwinger iterations were run until the calculated 
line leakages were within 0.01% of the measurements. 

RESULTS

Shield Material Identification 

Converged cross sections on the left side of Eq. (1) 
were compared to known cross sections from a library of 
40 candidate materials using a root-mean-squared (rms) 
difference, where the rms difference for material m is 

.)(1(rms)
1

2
,

G

g

g
mt

g
tm G

The materials with the lowest rms differences were 
considered candidates for the unknown.  

When S8 measurements were used, nickel was 
successfully identified as the only suitable candidate for 
the unknown layer, having an rms difference two orders 
of magnitude smaller than any other material (see Table 
II). With Monte Carlo measurements, nickel still had the 
smallest rms difference, but was one of nine possible 
shield materials. 

Source Weight Fraction Identification 

Initial guesses for the weight fractions of uranium in 
the source were 235U: 0.5000, 238U: 0.5000. When S8
measurements were used, the actual source weight 
fractions (235U: 0.9473, 238U: 0.0527) were found in one 
iteration of Eq. (2). With Monte Carlo measurements, 
slightly less accurate weight fractions of 235U: 0.9300, 
238U: 0.0700 were calculated in one iteration. 

CONCLUSIONS 

The Schwinger inverse method has previously been 
applied to the separate problems of determining unknown 
source [1] and shield compositions [2] in one-dimensional 
spherical geometries. In this paper, the method was 
successfully applied to these problems in a more 
physically realistic two-dimensional cylindrical geometry.  

In this work, the total leakage into 4  was the 
quantity of interest. To model more realistic scenarios, the 
quantity of interest should be the gamma-ray flux at a 

particular detector location outside the object. We are 
currently studying ways to mitigate the discrete-ordinates 
ray effects in order to allow such calculations to be made 
accurately.
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TABLE I. Measured Leakages. 
Line (keV) S8 Monte Carlo  

144 4.58897E+2 4.274E+2 ± 7.79% 
186 4.54920E+3 4.577E+3 ± 5.40% 
766 1.22674E+0 1.193E+0 ± 2.15% 
1001 3.47231E+0 3.393E+0 ± 2.06% 

(3)
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Fig. 1. Geometry for numerical test problems.  
Dimensions are in cm.   
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TABLE II. Materials with the Lowest rms Difference in 
the Shield Identification Problem (Actual Material Was 
Nickel, Initial Guess Was Lead). 

S8 Measurements Monte Carlo Measurements 
1  Nickel 8.612E-04 
2  Copper  2.952E-02 
3  Cobalt  8.705E-02 
4  SS316  1.967E-01 
5  Iron   2.390E-01 

1  Nickel    1.636E-01 
2  Copper   1.694E-01 
3  Cobalt   1.831E-01 
4  SS316   2.191E-01 
5  Cadmium  2.193E-01 
6  Iron 2.287E-01 
7  SS304  2.293E-01 
8  Carbon Steel 2.321E-01 
9  Silver 2.781E-01 
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INTRODUCTION 

The constant-temperature power sensor (CTPS) 
[1, 2] is a feedback-controlled calorimetric 
instrument capable of direct measurement of 
nuclear energy deposition.  A conceptual system 
for power measurements in reactor cores using 
such sensors has been developed using DSD [3].  
The DSD is state/parameter estimation technique 
for dynamic systems.  It yields the probability 
distribution functions (pdfs) of the quantities to 
be estimated in their discretized space from a 
user-provided system model and using 
monitored system data along with their 
associated uncertainties.  The data uncertainties 
provide inputs for the discretization process 
which partitions space of the quantities to be 
estimated into computational cells, in a similar 
manner to those used by the finite difference or 
finite element methods.  It has been shown that a 
probabilistic map of core power distribution can 
be constructed with DSD using simulated signals 
from an array of sensors distributed in a 
hypothetical reactor core [4].   

This paper investigates the computational 
feasibility of the estimation algorithm proposed 
in [4].  The goal is to have an estimation engine 
able to construct the probabilistic map of core 
power distribution in real-time.  Parallel 
implementation of the algorithm is investigated 
on multiple processors, attempting to determine 
the minimum number of processors necessary to 
run the estimation algorithm under real-time 
constraints. 

THE CTPS 

The CTPSs [1, 2] are sensors capable of direct 
measurement of nuclear power density (qn).  The 
CTPS concept is based on control of the energy 
balance about a small mass of fissionable 
material.  The sensor core is a UO2 pellet (Node 
2) surrounded by an insulator material (Node 1).  
An electrical heating resistance wire is wound on 
Node 2.  A feedback control loop is provided 
that adjusts the necessary input of electrical 
energy (qe) such that the Node 2 temperature is 
maintained constant.   

The sensor behavior is described by [5]: 
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where T1 and T2 are the temperatures of Node 1 
and Node 2, respectively, T0 is the temperature 
of the coolant in contact with Node 1, C1 and C2 
are the thermal capacitances of Nodes 1 and 
Node 2, respectively, R1 is the thermal resistance 
between Node 2 and Node 1 and R2 is the 
thermal resistance between Node 1 and the 
coolant.  

At steady-state conditions, the energy balance 
around Node 2 is described by 

qn + qe =   (T2 – T0)/(R1+ R2) . (2) 

By measuring qe and T2, qn can be estimated 
from Eq. (2) if R2 and T0 are known. 

As can be seen from Eq. (2), an accurate 
estimation of qn in the measuring mode depends 
on the accurate estimation of T0 and R2.  The 
CTPS has two modes of operation: i) power 
measurement mode when qe is measured and qn 
is estimated using Eq.(2), and, ii) calibration 
mode during which R2 and T0 are estimated from 
Eq.(1).  In the power measurement mode, qe is 
such that T1 and T2 are constant.  In the 
calibration mode, qe is interrupted.  Then T1 and 
T2 decrease to steady-state values as described by 
Eq.(1).  In Eq.(1), T1, T2 and qe are measured 
quantities.  The R2, T0 and qn parameters are to be 
estimated.  All the other quantities in Eq.(1) are 
assumed to be known (e.g. through previous off-
line measurements) 

THE DSD  

The DSD uses a representation of system 
evolution in time in terms of probability of 
transitions between sets of magnitude intervals 
of system state-variables (i.e. T1 and T2 for 
Eqs.(1) and (2))  and parameters (i.e. R2,T0, qn 
for Eqs.(1) and (2)) within the user specified 

Tunc
Text Box
Trans. Am. Nucl. Soc., 93, 575-577 (November 2006)



time intervals ττ )k(tk 1+≤≤  (k=0,1,..).  These 
sets form computational cells that partition the 
system state and parameter spaces.  If location of 
the system in the state-space is known for 
specified system parameters (such as for the 
problem under consideration since T1 and T2 are 
measured), the DSD generates the transition 
probability ),n,'j|j(g τ  from cell j’ to j in the 
state-space within ττ )k(tk 1+≤≤ given that 
the system parameters are in cell n at time kτ 
from 
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In Eq.(3), the elements of the vectors x and  
are the state variables and system parameters, 
respectively.  The vector

α

)k,,'(~ ταxx denotes the 
location of the system in the state-space at time 

τ)k(t 1+= given that it departed from point  
at time 

'x
τkt = for specified , is the volume 

of cell j’ and is the volume of cell n .  The 
point

α jv ′

nv
)k,,'(~ ταxx is determined from a user 

provided system model describing system 
evolution in time, such as Eqs.(1) and (2).  If the 
system parameters do not change 
within ττ )k(tk 1+≤≤ , the DSD determines the 
joint pdf for the mean value of the state-
variables and parameters over cell pair j,n at time 

)n,j(pk

τkt = recursively from 

),,k()n,j(p),n,'j|j(g)n,j(p k
'j

k L101 =′= −∑ τ .  (4) 

DETERMINATION OF POWER 
DISTRIBUTION  

Figure 1 shows schematically the procedure for 
the determination of power distribution.  First, 
the ),n,'j|j(g τ  in Eq.(4) are determined from 
Eqs.(1) and (3), monitored T1(kτ) , T2(kτ) and qe . 
Then the joint pdf , 
where n denotes the cells in the R

n),ĵ(p), q,T(Rp knk ≡02

2-T0-qn space, 
and  denotes the observed system location in 
the discretized T

ĵ
1-T2 space, is updated using 

Eq.(4).  The following steps are used for the 
estimation of qn at each CTPS location: 

1. p(R2,T0, qn) is integrated (or summed in the 
discretized R2-T0-qn space) over all possible 
values of qn to obtain  the joint pdf p(R2,T0).   

2. p(R2,T0) from Step 1 yields a probability for 
R2 and T0 being in each set of intervals 
partitioning the R2-T0 space. 

3. Using the boundaries of these intervals as 
inputs for Eq.(2), upper and lower bounds 
are found for qn for the probabilities 
identified in Step 2. 

4. Superimposition of the intervals and the 
corresponding probabilities from Step 3 
yields the pdf for qn. 

Once the pdfs for qn is found at CTPS locations, 
the approach described in [6] can be used to 
generate the pdfs for qn between these locations. 

PARALLEL IMPLEMENTATION 

Parallel implementation of the above-described 
monitoring scheme was investigated on multiple 
processors, attempting to determine the 
minimum number of processors necessary to run 
the estimation algorithm under the real-time 
constraints.  The algorithm was implemented in 
C/C++ and ran on multiple processors using 
Message Passing Interface (MPI) directives for 
assigning jobs and coordinating communication 
between the parallel processes.  Computation 
time measurements were taken by running the 
algorithm on the Pentium IV Cluster of the Ohio 
Supercomputing Center for different problem 
sizes (i.e. the number of cells partitioning the 
estimated parameter space) and for different 
numbers of processors.  

The power monitoring scheme was implemented 
on an example application taken from [5].  It 
consisted of seven sensors axially distributed 
within a cylindrical reactor core of a pebble bed 
type reactor.  A reactor transient in which the 
coolant temperature decreases exponentially with 
1 hour period was assumed.  

RESULTS 

The computation time needed for the estimation 
algorithm was assumed to be 6 seconds of real 
time (duration of the calibration mode).  For a 
problem size of 64x64x64 cells partitioning the 
R2-T0-qn space, the computation time was 23 s 
for 1 processor, 15 s on 2 processors, 7 s on 4 
processors and 4 s on 8 processors.  At the same 
time, the parallelization efficiency (serial 
time/parallel time/number of processors) 
decreased from about 80% on 2 processors to 
about 70% on 8 processors.   
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INTRODUCTION 
 
The evolution of flux and power distributions in 
nuclear reactor cores is usually tracked using 
diffusion codes.  Due to modeling as well as 
operational uncertainties, it is often necessary to 
validate/improve the predicted distributions 
through in-core flux and temperature 
measurements.  A variety of techniques have 
been developed for this purpose, including using 
cubic splines to interpolate between measured 
data [1], fittings based on modal expansions 
[2,3], artificial neural networks [4] and least-
squares fittings [5]. 
 
There have been few attempts to directly 
incorporate the measurement uncertainty into 
flux/power shape construction process [6, 7].  
This paper describes a procedure which 
approaches the problem in the spirit of [6] and 
explicitly represents measurement uncertainty 
through user specified probability distribution 
functions (pdfs) in the construction process.  The 
difference is that the procedure presented here is 
a probabilistic interpolation scheme rather than 
fitting scheme which maximizes the conditional 
pdf of the estimated flux/power shape given the 
observations [6].  The proposed procedure is not 
restricted to linear relationships between 
flux/power and location [6] and also leads to 
computational simplicity for a large number of 
observations.  The procedure can be also used 
with a wide range of approaches to power/flux 
shape construction, from simple linear 
interpolation between data points to model based 
fittings, as well as a variety of pdfs to represent 
measurement uncertainty.  The procedure is 
illustrated using 1½ group diffusion theory 
model for a hypothetical one-dimensional 
reactor. 
 
THE PROCEDURE 
 
Consider a one dimensional reactor with length 
2L whose steady-state neutronic behavior is 
described by 1½ group diffusion theory, i.e. 
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where )(xbΣ indicates the control poison cross 

section at location x and the rest of  the symbols 
have their conventional definitions.   We will 
assume that: 1) group parameters of Eq.(1) are 
known functions of x, 2) the pdfs 

)()|( 11 φφ nn pxp = of )(1 nxφ at nx are known 

for n = 1,…,N on Lx 20 ≤≤ , and, 3) expected 
value 
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which means that a sufficient condition for 
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The solution of Eq.(4) with specified 

)()|( 11 φφ nn pxp =  and )()|( 1111 φφ ++ = nn pxp  
yields )(1 xφ in 1+≤< nn xxx  (n = 1,…,N-1).  If 

power is directly measured [8], it can be also 
shown from Eq.(1)in a similar manner that , for 
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constant material properties 
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where )|( yhp is the pdf of power density h at y .  
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for the expected value >< )(yh of power density 

at y. For small β  (e.g. small interval ],[ 1 nn xx + ), 
Eq.(6) yields  
 

yhpyhpyhp nn )()1)(()|( 1 +−≈ +  (8) 

 
which is the result from the statistics literature 
for >< )(yh  varying linearly within 10 ≤≤ y  

[11].  
 
Although Eqs.(4) and (5) are in principle partial 
differential equations, they become ordinary 
differential equations once the numerical values 
of the boundary conditions are specified and 
subsequently can be solved  using standard code 
packages for non-uniform material distributions.  
It is not difficult to see that equations similar to 
Eq.(4) can be generated for a multi-group 
counterpart of Eq.(1). In the multi-group case, 
energy discriminant sensors need to be used to 
determine the boundary conditions, such as the 
SiC detectors developed by Westinghouse [10]. 
 
AN EXAMPLE ILLUSTRATION 
 
For the purposes of illustration, we will assume 
that power density is directly measured in a 
hypothetical, one dimensional reactor placed in 
vacuum with uniform material distribution as 
given in Table 1 and  L = 150 cm. 

 
From Eq.(1) and the relationship between power 
and flux, we have 
 

)0()cos()0()( Lxxhxh ≤≤= β  (9) 

 
For criticality, we must have 300/πβ ≈ cm-1 (or 

0707.0=Σb cm-1 from Eq.(4) and Table 1 data).  

 
Table 1 

Group Constants for the  
Example Reactor [11] 

 
Group Group Constant 

1 2 

fΣν (cm-1) 0.008476 0.18514 

aΣ (cm-1) 0.01207 0.1210 

D (cm) 1.2627 0.3543 

21 >−Σ (cm-1) 0.0141 - 

 
Figure 1 shows: a) the data 1021 ,, hhh �  from 10 

hypothetical power sensors placed at 
Lxxx ≤<<≤ 10210 � , generated from Eq.(9) 

assuming 1% random error,  b) )|( xhp  obtained 

from Eqs.(5) and (6) assuming 
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and, c) >< )(xh obtained from Eqs.(5) and (7). 

 

 
Fig.1:  Relative Power Distribution h(x)/h(0) 

for the Example Reactor 
 



Figure 1 indicates that the match between the 
simulated data and >< )(xh is excellent.  Figure 

1 also shows how the )|( yhp  yields the 

uncertainty ranges for the estimated power 
between measurement points.   The )|( yhp can 

be used to obtain other statistical properties of 
)(xh as well.  For example, the probability that 

power is within 10% of the expected value can 
be found from 
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Similarly, 90% confidence interval for the 
expected value of power at y can be found from 
the solution of 9.0)|( =>< yhp for <h>. 
 
CONCLUSION 
  
The proposed procedure provides a fast way to 
estimate the expected value as well as all other 
statistical properties of power/flux between 
measurement points.  The accuracy of estimation 
depends on the assumed pdfs at the measurement 
points and the core model used with the 
procedure (i.e. Eq.(5)) 
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ABSTRACT 
 

The constant-temperature power sensor (CTPS) is a 
feedback-controlled calorimetric instrument capable of 
direct measurement of nuclear energy deposition.  The 
CTPS simulates a section of the nuclear fuel element.  
The sensor operation is sensitive to the ambient coolant 
temperature and contact resistance.  A procedure is 
described which estimates these quantities on-line for an 
array of sensors and constructs a map of probabilistic core 
power distribution. 
 
Keywords: nuclear reactors, power distribution, 
parameter estimation. 

 
1. INTRODUCTION 

 
The constant-temperature power sensor (CTPS) [1] is a 
feedback-controlled calorimetric instrument capable of 
direct measurement of nuclear energy deposition.  The 
CTPS simulates a section of the nuclear fuel element.  In 
that respect, is especially suitable for high temperature 
environments of the planned Generation IV reactors and 
reactors for nuclear thermal propulsion. 
 
This paper describes a conceptual system for power 
measurements in the reactor core using such sensors.  The 
monitoring system will process sensor signals from the 
reactor core in such a manner that probabilistic 
information, in the form of probability distribution 
function (pdf) of reactor power density (qn) is obtained at 
the sensor location.  This signal processing would be in 
addition and independent of the normal signal processing 
that is normally performed in a nuclear power plant, and it 
would be used for informational purposes only, to assist 
the operator; it would not have any control over the 
reactor core. 
 
The paper shows how a map of probabilistic core power 
distribution can be constructed using simulated signals 
from an array of sensors distributed in a hypothetical 
reactor core.  An estimation algorithm, called DSD 
(Dynamic System Doctor) [2] is implemented that 
processes the sensor signals to obtain the power density 
pdfs at sensor locations.   

 
2. THE MONITORING SYSTEM 

 
The monitoring system will consist of: (a) an array of 
sensors distributed in the reactor core and associated 

circuitry, (b) an estimation engine, (c) a module to 
interpolate the pdf for qn between sensors locations [3], 
and, (d) a scheduler to manage data acquisition and multi-
thread/distributed processing.  All the components of the 
monitoring system except the interpolation module 
presented in an earlier publication [3] are described 
below. 
 
Sensor – The CTPS 
The CTPS concept is based on control of the energy 
balance about a small mass of fissionable material.  
Figure 1 shows the structure of a CTPS for current 
electricity generating nuclear power plants.  The sensor 
core (Node 2) is UO2 pellet.  An electrical heating 
resistance wire surrounds the core.  Energy in the sensor 
core is deposited through nuclear interactions and from 
resistive dissipation through the wire, while energy is 
removed through conductive and convective heat transfer 
to the reactor coolant.  A feedback control loop is 
provided that adjusts the necessary input of electrical 
energy such that the Node 2 temperature is maintained 
constant.  At steady-state conditions, the energy balance 
around the core is described by 
 

qn + qe =   (T2 – T0)/R2   (1) 
 
where qn denotes the nuclear energy deposited (or the 
reactor power density), qe is the electrical energy input, R2 
is the thermal resistance between sensor and coolant, T2 is 
the temperature of Node 2 and T0 is the coolant 
temperature.  By measuring qe and T2, qn can be estimated 
from Eq. (1) above if R2 and T0 are known. 

 
Fig. 1 Constant Temperature Power Sensor  

 
The CTPS has two modes of operation: i) power 
measurement mode when qe is measured and qn is 
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estimated using Eq.(1), and, ii) calibration mode during 
which R2 and T0 are estimated. 
 
As it can be seen from Eq. (1), an accurate estimation of 
qn in the measuring mode depends on the accurate 
estimation of T0 and R2.  Coolant temperature T0 is 
typically measured at coolant inlet and outlet from the 
reactor core and it is not measured at each sensor location.  
The thermal resistance R2 depends on the coolant 
temperature, flow speed and local geometry and it is 
impossible to be measured directly.  The calibration mode 
is designed to provide information on these two variables. 

In the calibration mode, the electrical current through the 
resistive wire that surrounds the sensor core is interrupted.  
The sensor temperature then decreases to a steady-state 
value directly dictated by the input of nuclear energy, the 
coolant temperature and the thermal resistance between 
the sensor and coolant.  T0 and R2 are estimated by 
observing the dynamic behavior of Node 1 and Node 2 
temperatures. 

The estimation is done through DSD [4,5] which uses a 
representation of system evolution in time in terms of 
probability of transitions between sets of magnitude 
intervals of system state-variables within the user 
specified time intervals ττ )k(tk 1+≤≤  (k=0,1,..).  
These sets form computational cells that partition the 
system state-space in a similar manner to those used by 
finite difference and finite element methods.  The DSD 
generates the transition probability ),'j|j(g τ  from cell 
j’ to j from 
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A two node lumped parameter model has been developed 
for the CTPS [3], representing Node 1 and 2 (see Fig.1) 
temperature behavior during the calibration mode.  By 
writing the energy conservation equations for
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where T1 indicates Node 1 temperature; C1, C2 are, 
respectively,  thermal capacitance of Nodes 1 and 2; R1 is 
the thermal resistance between Node 2 and Node 1.  The 
other notation in Eq.(2) is as defined previously. 
 
Estimation Engine 
In Eq.(4) all the variables except R2, T0 and qn are 
assumed to be known.  A flowchart of the estimation 
engine for these parameters is shown in Fig. 2. 

End of 
recalibration 

Calibration Mode 
 
• Measure T1, T2 at t=kτ and t=(k+1)τ 
• Use Eqs. (2) and (4) to identify cells in 

the qn -T0 –R2 space that allow this 
transition 

• Obtain p(R2, T0, qn) over each cell from 
Eq. (3)

Integrate over qn to 
obtain p(R2, T0) 

Measuring Mode 

• Measure T1, T2 
• Obtain p(qn)using 

p(R2, T0)  
 

Need to 
recalibrate

Start 

No

Yes 

NoYes

 
  the two 

nodes, the system equations are obtained as [3]: Fig. 2 Estimation engine  



In the calibration mode, DSD is run to estimate the values 
for T0, R2 and qn, in terms of joint pdf p(R2,T0, qn) over the 
discretized R2-T0-qn space by measuring T1 and T2 and 
using  Eqs.(2)-(4).  At the end of calibration, p(R2,T0, qn) 
is integrated over all values of qn to obtain joint pdf of 
p(R2,T0).  
Before the actual algorithm is started, the following are 
defined for each of the three unknown parameters (R2, T0, 
qn): a) the ranges of interest (minimum and maximum 
values R2,min, R2,max, T0,min, T0,max, qn,min, qn,max), b) the 
number of intervals for each range that will discretize the 
qn-T0-R2 space into cells, and, c) error σ for the 
temperature measurements T1 and T2.  A three 
dimensional matrix which represents the cells in terms of 
cell-centered values of R2, T0, qn and which will store pk(j)  
(see Eq.(3)) is created and initialized to a uniform 
distribution p0(j) (Figure 3(a)).  
 
At t = 0, the sensor starts in the calibration mode trying to 
estimate the values for T0, R2, qn.  Values of T1, T2 and qe 
for t=0 and t=1 seconds are read from an input file that 
simulates the actual sensor signals.  Since CTPS is in the 
calibration mode, qe = 0 in Eq.(4).  Using the simulated 
T1(0), T2(0), T1(1) and T2(1), the DSD then searches for 
the cells that would make this transition possible within 
the error σ for the temperature measurements from 
Eqs.(2) - (4) using an equal-weight 4-point quadratures 
scheme to evaluate the integral in Eq.(2).  
 
The algorithm continues for t = 2, 3... 6 seconds.  The 
temperature signals are read again, the cell—to-cell 
transition probabilities are recomputed from Eq.(2) based 
on the current time step and used for recalculating the 
cell-averaged values of pk (R2, T0, qn) from Eq.(3) for k=2, 
3…6.  After each time step the probabilities are rescaled 
such that they sum to unity over all cells.  After 6 
seconds, the sensor is switched back to the measurement 
mode. 
 
At the end of calibration mode, cell-averaged values of 
p(R2, T0, qn) for each cell j in the qn-T0-R2 space are 
obtained in the form of from Eq.(3).  Integration 
of p(R

)j(p6

2, T0, qn) over qn yields the joint pdf for R2 and T0. 
 
Using this probability distribution function of R2 and T0 
obtained at the end of the calibration mode, a probability 
distribution function of qn can be obtained. By using the 
minimum and maximum values for R2 and T0 in a cell of 
nonzero probability P, the cell minimum and maximum 
values for qn (qn,min and qn,max) can be obtained from Eq. 
(1). It results that qn is in interval (qn,min, qn,max) with a 
probability P. Repeating the calculation for all cells in the 
R2 - T0 space, a pdf of qn is derived. 
 
Fig.3 shows graphically how this estimation engine works 
in the discretized qn-T0-R2 space.  Fig. 3(a) shows the 
initial qn-T0-R2 space, where all cells have assigned equal 
nonzero probabilities (i.e.  ).  Then using Eqs.(2) – 

(4) at successive time steps, the number of cells that have 
nonzero probabilities narrows down  (Fig. 3(b) and Fig. 
3(c)).  

)j(p0

 
 

 
Fig. 3 A graphical illustration of the estimation engine 

 
The different shades of gray represent different 
probabilities, darker gray represent higher probability 
than lighter gray.  Figure 3(d) shows the probability 
distribution function of R2 and T0 that is obtained at the 
end of calibration mode and which is used for obtaining 
the pdf p(qn) in the measuring mode (Fig. 3(e)). 
 
Scheduler 
The estimation engine has been implemented in Java, 
taking advantage of the modularization capabilities of 
object-oriented programming.  A thread class, running the 
estimation engine was created.  The purpose of the 
scheduler is synchronize the threads such that data for all 
sensors at same moment in time can be collected, put 
together, analyzed and interpolated.  Figure 4 shows the 
conceptual scheduler structure as it would be 
implemented in a plant.  The pdf for qn between sensor 
locations (local power estimation) will be estimated using 
the procedure described in [3]. 
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Fig.4 The conceptual scheduler structure 

 
3. EXAMPLE SYSTEM AND RESULTS 

 
Since real sensor data cannot be obtained at this point of 
the research, a simulation of sensors signals was 
performed.  It was assumed that seven sensors are axially 
distributed within the core of a pebble bed type reactor 
[6].  The power/flux is assumed to follow a cosine 
function axially.  The coolant temperature increases 
continuously from the inlet to the outlet.  Data for steady-
state power conditions were taken from [6] and are shown 
in Table 1.  The sensors locations and normal power 
densities and coolant temperatures are shown in Table 1. 

 

Sensor # 
Distance from 
Coolant Inlet 

(cm) 

Deposited 
Nuclear Energy 

qn (W) 

Coolant 
Temperature 

(K) 
1 5 3.09 455 
2 10 4.63 610 
3 20 6.07 1208 
4 30 6.56 1560 
5 40 6.07 2085 
6 50 4.68 2503 
7 55 3.14 2950 
 
Table 1 Simulated data for the example system 
 

From steady-state conditions, it is assumed that a cooling 
transient occurs in which the coolant temperature start 
decreasing, while the power density qn and the thermal 
resistance R2 remain constant.  The coolant temperature 
follows 
 

   (5) 360010
00 0 )/-(t-) e( T (t) T =

 
where the time t is given in seconds [6]. 
 
The sensor recalibration is performed every minute, for a 
six seconds time interval.  During these six seconds qe = 
0.  Since the thermal energy input to the sensor core 
consists only of the nuclear heat, decay in the sensor 
temperature will be observed.  After the decay, the 

electric current is switched on again, the sensor 
temperature increases back to its setpoint value (which is 
indicated in the last column of Table 1).  
 
The estimation engine was run with 7 parallel threads, 
each thread handling one sensor.  Because of the 
relatively long computation times, a parallel 
implementation on multiple processors of the estimation 
algorithm was also created, this time using C++ and MPI.  
It was observed that reasonable computation times were 
achieved when the estimation algorithm it is run on more 
than two processors. 
 
The results in terms of pdfs of qn are shown in Fig. 6 and 
7.  Figure 6 shows a sample pdf for all sensors at a given 
moment in time.  Fig. 7 shows the pdf for Sensor 1 at 
different moments in time.  Both figures represent results 
for a transient in which the nuclear energy remains 
constant, while the coolant temperature decreases.  In 
both cases, it can be seen that the probability distribution 
functions are centered around the expected value for qn 
(listed in column 3 of Table 1).  In Figure 6, it can be seen 
that since qn at detector locations do not vary with time, 
neither do the pdf’s. 
 

 
 

 Distance from coolant inlet (cm) 
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Fig. 5 Pdf of power density at all sensor locations, at 
t=7 seconds  

 



 

 
 
 

Fig 6 Evolution in time of pdf of power density for 
Sensor #1 

 
4. CONCLUSIONS 

 
This study illustrates how the CTPS can be used with 
DSD for an array of sensors to construct a probabilistic 
map of power distribution in a nuclear reactor.  The study 
also extends the work reported in [6] from the estimation 
of R2 and T0 to the estimation of qn as well as R2 and T0 
using Eq.(2).  The results of the study indicate that the 
estimation engine described in Fig.2 can be implemented 
in a computationally feasible manner to obtain 
probabilistic maps of power distribution in nuclear reactor 
under steady-state operation as well as transients. 

 
5. REFERENCES 

 
[1] T. D. Radcliff, S. Liu, D. Miller, “Modeling and 

Optimization of a Constant-Temperature In-Core 
Power Sensor”, Nuclear Technology, Vol. 140, 
2002, pp. 209-221.  

[2]  P. Wang, X. M. Chen, T. Aldemir, "DSD: A Generic 
Software Package For Model-based Fault Diagnosis 
in Dynamic Systems", Reliab. Engng & System 
Safety, Vol. 75, January 2002, pp. 1-39. 

[3]  M. Biro, T. Aldemir, “Quantifying the Measurement 
Uncertainty Propagation In Flux/Power 
Reconstruction”, Proceedings of NPIC&HMIT 
2004, pp. 1246-1253, American Nuclear Society, 
LaGrange Park, IL (September 2004) 

[4]  I. Munteanu, H.B. Zhou, T. D. Radcliff, T. Aldemir, 
D. W. Miller, "In-Core Power Detection Using DSD", 
Trans. Am. Nucl. Soc., Vol. 83, November 2000, pp. 
279-281. 

[5]  A. Burghelea, T. Aldemir “A Parametric 
Investigation of the Recursive Partitioning Approach 
to DSD for Implementation with CTPS”, Trans. Am. 
Nucl. Soc., Vol. 89, November 2003, pp. 493-495. 

 [6] T. Aldemir, D. W, Miller, A. Burghelea, “Direct 
Estimation of Power Distribution in Reactors for 
Nuclear Thermal Space Propulsion”, Space 
Technology and Applications International 
Forum—STAIF 2004, M. S. El-Genk (Ed.), pp. 582-
589, American Institute of Physics, Melville, N.Y. 
(February 2004) 

   
   

   
  q

n (
W

) 

 
 

Time (s) 



An Application of DSD with Recursive 
Partitioning Scheme to Constant Temperature 

Power Sensors 
 

Andrei Burghelea and Tunc Aldemir 
The Ohio State University, 206 West 18th Avenue, 

Columbus, OH 43210, U.S.A. 
 

Abstract 
 

The DSD (Dynamic System Doctor) is system independent, 
state/parameter estimation software. The DSD is based on 
the modeling of system evolution in terms of probability of 
transitions within user specified time intervals between sets 
of user defined parameter/state variable magnitude intervals 
that partition the system state space. Recently a recursive 
partitioning scheme has been developed for DSD that 
reduces the estimation time and memory requirements, as 
well as making DSD more user friendly. The scheme is 
illustrated using a non-linear model for the constant 
temperature power sensor, proposed for direct core power 
distribution monitoring in Generation 4 nuclear power 
reactors 
 

1 Introduction 

The DSD (Dynamic System Doctor) is a system independent, state/parameter 
estimation software [1] based on the cell-to-cell mapping technique (CCMT).  
The CCMT models the system evolution in terms of probability of transitions in 
time between sets of user defined parameter/state variable magnitude intervals 
(cells) within a user specified time interval (e.g. data sampling interval). It yields 
the lower and upper bounds on the estimated values of system 
variables/parameters (which may be important in the determination of the 
operational safety margins for the system), as well as the probability distribution 
of the variables/parameters within these bounds which provides a probabilistic 
measure to rank the likelihood of system faults in view of modeling uncertainties 
and/or signal noise.  
 

The original DSD algorithm requires the cell definitions as input to the 
estimation process which may lead to long run times and large memory 
requirements.  Recently a recursive scheme for cell definitions was proposed for 
DSD that reduces the estimation time and memory requirements [2]. This paper 
illustrates the estimation time and memory savings using a non-linear model for 

Tunc
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the constant temperature power sensor (CTPS), proposed for direct core power 
distribution monitoring in Generation 4 nuclear power reactors [3]. 

2 Overview of the DSD Algorithm with Recursive 
Partitioning [2] 

The DSD estimation algorithm is based on the representation of the system 
dynamics in terms of transition probabilities between user specified cells that 
partition the system parameter/state space during user specified time intervals 

ττ )k(tk 1+<≤ (k = 0, 1,…).  These cells are obtained by dividing the range of 
interest  for the state variable lll bxa ≤≤ )L,,l(xl L1=  into 

intervalsll J,,j L1=
lj,lΔ and the range of interest mmm b~a~ ≤≤α  for the 

parameter )M,,m(m L1=α   into mm N,,n L1= intervals , in a manner 
similar to those used in finite difference or finite element methods.  Such 
partitionings are provided as user input to DSD. A sample partitioning for a 
second order system where only one of the state variables is monitored is shown 
in [2], as well as how the cell-to-cell transition probability 

mn,m
~
Δ

),n,j|j(g τ′′ from 
cell to cell j′ j during ττ )k(tk 1+<≤ while the system parameters remain in 
cell can be approximated using a 4-point quadrature scheme.  The DSD yields 
the a posteriori probabilities  that 
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using the estimated at time )n,j(pk τkt = as a priori probabilities The 

determined from Eq.(1) can then be used to determine all the statistical 
properties of the system state, such as expected values and credibility intervals of 
the system variables. 

)n,j(pk

 
If the values of the system parameters change in time, the estimation 

procedure may lose track of the variables to be estimated, i.e. all the 
obtained from Eq.(1) will be zero. In the original DSD algorithm with 

this fixed partitioning scheme (FPS), the estimation process will reinitialize itself 
in this situation by starting from the initial probability and estimate the 
new parameter by the recursive use of Eq.(1) again by searching over all the cells. 
This approach may lead to excessive computational time if there are frequent 
parameter changes during system evolution and a large number of 
variables/parameters to be estimated. The recursive partitioning scheme (RPS) 

)n,j(pk

)0 j,n(p



reduces the computational time for reinitialization (as well as overall memory 
requirements for DSD) through following steps: 

 
1. Input parameter and state variable ranges of interest (i.e. lll bxa ≤≤  and 

mmm b~a~ ≤≤α ), RPS stopping rules and monitored data uncertainty.  Read 
data from the monitors. 

2. Define the intervals
lj,lΔ for the monitored variables so as to contain the 

variation/noise on the monitored data, centred on their median values.  
Define the cells for the unmonitored variables by bisecting each state 
variable range of interest lll bxa ≤≤  and each parameter range of interest 

mmm b~a~ ≤≤α  (i.e. 22 == ml N,J for all l and to be estimated). m
3. Specify to be used to start the estimation process (usually uniform) )j,n(p0

4. Determine the cell-to-cell transition probabilities ),n,j|j(g τ′′ by 
quadratures or by sampling over the cells specified in Step 2. 

5. Find from Eq.(1). )j,n(pk

6. If all , then bisect each 0=)j,n(pk lj,lΔ and go to Step 3. Otherwise, 

normalize by dividing it by the total probability of finding the 
system in the search space, increment the time index k and go to Step 2.  

)j,n(pk

 
Steps 2 through 6 are repeated until convergence, i.e.  are all zero 

except for the cells containing the actual system locations.  It should be 
mentioned at this point that the algorithm may not converge for rapidly evolving 
systems during one data sampling interval

)j,n(pk

ττ )k(tk 1+<≤ .  However, even in 
this situation, previous work  a with reduced order reactor dynamics model shows 
that the expected values of the parameters/state variables to be estimated are often 
found to be close to their actual values [4]. 

3 The CTPS 

The CTPS consists of a UO2 pellet surrounded by an electrical heating resistance 
wire. The pellet and the wire form the sensor core (Node 2). The core is 
surrounded by ceramacast, which is an alumina based ceramic thermal insulator 
(Node 1). Both the sensor core and the insulator are coated with thin layers of 
copper to provide a pathway for heat transfer from the sensor core to the 
surrounding coolant.  A feedback control loop is used to provide the exact amount 
of input electrical energy (in kW) needed to keep the temperature Teq 2 (in K) of 
the Node 2 constant in time (t), well above the surrounding coolant temperature 
T0 (in K), regardless of the nuclear energy (in kW) deposited into Node 2  
(Mode 1 operation).  In Mode 1 operation we have 
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where is the temperature of the ceramacast insulator, (in K/kW) is the 

contact resistance between Node 1 and Node 2 and  (in K/kW) is the contact 
resistance between Node 1 and the coolant. 
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A mode-switching algorithm has been proposed to accomplish the 

compensation of the change in the sensor response with the change in as a 

function of and other coolant properties. In Mode 2 operation, the sensor is 
temporarily taken out of the control loop, or practically, the supplied electrical 
current is reduced to 1% of the steady state value.   In this mode of operation, the 
time rates of change in Node 1 and Node 2 temperatures are described by 
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where is the thermal capacitance (in KJ/K) of Node i (i=1,2).  For 

constant , and , Eq.(3) yields 
iC
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where i1θ and i3θ are known functions of , sensor properties and Mode 1 
sensor temperatures,  
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The resistance and the capacitances and  is a function of the sensor 
properties only and can be determined off-line.  Then the nuclear energy 
deposition rate and the resistance can be estimated directly through Eq.(3) 

and measured (i =1 and/or 2) and or, for constant sensor properties, 

through Eqs.(4), (5) (6) and the measured and . The sensor operation 
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involves switching between the feedback-controlled constant-temperature mode 
(i.e. Mode 1) and the dynamic temperature decay mode following the opening of 
the feedback loop (i.e. Mode 2).  

4 Implementation and Results  

Two cases were considered, one of normal operation with a switch between the 
operation modes of the sensor with constant coolant temperature  (Case 1), and 

a second one, a slow transient with decreasing  (Case 2). Node 1 and 2 
temperatures for the estimation process were simulated using Eq.(3) with the 
parameter values given in Table 1. 

0T

0T

 
T0(K) T2(K) C1(J/K) C1(J/K) R1(K/W) R2(K/W) qn(W) qe(W) 

1000.0 1085.9 0.00804 0.744 5.709 1.857 1.68 9.67 
 

Table 1. Steady-State Parameter Values Used for the Generation of Simulated CTPS Data  
 

The choice of the temperature data in Table 1 reflects the expected steady-state 
operational conditions in Generation 4 gas cooled reactors. 
 

Figures 1 and 2, respectively, show the estimation results for Case 1 and Case 
2 using RPS. The spikes starting at around t=10 s in both Figs.2 and 3 at around 
indicate the time at which the initial switch from Mode 1 to Mode 2 is made.  The 
figures show that while DSD temporarily looses track of qn at the time of the 
switch, recovery is very rapid and DSD with the RPS is able to estimate qn with 
the desired accuracy (within 1% of the range of interest) for the rest of the time 
interval of interest (i.e. until 100 s).  Comparison of the run times and memory 
requirements to obtain the results in Figs.2-4 to those obtained using the original 
FPS for comparable accuracy indicates a speedup by a factor of 5 in the run time 
with RPS and a reduction by a factor of 2 in memory requirements. 

 

 
Figure 1. Simulated and Estimated qn as a Function of Time for Case 1 



 

 
Figure 2. Simulated and Estimated qn as a Function of Time for Case 2 

5 Conclusion 

The results of this study show that the DSD with RPS leads to substantial run 
time and memory savings compared to the original FPS.  The results of the study 
also show that the use of CTPS with DSD may be a feasible option for direct 
measurement of power distribution in Generation 4 reactors. 
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Abstract –The cell-to-cell-mapping technique (CCMT) models system evolution in terms of probability of
transitions within a user-specified time interval (e.g., data-sampling interval) between sets of user-defined
parameter/state variable magnitude intervals (cells). The cell-to-cell transition probabilities are obtained
from the given linear or nonlinear plant model. In conjunction with monitored data and the plant model,
the Dynamic System Doctor (DSD) software package uses the CCMT to determine the probability of
finding the unmonitored parameter/state variables in a given cell at a given time recursively from a
Markov chain. The most important feature of the methodology with regard to model-based fault diagnosis
is that it can automatically account for uncertainties in the monitored system state, inputs, and modeling
uncertainties through the appropriate choice of the cells, as well as providing a probabilistic measure to
rank the likelihood of faults in view of these uncertainties. Such a ranking is particularly important for
risk-informed regulation and risk monitoring of nuclear power plants. The DSD estimation algorithm is
based on the assumptions that (a) the measurement noise is uniformly distributed and (b) the measured
variables are part of the state variable vector. A new theoretical basis is presented for CCMT-based
state/parameter estimation that waives these assumptions using a Bayesian interpretation of the approach
and expands the applicability range of DSD, as well as providing a link to the conventional state/
parameter estimation schemes. The resulting improvements are illustrated using a point reactor xenon
evolution model in the presence of thermal feedback and compared to the previous DSD algorithm. The
results of the study show that the new theoretical basis (a) increases the applicability of methodology to
arbitrary observers and arbitrary noise distributions in the monitored data, as well as to arbitrary uncer-
tainties in the model parameters; (b) leads to improvements in the estimation speed and accuracy; and
(c) allows the estimator to be used for noise reduction in the monitored data. The connection between DSD
and conventional state/parameter estimation schemes is shown and illustrated for the least-squares esti-
mator, maximum likelihood estimator, and Kalman filter using a recently proposed scheme for directly
measuring local power density in nuclear reactor cores.

I. INTRODUCTION

State0parameter estimation techniques play an im-
portant role in dynamic system analysis for fault detec-
tion, system identification, and adaptive control. Although
parameter estimation in linear systems is by now a well-
established field, nonlinear system parameter estimation
is still a popular research area.

Among the large number of conventional parameter
estimation techniques used for nonlinear dynamic sys-
tems, the largest category is based on optimizing the value
of the estimates by minimizing a predefined objective func-
tion or loss function~i.e., least squares, weighted least
square, minimum mean square error!. These techniques
usually involve solving a linear or nonlinear minimiza-
tion problem with or without constrains. Closed-form
solution of the nonlinear minimization problem is often
not available, and numerical methods~e.g., dynamic
programming, discrete Euler-Lagrange equations, the*E-mail: aldemir.1@osu.edu
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Gauss-Newton method! have been proposed and widely
used in parameter estimation. Mook1 considers the opti-
mal state and parameter estimation under model error for
nonlinear dynamic systems. The unknown parameters
are estimated using the least-squares method by mini-
mizing the model error estimate. The minimization prob-
lem is solved as a two-point boundary-value problem.
The method is shown to be accurate and robust with
respect to large errors in system model and measured
data, but the model error estimate may contain disconti-
nuities in case of noisy measurement. In Albuquerque
and Biegler’s2 paper, the objective function is defined as
the sum of a set of functions that depend on the states
and inputs at one time, and the constrains are differential
equations. A nonlinear dynamic programming~NLP!
problem is defined by discretizing the differential equa-
tions. Even though the paper presents a faster solver for
the NLP problem, the major limitation of this approach
is that the size of the NLP problems grows linearly with
the number of data sets and the heavy computational
load makes it difficult to solve larger problems directly.
Guay and McLean3 present a method for estimation of
parameters in nonlinear dynamic systems described by
a set of ordinary differential equations by optimization
of the Box and Draper~or least-squares! criterion. The
decoupled direct method is applied to evaluate the gra-
dient and Hessian matrix of the objective function with
respect to the parameters. The authors state that using
second-order sensitivity coefficients to evaluate the
Hessian matrix can lead to more accurate and reliable
results. However, the computation of higher-order
sensitivity coefficients increases drastically the com-
putational time and storage. The computational load
and storage are also the major problem associated with
Hjelmstad’s method4 in order to obtain acceptable accu-
racy. Another least-squares method, developed by Liu,5

includes a fast adaptive least-squares algorithm for pa-
rameter estimation that is based on Householder trans-
formations. The author indicates that this algorithm
requires computation and storage load in the order of
O~N! instead ofO~N2!, whereN is the number of pa-
rameters to be estimated. One limitation of this algo-
rithm is that it requires the system to be linear with respect
to the unknown parameters. In addition, the estimated
parameters may not converge to the true value in case of
correlated noise. Dimogianopoulos and Lozano6 pro-
pose a least-squares–based nonrecursive identification
algorithm in their paper. The authors chose theL2 norm
of the identification error with a forgetting factor as the
minimization criterion. This technique is capable of deal-
ing with slowly time-varying parameters without ex-
plicit knowledge of the noise bound or the region where
the true parameters lie. However, the bounds on the noise
and the parameter variations should be small to obtain
meaningful properties of the estimates.

Another widely used technique in parameter estima-
tion problems is to use linearized system models about

an operating point. Hopkins and Van Landingham7,8 pro-
pose a method of simultaneous parameter and state esti-
mation called pseudolinear identification~PLID! for
stochastic linear time-invariant discrete-time systems with
single input single output7 and multiple inputs multiple
outputs.8 The authors state that the PLID is known to
converge, but in the presence of a large amount of noise,
this convergence may be practically impossible or so
slow as to be useless. Douce and Zhu9 describe a method
for the modeling of nonlinear single-input single-output
systems using a modified least-squares method. The ap-
plication of this method requires that the nonlinear sys-
tems be perturbed only in a restricted operating range
and the system can be linearized inside this operating
range. An autoregressive moving average model is used
in order to approximate a wide range of nonlinear sys-
tems. A weighted least-squares algorithm for parameter
estimation is proposed in order to handle the nonlinear-
ity of the dynamic system. Recently, Lyashevskiy and
Chen10 have developed an innovative identification pro-
cedure by applying the harmonic linearization method.
Using this technique, the nonlinearity of the system is
replaced by a set of harmonic linearized elements, which
is obtained through the describing function method. The
unknown parameters are solved from a set of algebraic
equations that are obtained from the self-oscillations. One
limitation of this technique is that it can be applied only
for dynamic systems with limit cycles.

A technique that can perform parameter estimation
and also deal with unobservable states and variables in
nonlinear dynamic systems is to generate observers. Ri-
cardo and Tomei11 demonstrate adaptive observers that
guarantee fast exponential convergence. However, the
method is only applicable for a class of nonlinear dy-
namic systems that are linear with respect to unknown
parameters, and the construction of the observers re-
quires the system to be in adaptive observer form.
Sliding-mode control and estimation techniques have
also been shown to be an effective tool in parameter0
state estimation problems. The sliding-mode approach
to state0parameter estimation in nonlinear dynamic sys-
tems consists of designing the model with discontinu-
ous parameters and enforcing sliding modes such that
the model and plant outputs coincide. Then, the average
values of the discontinuous parameters depend on the
unknown states0parameters and can be used for their
evaluation. McCann and Islam12 have applied the sliding-
mode observer method to the operation of a switched
reluctance motor to estimate the rotor position and ve-
locity. Sliding-mode observers have also been used in
nuclear reactivity and xenon concentration estimation
problems by Wang, Aldemir, and Utkin.13 Kim, Riz-
zoni, and Utkin14 apply the sliding-mode estimation idea
to an automotive engine diagnosis and control problem.
The unknown charge efficiency, mean mass flow rate of
air, and throttle angle are estimated through a well-
designed sliding-mode observer. The results show that
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the observer estimates the actual states within reason-
able accuracy.

Statistical parameter estimation methods are also used
in dynamic system analysis. The advantage of statistical
methods is that these methods deal with uncertainty and
noise directly. One commonly used statistical parameter
estimation technique is Bayesian estimation. Bolviken
et al.15 use Bayesian state estimation in nonlinear sys-
tems. The unknown state vectors are drawn many times
from the posterior distribution, and the average is used
to be the approximate of the posterior mean. The authors
apply the Monte Carlo technique to randomly select points
in the range of interest and argue that the Monte Carlo
uncertainty is small compared to the inherent uncer-
tainty in the optimal Bayesian estimate. A limitation of
this technique is that it gives only sample points of the
posterior distribution; the actual posterior distribution is
unavailable. Charalambous and Logothetis16 apply the
maximum-likelihood idea to the nonlinear stochastic sys-
tem parameter estimation problems. The expectation max-
imization algorithm, an interactive numerical method, is
used to generate the parameter estimates by computing
the log-likelihood ratio restricted to the measured data.
However, the technique is still a point estimator without
providing an efficient way to evaluate the uncertainty of
the estimation results. Also, the estimation algorithm is
system specific and needs to be individually set up for a
given system.

Expert systems, neural networks and genetic algo-
rithms have been also used for parameter estimation.
Parlos and Atiya17 use artificial neural networks for the
identification of a nonlinear model for a U-tube steam
generator. The system identification consists of estimat-
ing unknown parameters and0or system variables, which
cannot be monitored, in order to obtain a complete model
for the system. A similar work by Patton, Lopez-Toribio,
and Uppal18 uses artificial intelligence techniques for
fault detection and identification in process systems. Mar-
seguerra and Zio19 apply a genetic algorithm for estimat-
ing the effective nuclear parameters and the initial
conditions in tracking xenon evolution using measured
power and reactivity. The authors state that the estima-
tion results given by this approach are very close to the
true values.

The literature survey shows that the parameter0state
estimation of nonlinear systems seems to have the fol-
lowing difficulties:

1. Heavy computational load and large computer
memory are required if accurate estimates of the param-
eters are desired. This requirement usually reduces the
capability of most methods for on-line implementation.

2. Noise is difficult to handle, especially when the
noise is large.

3. Most methods cannot account for random varia-
tions in the parameters.

4. Most estimators are point estimators without pro-
viding likelihood of possible parameter values, which
renders their implementation difficult for probabilistic
risk analysis.

5. Often, the algorithms are system specific and need
to be designed for the given system.

The recent developments in state0parameter estimation
show that the representation of system dynamics via the
cell-to-cell mapping technique20 ~CCMT! may reduce
these difficulties. The CCMT models the system evolu-
tion in terms of probability of transitions in time be-
tween sets of user-defined parameter0state variable
magnitude intervals~cells! within a user-specified time
interval ~e.g., data-sampling interval!. The cell-to-cell
transition probabilities are obtained from the given sys-
tem model. Then, using the Chapman-Kolmogorov equa-
tion, the probability of finding the system in a given cell
at a given time interval is recursively determined from a
Markov chain. The most important feature of the meth-
odology with regard to model-based fault diagnosis is
that it can automatically account for uncertainties in the
monitored system state, inputs, and modeling uncertain-
ties through the appropriate choice of the cells, as well
as providing a probabilistic measure to rank the likeli-
hood of faults in view of these uncertainties. Such a
ranking is particularly important for risk-informed reg-
ulation and risk monitoring of nuclear power plants. Other
important features of this methodology are as follows:

1. It does not require a linearization of the system.

2. It allows flexibility in system representation. Dif-
ferential or difference equations21,22 as well as almost
any type of input0output model~e.g., neural net,23 re-
sponse surface! can be used to generate the cell-to-cell
transition probabilities.

3. The discrete-time nature of the methodology is
directly compatible with a lookup table implementation,
which is very convenient for the use of data that may be
available from tests or actual incidents.

4. It does not require model inversion~which may
lead to singularity problems! or inverse models~which
usually have a limited range of applicability!.

5. It is both an interval and a point estimator. Sub-
sequently, it yields the lower and upper bounds on the
estimated values of state variables0parameters as well as
their expected values. A knowledge of such bounds is
particularly important in the determination of safety mar-
gins during operation.

The Dynamic System Doctor24 ~DSD! software package
has been developed for the on-line implementation of
this methodology in a system-independent and user-
transparent manner. The software has been successfully
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tested on a variety of nuclear and mechanical dynamic
systems.20–22An interactive demonstration version of DSD
is available from the internet.25

The DSD estimation algorithm is based on the as-
sumptions that the measurement noise is uniformly dis-
tributed and the measured variables are among the state
variables. From an implementation viewpoint, this as-
sumption implies that arbitrary observers and measure-
ment noise or model uncertainties with arbitrary
distributions are not allowed. This paper presents a new
theoretical basis for the DSD algorithm that waives these
assumptions using a Bayesian interpretation of CCMT-
based state0parameter estimation~Sec. II!. The new theo-
retical basis expands the applicability range of DSD
and leads to improvements in the estimation algorithm
~Sec. III!, as well as providing a better understanding
of the relationship of CCMT-based state0parameter es-
timation to conventional state0parameter estimation tech-
niques~Sec. IV! and of the origins of some unexplained
phenomena encountered in previous work~Sec. II.B!.
Section V gives the conclusions of the study.

II. A NEW THEORETICAL BASIS FOR
CCMT-BASED STATE0PARAMETER

ESTIMATION

The new theoretical basis is developed in two steps.
In Sec. II.A, a continuous Bayesian state0parameter es-
timator is presented for an arbitrary dynamical system.
Section II.B applies this Bayesian estimator to a discret-
ized representation of the system used by CCMT and
develops a generalized algorithm applicable to arbitrary
stochastic variations in the dynamical system variables
and parameters. Section II.B also shows that this gener-
alized algorithm reduces to the previous DSD algorithm
under the assumptions that the measured variables are
part of the state variable vector and the measurement
noise is uniformly distributed.

II.A. A Continuous Bayesian Estimator

Consider the dynamic system

_x 5 f ~x! 1 vvv

and

yk 5 h~xk! 1 wk ~k 5 0,1,2, . . .! , ~1!

where

x 5 L-dimensional vector whose elements are the
state variablesxl ~l 5 1, . . . ,L! of the dynamic
system

vvv 5 system noise~e.g., due to stochastic variation
of system parameters! or a measure of model-
ing uncertainties, in general

xk 5 state vector at time stepkt ~k 5 0,1,2, . . .!

yk 5 M-dimensional vector whose elementsym,k
~m51,2, . . . ,M ! are the measured data at time
stepkt ~k 5 0,1,2, . . .!

wk 5 measurement uncertainty

h 5 M-dimensional vector whose elements are
known nonlinear functions

f 5 L-dimensional vector whose elements are
known nonlinear functions.

Equation~1! does not exclude parameter estimation prob-
lems because we can always define an unknown set of
constant parametersu as a set of state variables that sat-
isfy the equation

û 5 0 . ~2!

Similarly, systems whose dynamics explicitly depend on
time can be described by Eq.~1! by regarding time as
another state variable satisfying

_t 5 1 . ~3!

Subsequently, Eqs.~1! and~2! allow system parameters
that are functions of time. Then, by defining the follow-
ing new state variables:

z 5 Fx

uG , ~4!

the new dynamic system can be described as

_z 5 F _xûG5 Ff ~x! 1 vvv

0 G
and

yk 5 h~Czk! 1 wk ~k 5 0,1,2 . . .! , ~5!

whereC is a matrix withC 5 @I 0 # andI is theL 3 L
identity matrix.

Let xk denote the state variable value at time stept 5
kt. The estimation problem is stated as the following:

Given an initial guessp~x06 y0! of the probabil-
ity distribution function~pdf! of the unknown state
variable vectorx0 at timet 5 0, estimate the condi-
tional distributionp~xk6 yk, yk21, . . . ,y0! 5 p~xk6 Tyk!
of xk given the measurementsyk from time stept 5 0
until time stept 5 kt. The Tyk 5 @ ykyk21. . .y0# is
called the information vector that includes all the
measurements from the initial time step until time
stept 5 kt.

While the main motivation for this problem statement is
to lay the groundwork for a more generalized theoretical
basis for DSD that will be developed in Sec. II.B, the
problem statement also addresses the issue of signal val-
idation as will be illustrated later in this section.
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Proposition 1:

Assume

1. p~ yk116xk11! andp~xk116xk! are, respectively, known pdf ’s forwk and forvvv in Eq. ~1! or ~5! .

2. wk are statistically independent for allk.

3. vvv does not depend on the system history.

4. p~ yk11, xk116 Tyk! are Borel measurable overxk11 [ Vk11, andp~xk6 Tyk! are Borel measurable overxk [ Vk,
whereVk is the set of all possiblexk at time stepkt~k 5 0,1,2 . . .!.

Then,p~xk6 Tyk! can be recursively determined from

p~xk116 Tyk11! 5

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

p~xk116xk!p~xk6 Tyk! dxk

, ~6a!

or sinceL~xk116 yk11! [ p~ yk116xk11! can be regarded also as the likelihood ofxk11 given the observationyk11,
equivalently,

p~xk116 Tyk11! 5
L~xk116 yk11!pprior ~xk116 Tyk!

E
Vk11

dxk11L~xk116 yk11!pprior ~xk116 Tyk!

~6b!

with

pprior ~xk116 Tyk! 5 E
Vk

p~xk116xk!p~xk6 Tyk! dxk ,

where Tyk11 5 @ yk11yk . . .y0# .

A practically important situation that satisfies as-
sumptions 1, 2, and 3 is whenvvv represents random fluc-
tuations in system parameters andwk corresponds to white
noise. However, these assumptions do not exclude cor-
related noise since correlated noise can be regarded as
the transformation of a white noise process through a
linear filter ~when the power spectral density of the cor-
related noise is in rational form!.26Assumption 4 implies
that

1. all Vk11k 5 0,1, . . . must be closed under finite
intersection and union of some open subintervals
in the ranges of interestal # xl # bl ~l 51, . . . ,L!
for the state variables0parameters

2. for a given 0, p~ yk11, x 6 Tyk! , 1,x [ Vk11

and is important for the existence of the integrals in
Eq.~6!. Since for given initial conditions within the ranges
of interestal # xl # bl , the system motion is restricted to
trajectories generated by Eq.~1!, neither of these impli-
cations may need be true in the case of nonlinear systems.

Proof:

From the definition of conditional probability and the
information vector Tyk,

p~ yk11, xk116 Tyk! 5
p~ yk11, xk11, Tyk!

p~ Tyk!
5

p~xk11, Tyk11!

p~ Tyk!

~7!

p~ yk116 Tyk! 5
p~ Tyk11!

p~ Tyk!

] p~xk116 Tyk11! 5
p~ yk11, xk116 Tyk!

E
Vk11

p~ yk11, xk116 Tyk! dxk11

.

~8!

Assumption 4 needs to be used27 in the decomposition
of p~ Tyk116 Tyk! to obtain Eq.~8! from Eq.~7!. Now, con-
sider the following conditional pdf ’s:

p~ yk116xk11, xk, Tyk! 5
p~ yk11, xk11, xk, Tyk!

p~xk11, xk, Tyk!
,

p~xk116xk, Tyk! 5
p~xk11, xk, Tyk!

p~xk, Tyk!
,
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and

p~xk6 Tyk! 5
p~xk, Tyk!

p~ Tyk!
. ~9!

From Eq.~8! and assumption 4, the joint pdfp~ yk11, xk116 Tyk! can be written as

p~ yk11, xk116 Tyk! 5E
Vk

p~ yk11, xk11, xk6 Tyk! dxk

5E
Vk

p~ yk11, xk11, xk, Tyk!

p~ Tyk!
dxk

5E
Vk

p~ yk11, xk11, xk, Tyk!

p~xk11, xk, Tyk!

p~xk11, xk, Tyk!

p~xk, Tyk!

p~xk, Tyk!

p~ Tyk!
dxk

5E
Vk

p~ yk116xk11, xk, Tyk!p~xk116xk, Tyk!p~xk6 Tyk! dxk . ~10!

Note that the conditional probabilities in Eq~9! have the following properties:

p~ yk116xk11, xk, Tyk! 5 p~ yk116xk11!

and

p~xk116xk, Tyk! 5 p~xk116xk! . ~11!

Equation~11! holds becauseyk11 only depends on the value ofxk11 andwk11 by Eq. ~1!. Whenxk11 is given, the
probability of yk11 will be determined by the value ofwk11, whose value does not depend on any previous system
states by assumption 2. Similarly,p~xk116xk! only depends onxk andvvv by Eq. ~1!, andvvv is independent of system
history by assumption 3. Using Eqs.~10! and~11!, Eq. ~8! can be written as

p~xk116 Tyk11! 5

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

p~xk116xk!p~xk6 Tyk! dxk

,

which completes the proof.
Equation~6! constitutes a Bayesian rule for recur-

sive determination ofp~ xk116 Tyk11! for known
p~ yk116xk11! and p~xk116xk!. Convergence properties
of Eq. ~6! will be discussed within the context of its
discrete formulation in Sec. II.B and also in Sec. IV.
Note that ifh~xk! 5 xk, then Eq.~6! can be used as a
recursive rule for signal validation as illustrated in
Secs. III.B and III.C. Also, as indicated in Proposi-
tion 1, a practically important situation is when the
modeling uncertainties and the measurement uncertain-
ties are represented by zero mean random white Gauss-
ian noise. In this situation,

xk11 5 Ix~xk! 1 DBt , ~12!

where

DBt 5 E
kt

~k11!t

dBt 5E
kt

~k11!t

vvv~t ! dt

Ix~xk! 5E
kt

~k11!t

f ~x~s!! ds1 xk

andBt denotes the Brownian motion28 whose pdf is the
joint normal distribution of the elements ofDBt . Then,
from Eq.~12! we have

p~xk116xk! 5
1

~2psp
2!L02 e

2
~xk112 Ix~xk!!'~xk112 Ix~xk!!

2sp
2 , ~13!

wheresp is the standard deviation of the modeling un-
certainty. Similarly, whenwk is white Gaussian noise,
from Eq.~1! we can write

p~ yk116xk11! 5
1

~2psm
2!M02 e

2
~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 ,

~14!

where againsm is the standard deviation of the noise. In
Eqs.~13! and~14!, the standard deviationssp andsm are
assumed to be constant for allkt ~k 5 0,1,2, . . .!. Sub-
stituting Eqs.~13! and~14! into Eq.~6! yields the Bayes-
ian rule for the recursive estimation of the conditional
distributionp~xk6 Tyk! when the modeling and measure-
ment uncertainties are random white Gaussian noise:
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p~xk116 Tyk11!

5

1

~2psp
2!L02~2psm

2!M02 E
Vk

e
2F ~xk112 Ix~xk!!'~xk112 Ix~xk!!

2sp
2 1

~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 G

p~xk6 Tyk! dxk

1

~2psp
2!L02~2psm

2!M02 E
Vk11

dxk11E
Vk

e
2F ~xk112 Ix~xk!!'~xk112 Ix~xk!!

2sp
2 1

~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 G

p~xk6 Tyk! dxk

[

1

~2psm
2!M02 e

2F ~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 G

pprior ~xk116 Tyk!

1

~2psm
2!M02 E

Vk11

dxk11e
2F ~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 G

pprior ~xk116 Tyk!

~15!

with

pprior ~xk116 Tyk! 5
1

~2psp
2!L02 E

Vk

e
2F ~xk112 Ix~xk!!'~xk112 Ix~xk!!

2sp
2 G

p~xk6 Tyk! dxk .

In the case there are no system noise and0or model-
ing uncertainties andIx~xk! @see Eq.~12!# is invertible,
thenvvv5 0 and

p~xk116xk! 5 d~xk11 2 Ix~xk!! 5 d~l ~xk11! 2 xk! ,

~16!

wherel ~xk11! is the inverse of Ix~xk! andd denotes the
Dirac delta function; i.e.,

E
«

d~x 2 [x! dx 5 1

with « as an infinitesimally small ball around[x and
d~x 2 [x! 5 0 for x Þ [x. As an example for the inverse
function l ~xk11! and measurable setsxk [ Vk, consider
the system

_x 5 x .

Then,

xk11 5 Ix~xk! 5
xk

etk
etk11

and

xk 5 l ~xk11! 5
xk11

etk11
etk .

The setsxk [ Vk are measurable because eachxk is a
continuous function of and any continuous function is
~Borel! measurable.27 Continuing on with the case where
there is no system noise0or modeling uncertainties and
Ix~xk! is invertible, from Eqs.~6! and~16! we have

p~xk116 Tyk11!

5

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

p~xk116xk!p~xk6 Tyk! dxk

5

E
Vk

p~ yk116xk11!d~l ~xk11! 2 xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

d~l ~xk11! 2 xk!p~xk6 Tyk! dxk

[
L~xk116 yk11!pprior ~l ~xk11!6 Tyk!

E
Vk11

L~xk116 yk11!pprior ~l ~xk11!6 Tyk! dxk11

. ~17!

Equation~17! is the special case of Eq.~6! for the situ-
ation where there is no model uncertainty@i.e., vvv5 0 in
Eq. ~1!# . If Eq. ~1! has no closed-form solution or the
closed-form solution is not invertible, Eq.~6! needs to
be evaluated numerically. Section II.B shows how such a
numerical evaluation can be performed using the CCMT.

II.B. Application of the Continuous Bayesian
Estimator to the Discretized Representation

of the System Used by CCMT

The CCMT describes the dynamic system evolution
in terms of probability of transitions between user-
specified variable magnitude intervals or cells in the sys-
tem parameter0state-space during user-specified time
intervalskt # t # ~k11!t ~k5 0,1,2 . . .!. The cell sizes
may correspond to the desired estimation accuracy in
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unknown state variables or may be defined to contain the
signal noise.

Assume that thel’th componentxl of the state vari-
able vectorx 5 @x1, x2, . . . ,xL # falls within the range of
interestal # x l # bl ~l 51, . . . ,L! at all times. This range
of interest is partitioned intoJl ~l 51, . . . ,L! user-defined
intervals

Dl, jt 5 $xl : al, j l # xl , al, j l11;al,1 5 al ,al, J111 5 bl %

j l 5 1, . . . ,Jl ; l 5 1, . . . ,L . ~18!

The setsVj 5 $D1, j1,D2, j2, . . . ,DL, jL %~ j 5 1, . . . ,J 5

) l51
L Jl ! at locationsj 5 ~ j1, j2, . . . , jL ! in the discretized

L-dimensional state-space constitute computational cells
in a similar manner to those used by finite difference
and finite element methods. The cellxk [ Vj,k [ Vk that

the system is in at timet 5 kt contains a subsetEVk of
Vk but may also include points that are not withinEVk,
i.e., points that may not be achievable by the system
under any initial condition sinceVk consists of a union
of semiopen subintervals withinal # xl # bl ~l 51, . . . ,L!.
Figure 1 illustrates such a possible partitioning for a
hypothetical second-order system with three trajectories
corresponding to three sets of initial conditions and in-
dicates the possible cells the system can be in if one of
the state variables is directly measured. As Fig. 1 shows,
the set EVk contains the system locations within cell~7,6!
for trajectories 1 and 2 att 5 kt @and possibly other
points of cell~7,6! that the system could have reached
under other initial conditions# . On the other hand, cell
~7,6! may contain points that are never achievable by
the system under any initial condition due to the

Fig. 1. A possible partitioning for a second-order system.
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equations governing the dynamics of the system, just as the trajectory 3 location att 5 kt is not within cell~7,6! but
rather in cell~8,6!. Subsequently, cellVk provides a subcover27 for EVk ~but not forVk!.

Integrating both sides of Eq.~6! over the possible cellsjk11 where the system might be in at timet 5 ~k11!t, we
obtain

p~ jk116 Tyk11! 5

E
jk11

dxk11E
Vk

dxk p~ yk116xk11!p~xk116xk!p~xk6 Tyk!

(
jk11

E
jk11

dxk11E
Vk

dxk p~ yk116xk11!p~xk116xk!p~xk6 Tyk!

, ~19!

where

p~ jk116 Tyk11! 5 E
jk11

p~xk116 Tyk11! dxk11 ~20!

is the probability that the system is in celljk11 at time~k11!t. Note that from the definition ofp~ jk6 Tyk! in Eq. ~20!,
we can write

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk 5 (
jk

E
jk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
jk

p~xk6 Tyk! dxk

p~ jk6 Tyk! . ~21!

Substituting Eq.~21! into Eq.~19! we obtain

p~ jk116 Tyk11! 5

E
jk11

dxk11E
Vk

dxk p~ yk116xk11!p~xk116xk!p~xk6 Tyk!

(
jk11

E
jk11

dxk11E
Vk

dxk p~ yk116xk11!p~xk116xk!p~xk6 Tyk!

5

E
jk11

(
jk

E
jk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
jk

p~xk6 Tyk! dxk

p~ jk6 Sxk! dxk11

(
jk11

E
jk11

(
jk

E
jk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
jk

p~xk6 Tyk! dxk

p~ jk6 Tyk! dxk11

5

(
jk

p~ jk6 Tyk! EE
jk11, jk

p~ yk116xk11!p~xk116xk!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxkdxk11

(
jk11

(
jk

p~ jk6 Tyk! EE
jk11, jk

p~ yk116xk11!p~xk116xk!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxk dxk11

. ~22!
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The fundamental difference between Eqs.~6! and~22! is
that the integrations in Eq.~6! are carried over the pos-
sible system locations at timest 5 kt andt 5 ~k11!t as
determined from Eq.~1! and given initial conditions and
represented, respectively, by the setsVk andVk11, whereas
the integrations in Eq.~22! are carried over cellVk at
jk and cellVk11 at jk11, which the system is in at these
times and which contain the subsetsEVk , Vk ~k50,1, . . .!.
In view of the explanation given above for the differ-
ence betweenVk and EVk, the p~ jk6 Tyk! as defined by
Eq. ~20! can be regarded as an outer measure27 for EVk.
The limitations and advantages of this approximation
will be discussed later in this section.

Now, define the cell-to-cell transition probability as

g~ jk116 jk! 5 EE
jk11, jk

p~ yk116xk11!p~xk116xk!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxkdxk11 . ~23!

The g~ jk116 jk! does not includeyk11 and Tyk as argu-
ments for notational simplicity and also becauseyk11
and Tyk are measured data points~and hence fixed!, whereas
jk11 and jk are arbitrary cells~i.e., variables!. Then,
Eqs.~22! and~23! yield the discrete counterpart of Eq.~6!
as

p~ jk116 Tyk11! 5

(
jk

g~ jk116 jk!p~ jk6 Tyk!

(
jk11

(
jk

g~ jk116 jk!p~ jk6 Tyk!
. ~24!

The cell-to-cell transition probabilities can be calculated
numerically from

g~ jk116 jk! 5 EE
jk11 jk

fw~ yk11 2 h~xk11!!

3 fDB~xk11 2 Ix~xk!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxkdxk11

' (
r

(
q

fw~ yk11 2 h~ [xk11
r !!

3 fDB~ [xk11
r 2 Ix~ [xk

q!!

3
p~ [xk

q6 Tyk!

E
jk

p~xk6 Tyk! dxk

D [xk
qD [xk11

r , ~25!

where

fDB, fw 5 user-specified pdf ’s for the system noise
@e.g., see Eq.~13!# and measurement noise
@e.g., see Eq.~14!# , respectively

[xk
q 5 quadrature points selected in celljk with

D [xk
q denoting small volumes that sur-

rounds [xk
q

[xk11
r 5 quadrature points selected in celljk11 with

D [xk11
r denoting the small volume that sur-

rounds [xk11
r .

Equation~25! constitutes a quadrature rule for the nu-
merical approximation ofg~ jk116 jk!; however, Monte
Carlo sampling can be also used for the approximation
of the integrals in Eq.~25!. The Ix~ [xk

q! can be evaluated
by any numerical integration technique from Eq.~1!. At
this point it should be mentioned that the equations de-
scribing the evolution of the system do not have to be
differential equations as assumed in Eq.~1!. All that is
needed is a ruleIx~xk! that yields the system location in
the state-space at time~k11!t given its location at time
kt, such as difference equations, neural nets, response
surfaces, tabular data, or algebraic equations.

If there is no modeling uncertainty, Eq.~25! can be
simplified using Eq.~16!. In this situation,

g~ jk116 jk! 5 EE
jk11 jk

p~ yk116xk11!d~xk11 2 Ix~xk!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxkdxk11

5E
jk

p~ yk116 Ix~xk!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~xk!! dxk

5E
jk

fw~ yk11 2 h~ Ix~xk!!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~xk!! dxk

' (
i

fw~ yk11 2 h~ Ix~ [xk
i !!!

3
p~ [xk

i 6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~ [xk
i !!D [xk ,

~26!

10 WANG and ALDEMIR

NUCLEAR SCIENCE AND ENGINEERING VOL. 147 MAY 2004



whereek11~ Ix~xk!! is defined as

ek11~ Ix~xk!! 5 H0 Ix~xk! Ó jk11

1 Ix~xk! [ jk11 ,
~27!

[xk
i ~i 5 1, . . . ,N! are points selected in celljk, andD [xk

i

is the small volume that surrounds[xk
i . In measure

theory, ek11~ Ix ~xk!! is called the indicator27 of EVk11
for Ix~xk! [ EVk11. The ek11~ Ix~xk!! is not Borel mea-
surable if EVk11 is not a Borel set, which would mean that
the integral over celljk11 in Eq. ~26! might have not
existed for some nonlinear systems if the integration were
carried over EVk11 rather than celljk11. Carrying the in-
tegration over celljk11 assures the existence of the inte-
gral as discussed above with regard to proposition 1 and
Eq.~22!; however, it may lead to loss of resolution in the
estimate as will be indicated below.

Further simplification of Eq.~26! can be made by
assuming that the probabilityp~ [xk

i 6 Tyk! is constant over
D [xk

i and selecting the points[xk
i equally spaced inside the

cell; then,

p~ [xk
i 6 Tyk!

E
jk

p~xk6 Tyk! dxk

5
p~ [xk

i 6 Tyk!

Np~ [xk
i 6 Tyk!D [xk

5
1

ND [xk

5
1

Vk

,

~28!

where Vk is the volume of celljk ~i.e., the product
D1, j1 D2, j2 . . .DL, jL ! and Eq.~26! becomes

g~ jk116 jk! 5 E
jk

fw~ yk11 2 h~ Ix~xk!!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~xk!! dxk

' (
i51

N

fw~ yk11 2 h~ Ix~ [xk
i !!!

3
p~ [xk

i 6 Tyk!

Np~ [xk
i 6 Tyk!D [xk

ek11~ Ix~ [xk
i !!D [xk

5 (
i51

N 1

N
fw~ yk11 2 h~ Ix~ [xk

i !!!

3 ek11~ Ix~ [xk
i !! . ~29!

Equations~23! and~24! are similar to the recursive esti-
mation rule reported in Ref. 20 on which the DSD soft-
ware package is based. However, the definition of the
cell-to-cell transition probabilities through Eq.~23! dif-
fers from this rule in the following respects:

1. The rule in Ref. 20 assumes there is no model
uncertainty~except possibly small random fluctuations
in system parameters that are contained within cellsVj !.

Equation~23! allows representing arbitrary distributions
of the model uncertainties through the termp~xk116xk!.

2. The rule in Ref. 20 assumes that only the state
variables are directly measured; i.e.,

yk 5 3
y1

y2

I

yi

4
k

5 3
x1

x2

I

xi

4
k

1 3
w1

w2

I

wi

4
k

k 5 1,2, . . .

] yk 5 @1 0# F [xSxGk

1 wk ,

where [x 5 @x1, x2, . . . ,xi # is the vector whose elements
are the monitored state variables andSx 5 @xi11,
xi12, . . . ,xL # is the vector whose elements are the unmon-
itored state variables. Hence, Eq.~23! allows arbitrary
observers, whereas Ref. 20 is restricted to the directly
measured components of the state variable vector.

3. The rule in Ref. 20 assumes thatwk is uniformly
distributed; i.e.,

fw~wk! 5 H1 6wk6# l

0 otherwise ,
~30!

while Eq.~23! allows arbitrary distributions ofwk through
the termp~ yk116xk11!.

4. In Ref. 20, cells Zj 5 $ j1 j2 . . . j i % and Nj 5
$ j i11 j i12 . . . jL % are defined in the monitored and unmon-
itored state variable spaces~i.e., j 5 $ Zj Nj %!, respec-
tively. The cells Zj contain the measured data pointy, and
Nj contain the measurement noise~i.e., Zjk 5 $ [xk : 6 [xk 2
yk6# l%!. The cell-to-cell transition probabilities are cal-
culated from

g~ jk116 jk! [ g~ Zjk11, Njk116 Zjk, Njk!

5E
jk

dxk

Vk

ek11~ Ix~xk!! , ~31!

wherejk is the cell containingxk andVk is the volume of
jk ~i.e., the productD1, j1 D2, j2 . . . DL, jL ! as defined before.

It can be shown that ifjs,k denotes the actual cell the
system is in at timet 5 kt andg~ jk116 jk! , g~ js,k116 jk!
for all jk11 Þ js,k11, then20

lim
kr`

p~ jk116 Tyk11! r djs,k11, jk11
,

djs,k11, jk11
5 H1 if jk11 5 js, k11

0 otherwise

irrespective of the choice ofp~ j06 y0!; i.e.,p~ jk116 Tyk11!
converges to the correct celljs,k11 irrespective of the
initial distribution used. The practical implication of
this result is that the choice of cells should be such that
the correct system trajectory can be adequately repre-
sented by theg~ jk116 jk!. Figure 2 illustrates such a
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representation for a hypothetical second-order system in
its phase-space. Note that the probabilitiesp [
p~ jk116 Tyk11! are highest on or close to the actual
trajectory.

While the conditiong~ js,k116 jk! . g~ jk116 jk! is prac-
tically not convenient for the selection of the cells due to
the computational effort required in its implementation,
it implies that convergence will be obtained with suffi-
ciently small cells. If the cells are small enough, we will
haveg~ js,k116 jk! 5 1 if jk11 5 js,k11 andg~ jk116 jk! 5 0
otherwise. Since this condition is obtained in Ref. 20
using just the counterpart of Eq.~24! and not Eq.~31!,
the condition is also valid for Eqs.~23! and~24!. Appen-
dix A shows that Eq.~23! reduces to Eq.~31! when dif-
ferences 1 through 4 are removed.

At this point it should be indicated that both the
original DSD algorithm defined through Eqs.~24! and
~31! ~and subsequently the convergence criteria above!
and the improved algorithm defined in Eqs.~23! and
~24!, in principle, still assumep~xk6 Tyk! to be measurable
over thex range of interest. For the improved algorithm,
this assumption is implicit in the steps:~a! replacing
integration over thex range of interest in Eq.~6! by a
sum of integrals over cellsVj in Eq. ~22! and~b! repre-
sentingp~xk6 Tyk! over cellsVj through its values at[xk

q in
Eq. ~25!, which are assumed to be constant overD [xk

q.
The assumption is carried over to Eq.~31! when differ-
ences 1 through 4 are removed. In that respect, refine-
ment of the partitioning scheme~i.e., decreasing the size

of Vj ! or the quadrature scheme@e.g., increasing the num-
ber of points [xk

q in Eq. ~25!# , as it is the conventional
wisdom for finite difference or finite element tech-
niques, may not lead to better resolution in the estimated
quantities ifVk containing all possiblexk at timet 5 kt
are not measurable sets. A good example is the situation
studied in Ref. 29, which uses an algorithm similar to
original DSD algorithm to identify the domains of attrac-
tion ~DOA! of the van der Pol oscillator~a limit cycle
and a single point! and calculates the cell-to-cell transi-
tion probabilitiesg~ jk116 jk! both analytically~exactly!
and numerically from the counterpart of Eq.~31!. It is
shown that the analytical approach@which implicitly as-
sumes thatIx~xk! in Eq. ~31! is integrable overVk# leads
to loss of resolution in the estimated DOA with respect
to the DOA estimated by the numerical approximation of
the integral in Eq.~31!. The paper shows that the loss of
resolution arises from an artificial connectivity between
the sets EVk ~for which Vk provide a finite subcover! dur-
ing the determination ofg~ jk116 jk!; however, it does not
explain the origin of the connectivity. In light of the
difference between Eqs.~6! and ~22! as explained ear-
lier, the connectivity can be attributed to forcing the orig-
inally noncompact EVk to be compact during the analytical
determination ofg~ jk116 jk! through integration over the
subcoverVk @which is the union of intervalsDl, j l 5 $xl :
al, j l # xl , al, j l11;al,1 5 al ,al, J111 5 bl % as given by
Eq. ~18! for somej l ~ j l 51, . . . ,Jl ; l 51, . . . ,L! and hence
connected30# rather than EVk. Such an explanation has

Fig. 2. Approximation of the phase-space trajectory of a hypothetical second-order system by CCMT.
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extended implications31 regarding previous work on re-
liability and safety analysis of dynamic systems32 as well.
On the other hand, experience with the original DSD
algorithm shows that evaluation of the integral in Eq.~31!
using quadratures can often yield successful results even
when Vk are not measurable, possibly also because
p~ jk6 Tyk! provides an outer measure for the setEVk as
indicated above in the discussion of the difference be-
tween Eqs.~6! and~22!. In addition to the problem con-
sidered in Ref. 29, a good example is the capability of
the original DSD algorithm to determine33 the bifurca-
tion parameter~which corresponds to the fuel-to-coolant
heat transfer coefficient! of the well-known reduced-
order boiling water reactor~BWR! model described in
Ref. 34 with observed neutron flux, temperature, and
pressure. The search in Ref. 23 is carried over a range of
the bifurcation parameters in which the BWR behavior
can switch from stable to periodic to chaotic. TheVk of
the system trajectories in neither periodic nor chaotic
behavior are Borel measurable, i.e.,Vk are not closed
under finite intersection and union of some open sub-
intervals in the ranges of interest since we cannot define
a sequencezk

~s! [ Vk such that limsr` zk
~s!

r xk [ Vk.

III. IMPLEMENTATION

This section compares the recursive procedure de-
fined by Eqs.~23! and~24! to the rule reported in Ref. 20
using a xenon evolution model and presents the results.

III.A. System Description

The system under consideration has been proposed
by Chernick35 and consists of three first-order, nonlinear
differential equations:

L
df

dt
5 Sr 2

sx

cSf

X 2 gfDf ,

dX

dt
5 yX Sf f 2 lx X 1 l I I 2 sX Xf ,

and

dI

dt
5 yI Sf f 2 l I I , ~32!

where

L 5 effective neutron generation time

f 5 neutron flux

X 5 135Xe concentration

I 5 135I concentration

c 5 conversion coefficient from xenon absorption
rate to reactivity

r 5 reactivity at zero flux and zero xenon poisoning

sX 5 microscopic absorption cross section for135Xe

Sf 5 core-averaged macroscopic absorption cross
section

g 5 flux coefficient of reactivity

lX 5 135Xe decay coefficient5 0.07530h

lI 5 135I decay coefficient5 0.10350h

yI 5 135I yield 5 0.06386

yX 5 135Xe yield5 0.00228

The values for the parameterslX,lI , yX, yI are generic
data. The other model parameters are reactor-specific
quantities, and the values obtained from The Ohio State
University Research Reactor36 will be used in this paper
~Table I!. For the purpose of this study, Eq.~32! is nor-
malized as

L
df

dt
5 Sr 2

sx

c

X

Sf

2 gfDf ,

dS X

Sf
D

dt
5 yX f 2 lX

X

Sf

1 lI

I

Sf

2 sX

X

Sf

f ,

and

dS I

Sf
D

dt
5 yI f 2 l I

I

Sf

. ~33!

The transient considered is a small step insertion of re-
activity with r 5 0.0005. Only the flux is assumed to be
measured, and the measurement is corrupted by noise;
i.e.,

yk 5 fk 1 wk ,

whereyk is the measurement andwk is the noise with the
pdf fw~wk!. The subscriptk is the time step index. We
will assume the noise is white noise andfw has the same
functional form for allt 5 kt.

TABLE I

Reactor-Dependent Parameters of Eq.~32!

c
g

~cm2{s!
sx

~cm2!
L
~s!

1.2384 3.973 10216 1.9843 10218 0.083
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Two cases will be considered in this section:

1. Given fw~wk! to be white Gaussian noise, esti-
mateX0Sf , I0Sf .

2. Given fw~wk! to be uniformly distributed, esti-
mateX0Sf , I0Sf .

Sections III.B and III.C describe the results for cases 1
and 2, respectively.

III.B. Estimation Results with Gaussian Noise
(Case 1)

Table II shows the data used in case 1 for the simu-
lation of the measured flux. The simulated system evo-
lution is shown in Fig. 3. The results for the actual flux
were obtained from the integration of Eq.~33! using a
fourth-order Runge-Kutta scheme. The results for the
measured fluxyk at time t 5 kt ~k 5 0,1,2, . . .! were
obtained by sampling from a normal distribution with
mean zero and standard deviation 0.00123 1013 ~see
Table II! using a random number generator and algebra-
ically adding the result to those obtained for the flux
f~t !. Since the noise is assumed to be Gaussian, it can-
not be contained within a single cellVj , and the proce-

dure described in Ref. 20 does not converge. In order to
apply the new procedure described in Sec. II, the parti-
tioning data used are shown in Table III.

Since there is no model uncertainty, the transition
probabilitiesg~ jk116 jk! are calculated from Eq.~26! @and
subsequently from Eq.~29!# with h~ Ix~xk!! 5 Ix~xk! and
fw having 0 mean and 0.00123 1013 standard variation.
The total number of quadrature points[xk

i ~i 5 1, . . . ,N!
selected in the approximation ofg~ jk116 jk! through
Eq. ~29! is N 5 3 3 3 3 3 5 9.

The estimated 99.99% credibility interval as a func-
tion of time for the measured values of flux and the
estimated value ofX0Sf , I0Sf are shown, respectively,
in Figs. 4, 5, and 6. From Fig. 4, we can see that the
estimated intervals for flux~denoted by vertical bars!
contain the measured datayk at all time points. Since
the estimation process cross-correlates the measured data
in view of the given pdf forwk @i.e., throughp~ yk116xk11!
in Eq. ~23!# and the system model~i.e., throughp~xk6 Tyk!!
in the determination ofg~ jk116 jk!, Fig. 4 implies that
the improved estimation procedure described by Eqs.~23!
and ~24! @or Eqs.~24! and ~26! when there is no mod-
eling uncertainty# can be also used for model uncertainty0
noise reduction in the measured data as will be shown

TABLE II

Data Used for Simulation of Xenon Evolution for Case 1

Initial Value
of f

Initial Value
of X0Sf

Initial Value
of I0Sf

Time Stept
~h!

Mean of
the Noise

Standard Deviation
of the Noise

0.013 1013 0.43 1013 0.53 1013 0.015 0 0.00123 1013

Fig. 3. Actual fluxf and its measured value~both simu-
lated! for case 1.

Fig. 4. Estimated interval of fluxf as a function of time
~solid line indicates the measured value of flux!.
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below. While the estimated interval forX0Sf , I0Sf is
still large after 40 time steps~see Figs. 5 and 6!, the
mean of the estimated distributions forf and X0Sf ,
I0Sf are close to their true values at all times as shown
in Figs. 7, 8, and 9, respectively. Figure 10 shows the
ratio of the posterior standard deviation over the noise
standard deviation~sestimate0snoise! for the flux. To-
gether with Fig. 7, which shows that the posterior mean
converges to the true flux value, Figs. 7 and 10 demon-
strate that the improved estimation procedure can re-
duce the uncertainty on the measurements by a factor
of sestimate0snoise5 60% for f after about 0.5 h.

Figures 11 and 12, respectively, show the evolution
of the posterior variance forX0Sf , I0Sf for case 1 using
t 5 0.015 h and the partitioning data in Table III. The
respective posterior standard deviations in the estimated
values ofX0Sf , I0Sf aresX 5 2.75973 1013 andsI 5
17.19133 1013 at the first time step. This uncertainty

TABLE III

The Partitioning Data Used for Case 1

Variables
Possible

Maximum Value
Possible

Minimum Value
Number
of Cells

Number of
Quadrature Points
[xk
i ~i 5 1, . . . ,N!
in Eq. ~26!

f 0.143 1013 0 103 3
X0Sf 103 1013 0.3973 1013 303 3
I0Sf 603 1013 0.3973 1013 303 3

Fig. 5. Estimated interval ofX0Sf as a function of time.

Fig. 6. Estimated interval ofI0Sf as a function of time.
Fig. 7. Mean value of the estimated distribution off for

case 1~solid line indicates the true value!.
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decreases tosX 5 0.178131013 andsI 5 6.105531013

at t 5 20t ~or 0.3 h! and stabilizes aroundsX 5 0.083
1013 andsI 5 0.83 1013 after t 5 65t ~or 1 h!.

III.C. Estimation Results with Uniform Noise
(Case 2)

Table IV shows the data used in case 2 for the sim-
ulation of measured values off. The simulated system
evolution is shown in Fig. 13.

The measured data were simulated by using the pro-
cedure described for case 1 in Sec. III.B with the data
listed in Table IV. The unknown state variablesX0Sf ,

I0Sf are estimated by two methods:~a! using the im-
proved procedure through Eqs.~24! and~26! and~b! the
previous DSD algorithm reported in Ref. 20. Both meth-
ods use the partitioning data listed in Table V. The evo-
lution of the estimated 99.99% credibility intervals for
f, X0Sf , I0Sf using the improved procedure is shown in
Figs. 14, 15, and 16, respectively, and the corresponding
expected values are shown in Figs. 17, 18, and 19. Fig-
ures 14 through 19 show that again the measured data
are within the expected uncertainty margins and conver-
gence is rapid. Figure 14 also illustrates the signal vali-
dation capability of the improved procedure. The fluxf
is estimated as 0.118331013 # f # 0.123731013 with

Fig. 8. Mean value of the estimated distribution ofX0Sf

for case 1~solid line indicates the true value!.

Fig. 9. Mean value of the estimated distribution ofI0Sf

for case 1~solid line indicates the true value!.

Fig. 10. The ratio of the estimated posterior standard de-
viation and the noise standard deviation forf.

Fig. 11. The evolution of posterior variance forX0Sf for
case 1.
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TABLE IV

Data Used for Simulation of System Evolution for Case 2

Initial Value
of f

Initial Value
of X0Sf

Initial Value
of I0Sf

Time Stept
~h!

Uncertainty Level
l 3 1013

@see Eq.~30!#

0.013 1013 0.43 1013 0.53 1013 0.015 0.012

Fig. 12. The evolution of posterior variance forI0Sf for
case 1.

Fig. 13. Actual fluxf and its measured valuey~t ! ~both
simulated! for case 2.

Fig. 14. Estimated interval of fluxf as a function of time
using Eqs.~24! and ~26! for case 2~solid line indicates the
measured value of flux!.

Fig. 15. Estimated interval ofX0Sf as a function of time
using Eqs.~24! and ~26! for case 2~solid line indicates the
measured value!.
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TABLE V

The Partitioning Data Used for Case 2

Variables
Possible

Maximum Value
Possible

Minimum Value
Number
of Cells

Number of
Quadrature Points
[xk
i ~i 5 1, . . . ,N!
in Eq. ~26!

f 0.143 1013 0 103 5
X0Sf 103 1013 0.3973 1013 303 3
I0Sf 603 1013 0.3973 1013 303 3

Fig. 16. Estimated interval ofI0Sf as a function of time
using Eqs.~24! and ~26! for case 2~solid line indicates the
measured value!.

Fig. 17. Mean value of the estimated distribution off for
case 2.

Fig. 18. Mean value of the estimated distribution ofX0Sf

for case 2.

Fig. 19. Mean value of the estimated distribution ofI0Sf

for case 2.
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99.99% confidence at timet 5 20t ~or 0.3 h!, which is
1 2 ~0.12372 0.1183!00.0125 55% smaller than the
measurement uncertainty level~see Table IV!. Similarly,
at time t 5 150t ~or 2.25 h!, the flux f is estimated as
0.09243 1013 # f # 0.09793 1013, which is also 12
~0.09792 0.0924!00.0125 54% reduction of the mea-
surement noise. These results again show that Eqs.~24!
and~26! can be also used to reduce the uncertainty in the
measurements for noisy data.

Figures 20 through 23 show the estimation results
for case 2 using the DSD algorithm in Ref. 20 with the
same partitioning data listed in Table V. Comparing
Figs. 20 through 23 to their respective counterparts,

Figs. 15, 16, 18, and 19, shows that better estimation
results are obtained by using Eqs.~24! and~26! than the
previous DSD algorithm. The estimation process con-
verges faster and provides smaller credibility intervals
for the unknown variables.

IV. THE RELATIONSHIP OF THE CCMT-
BASED STATE0PARAMETER ESTIMATION

TO CONVENTIONAL TECHNIQUES

As indicated in Sec. I, the original DSD algorithm is
based on the Chapman-Kolmogorov equation, which does

Fig. 20. Estimated interval ofX0Sf as a function of time
using the rules in Ref. 20 for case 2.

Fig. 21. Estimated interval ofI0S f as a function of time
using the rules in Ref. 20 for case 2.

Fig. 22. Mean value of the estimated distribution ofX0Sf

using the rules in Ref. 20 for case 2.

Fig. 23. Mean value of the estimated distribution ofI0Sf

using the rules in Ref. 20 for case 2.
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not provide a convenient framework to investigate the
relationship of DSD to conventional state0parameter es-
timation techniques. On the other hand, Sec. II.B shows
that the DSD algorithm is a special case of the hierarchi-
cal Bayes rule defined through Eq.~6! where the priors
p~xk6 Tyk! are recursively determined from

p~xk116 Tyk11!

5
L~xk116 yk11!pprior ~xk116 Tyk!

E
Vk11

dxk11L~xk116 yk11!pprior ~xk116 Tyk!

5

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

p~xk116xk!p~xk6 Tyk! dxk

5
p~ yk116xk11!p~xk116 Tyk!

p~ yk116 Tyk!
~34!

] p~xk116 Tyk! 5Ep~xk116 Tyk11!p~ yk116 Tyk! dyk11 .

~35!

Equation~35! assumes thatyk as well asxk [ Vk at each
t 5 kt constitute measurable sets. This assumption is
realistic since the pdf forwk 5 yk 2 h~xk! is often de-
scribed through a measurable function~e.g., uniform,
Gaussian!. Then, for a stationary process~e.g., constant
parameter vectoru 5 @u1u2 . . .uM # to be estimated! with
the range of interest covering all possible values ofu
under consideration, the following can be shown37:

1. There is a unique solutionp~u! to Eq.~34!.

2. The sequencep~xk! converges monotonically in
L1 norm top~u!.

3. *6p~xk! 2 p~u!6dxk r 0 exponentially with in-
creasingk.

Other implications of Eq.~6! from estimation theory
are as follows:

Implication 1:For a set of constant parametersu 5
@u1u2 . . .uM # , the mode ofp~u6 Tyk! yields the maximum
likelihood estimate~MLE ! of u ~Ref. 38!.

Implication 2:For a set of constant parametersu 5
@u1u2 . . .uM # and forwk being white Gaussian noise, the
MLE of u is the least-squares estimate~LSE! of u
~Ref. 39!. Therefore, under these assumptions, the mode
of p~u6 Tyk! is also the LSE ofu.

Implication 3: If wk andvvv in Eq. ~1! are both white
Gaussian noise andf ~x!,h~x! are linear inx, then the
mean and covariance ofp~xk6 Tyk! obtained from Eq.~6!
are equivalent to those obtained from a Kalman filter.38

Subsequently, Eqs.~23! and ~24!, which constitute
the improved DSD algorithm and are equivalent to Eq.~6!
when the system evolution is represented using CCMT,
provide a practical state0parameter estimation proce-
dure that yields the same results as

1. the Kalman filter approach for linear dynamical
systems when the modeling uncertainties~i.e.,vvv!
and measurement noise~i.e., wk! have white
Gaussian pdf ’s

2. the MLE for algebraic systems with constant
parameters

3. the LSE for algebraic systems with constant pa-
rameters when the measurement noise is white
Gaussian.

It should be emphasized, however, the improved DSD
algorithm contains the Kalman filter, MLE, and LSE as
special cases and has a broader range of applicability
than any one of these methods. Section IV.B illustrates
implications 1, 2, and 3 using the constant temperature
power sensor described in Sec. IV.A.

IV.A. Constant Temperature Power Sensor

The following notation is used in Secs. IV.A and
IV.B:

Mi 5 mass of nodei ~i 5 1,2! ~kg!

Ci 5 specific heat capacity of nodei ~ i 5 1,2!
~J0kg{K !

Ai 5 external area of nodei ~i 5 1,2! ~m2!

Tis 5 steady-state temperature of nodei ~i 5 1,2!
~K !

U1 5 node-1-to-coolant heat transfer coefficient
~W0m2{K !

U2 5 node-2-to-node-1 heat transfer coefficient
~W0m2{K !

T̀ 5 coolant temperature~K !

Th 5 sensor heater wire reference temperature~K !

ih 5 electric current input into the heater wire~A!

a 5 heater wire temperature coefficient of resis-
tance~10K !

Rh 5 heater wire reference resistance~V!

_qn 5 nuclear energy input rate into node 2~W0kg!.

A recently developed in-core calorimetric instru-
ment called constant temperature power sensor40,41~CTPS!
can directly measure the local nuclear energy deposition
and heat transfer rate. The direct measurement of the
local nuclear energy deposition and the local heat trans-
fer rate reduces the uncertainty in the predicted thermal
margins, resulting in improvement in performance and
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economy of new reactor designs. This design concept is
based on the idea of adding heat through resistive dissi-
pation of input electrical energy, to a small mass of ac-
tual reactor fuel analogue~mode 1!. The CTPS~Fig. 24!
consists of a highly enriched UO2 core ~node 2! sur-
rounded by electrical heating resistance wire. The core is
contained in an alumina-based ceramic thermal insulator
~node 1!. The sensor core and the insulator are coated
with thin layers of copper. Heat is lost from the insulator
to the surrounding coolant. A feedback control loop is
used to provide the exact amount of input electrical en-
ergy in order to keep the fuel mass at a constant temper-
ature regardless of the nuclear energy generated in node 2.
In steady state~i.e., mode 1!, the input electrical energy
required will be related to the actual nuclear energy de-
position, given the assumption that the external heat trans-
fer rate remains constant; i.e.,

M2 _qn 1 @ih2Rh~11 a~T2s 2 Th!!#

5 A2U2~T2s 2 T1s! 5 A1U1~T1s 2 T̀ ! . ~36!

Equation~36! is simply an energy balance between the
sensor nodes and surrounding coolant, where_qn, U1, U2,
andT̀ are unknown. TheT1s is a known function ofT̀
andT2s ~which is measured!. The estimation process con-
sists of the following steps:

1. Supplyih until steady-state conditions are reached
~mode 1!.

2. Take the sensor temporarily out of the control
loop ~mode 2!, or practically, reduce the supplied elec-
trical currentih to 1% of the steady-state value in mode 1.
In mode 2, the variation of the node 2 temperatureT2 as
a function of timet can be represented as40

T2~t ! 5 T̀ 1 u1e2u2 t 1 u3e2u4 t 1 w , ~37!

where the exponentsu2 andu2 are related through

u2 1 u4

5 2
C2 M2~U2 A2 1 U1 A1! 1 C1 M1~21024ih

2Rha 1 U2 A2!

C1 M1C2 M2

and

u2u4

5
21024ih

2RhaU2 A2 1 U1 A1~21024ih
2Rha 1 U2 A2!

C1 M1C2 M2

.

~38!

In Eq.~37!, the quantityw represents model0measurement
uncertainty as in Eq.~1!. Equation~38! is obtained from
the two-node, lumped parameter representation of CTPS
under the assumption that the deviation of the node tem-
peratures in mode 2 from their steady-state values in
mode 1 is small enough to allow linearization around
these mode 1 temperatures.

3. MeasureT2~t ! @which also yieldsT̀ after the ex-
ponentials in Eq.~37! die out# and estimateui ~i 51, . . . ,4!
through Eqs.~24! and~26!.

4. Solve forU1 andU2 from Eq. ~38! with ui ~i 5
1,2! obtained in step 3.

5. Using theT̀ obtained in step 3 andUi ~i 5 1,2!
found in step 4, solve for_qn from Eq.~36!.

Work to date shows that the CTPS model parameters can
be estimated using the improved procedure through
Eqs. ~24! and ~26!, even when the sensor behavior is
represented through coupled nonlinear differential equa-
tions42 rather than a single algebraic equation such as
Eq. ~37!.

IV.B. Illustrations

Table VI summarizes the results of the comparison
of DSD with LSE, MLE, and Kalman filters using the
CTPS described in Sec. IV.A. The LSE results were ob-
tained by minimizing the objective function

Fig. 24. The constant temperature power sensor.

TABLE VI

Comparison of the Results for Different Estimators

Parameter0Estimator Zu1 Zu2 Zu3 Zu4

LSE 5.4854 0.2833 19.6994 2.7906
MLE 5.4825 0.2831 19.7017 2.7897
Kalman filter 6.9525 0.3464 18.4278 3.2104
DSD ~mode!a 5.4663 0.2865 19.7247 2.7978
DSD ~mean!b 5.4787 0.2829 19.6954 2.7865

aFor comparison to LSE and MLE.
bFor comparison to Kalman filter.
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(
k51

N

@T2,k 2 T̀ 2 Zu1e2 Zu2 tk 2 Zu3e2 Zu4 tk # 2 ~39!

with respect to Zu1, Zu2, Zu3, Zu4, whereT2,k 5 T2~tk!. The
likelihood function used for MLE was

F 1

M2p~0.1!
GN

exp32

(
k51

N

~T2,k 2 T̀ 2 Zu1e2 Zu2 tk 2 Zu3e2 Zu4 tk !2

0.2
4 .

~40!

The Kalman filter results were found from

Zuk 5 Zuk21 1 Kk~T2,k 2 T̀ 2 Zu1,k21e2 Zu2,k21 tk

2 Zu3,k21e2 Zu4,k21 tk ! , ~41!

where

Zuk 5 @ Zu1,k Zu2,k Zu3,k Zu4,k# ,

Hk
T 5 3

e2 Zu2,k tk

2 Zu1,k tke2 Zu2,k tk

e2 Zu4,k tk

2 Zu3,k tke2 Zu4,k tk

4 ,

Kk 5 Pk21Hk
T~HkPk21Hk

T 1 0.1!21 ,

and

Pk 5 ~I 2 KkHk!Pk21 ~42!

with I representing a 43 4 unit matrix andP0 5 10 I .
The partitioning data used for the DSD estimation are
shown in Table VII. In all cases, the noisewk in Eq. ~1!
was assumed to be Gaussian noise with mean 0, and the
variance was calculated by the sample variance ofT2,k as
0.1. The dataT2,k 5 T2~tk! with k 5 1, . . .,250 were gen-
erated using the more detailed finite element CTPS model
described in Ref. 40.

Table VI shows that there is good agreement among
the DSD, LSE, and MLE results, as expected. In general,
the differences among the DSD, LSE, and MLE are small
~within 0.1 to 1.2%!. In order to investigate the origin of
the larger differences between the Kalman filter and other

estimator results, another set of dataT2,k 5 T2~tk! with
k51, . . .,250 generated using Eq.~37! and the measure-
ment noise was simulated by sampling again from a nor-
mal distribution with mean 0 and variance 0.1 using a
random number generator~see Table VIII!. The estima-
tion results are shown in Table IX, which indicates that
with the data generated by Eq.~37! and Gaussian noise,
the difference between the DSD and Kalman filter is
reduced to,2.5%. The MLE and LSE results are in
good agreement with the DSD results in both Tables VI
and IX because, as indicated above, for a set of constant
parametersu 5 @u1u2 . . .uM # , ~a! the mode ofp~u6 Tyk!
yields the MLE of u and ~b! if wk is white Gaussian
noise, the MLE ofu is the LSE ofu. The explanation of
the reduction of the difference between the DSD and
Kalman filter results from Tables VI through IX is that
the data generated from the finite element model of
Ref. 40 do not conform to the functional form of Eq.~37!.
Subsequently,wk in Eq. ~37! is not strictly Gaussian as
assumed by the Kalman filter approach@see implication
3 following Eq.~35!# .

V. CONCLUSION

This study shows that the CCMT-based state0par-
ameter estimation procedure, originally based on the
Chapman-Kolmogorov equation20~or in its algorith-
mic form, DSD!, is equivalent to a recursive Bayesian

TABLE VII

DSD Partitioning Data Used for the CTPS Model

Parameter u1 u2 u3 u4

Maximum 7 0.6 22 3.5
Minimum 4 0.0 17 2.5
Number of cells 89 89 89 89
Number of quadrature points
[xk
i ~i 5 1, . . . ,N! in Eq. ~26!

3 3 3 3

TABLE VIII

Parameter Used for Simulation of Measured
Temperature from Eq.~37!

Parameter u1 u2 u3 u4

Mean of
the Noise

Variance of
the Noise

Value 5.4 0.28 19.7 2.8 0.0 0.1

TABLE IX

Comparison of the Results for Different Estimators for Data
Simulated from Eq.~37! and Gaussian Noise

Parameter0Estimator u1 u2 u3 u4

LSE 5.8026 0.2904 19.0819 2.9245
MLE 5.7935 0.2900 19.0888 2.9223
Kalman filter 5.8972 0.2948 18.9750 2.9163
DSD ~mode!a 5.8061 0.3000 19.1939 2.9388
DSD ~mean!b 5.7775 0.2889 19.0978 2.9174

aFor comparison to LSE and MLE.
bFor comparison to Kalman filter.

22 WANG and ALDEMIR

NUCLEAR SCIENCE AND ENGINEERING VOL. 147 MAY 2004



estimator in the discretized system state0parameter space.
This Bayesian interpretation of the DSD algorithm

1. increases the applicability of methodology to ar-
bitrary observers and arbitrary noise distribu-
tions in the monitored data as well as to arbitrary
uncertainties in the model parameters

2. leads to improvements in the estimation speed
and accuracy, as illustrated using the Chernick
model35 of xenon evolution with temperature
feedback

3. establishes a link to conventional estimation
schemes such as MLE, LSE, and Kalman filter as
illustrated by the CTPS model.40

The improved DSD algorithm contains MLE, LSE, and
the Kalman filter as special cases and has a broader range
of applicability than any one of these methods regarding
system representation, modeling uncertainties and mea-
surement noise again as illustrated by the CTPS exam-
ple. The Bayesian interpretation also provides a possible
explanation for the origins of some unexplained phenom-
ena encountered in previous work.29

APPENDIX A

DERIVATION OF EQ.~31! FROM EQ.~23!

First, using Eq.~30! and noting thatyk11 5 [xk11 1 wk11 from difference 2, we have

p~ yk116xk11! 5 fw~ yk11 2 [xk11! 5 H1 6 [xk11 2 yk116# l

0 else
5 H1 [xk11 [ Zjk11

0 [xk11 Ó Zjk11 .
~A.1!

Recalling thatj 5 $ Zj Nj % andx 5 $ [x Sx% , the transition probabilityg~ Zjk11, Njk116 Zjk, Njk! can be written from Eq.~23!
as the following:

g~ jk116 jk! [ g~ Zjk11, Njk116 Zjk, Njk! 5 EE
Zjk11, Njk11

EE
Zjk, Njk

p~ yk116 [xk11, Sxk11!p~ [xk11, Sxk116 [xk, Sxk!

3
p~ [xk, Sxk6 Tyk!

E
jk

p~xk6 Tyk! dxk

d [xkd Sxkd [xk11d Sxk11

5 EE
Zjk11, Njk11

EE
Zjk, Njk

fw~ yk11 2 [xk11!p~ [xk11, Sxk116 [xk, Sx !

3
p~ [xk, Sxk6 Tyk!

E
jk

p~xk6 Tyk! dxk

d [xkd Sxkd [xk11d Sxk11 , ~A.2!

where [xk and Sxk denote the location of the monitored and unmonitored system variables in their respective spaces.
Using Eq.~A.1!, Eq. ~A.2! becomes

g~ jk116 jk! 5 g~ Zjk11, Njk116 Zjk, Njk!

5 EE
Zjk11, Njk11

EE
Zjk, Njk

p~ [xk11, Sxk116 [xk, Sxk!
p~ [xk, Sxk6 Tyk!

E
jk

p~ [xk, Sxk6 Tyk! d [xkd Sxk

d [xkd Sxkd [xk11d Sxk11

5 EE
jk11, jk

p~xk116xk!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxk11dxk , ~A.3!
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wherejk11 5 $ Zjk11 Njk11% andjk 5 $ Zjk Njk% . If there is no modeling uncertainty~i.e., difference 1 above!, Eq. ~16!
holds, and Eq.~A.3! becomes

g~ Zjk11, Njk116 Zjk, Njk! 5 EE
jk11, jk

p~xk116xk!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxk11dxk

5 EE
jk11, jk

d~xk11 2 Ix~xk!!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxk11dxk

5E
jk

p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~xk!! dxk , ~A.4!

whereek11~ Ix~xk!! is as defined in Eq.~27!. Finally, by
assuming that the system location is uniformly distrib-
uted over the celljk and using Eq.~28!,

p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

5
1

Vk

. ~A.5!

Then,

g~ Zjk11, Njk116 Zjk, Njk! 5
1

Vk
E

jk

ek11~ Ix~xk!! dxk , ~A.6!

which is the same as Eq.~31!.
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Abstract 

 
The DSD (Dynamic System Doctor) is system independent, 
state/parameter estimation software that can be used for 
both point and interval estimation.  The DSD also yields 
useful information for risk informed regulation and risk 
monitoring of nuclear power plants. The relationship of 
DSD to some conventional estimation techniques is 
described and illustrated using a linearized model for the 
on-line calibration of the constant temperature power 
sensor, recently proposed for direct core power density 
distribution measurement in Generation IV reactors. 

1 Introduction 

The DSD (Dynamic System Doctor) is system independent, state/parameter 
estimation software [1]. The DSD uses a system representation scheme based on 
the transition probabilities between user specified computational cells that 
partition the system state space (cell-to-cell mapping).  These transition 
probabilities are obtained from the user supplied system model. The theoretical 
basis of the DSD and the current DSD algorithm are described in a companion 
paper [2]. The main advantage of the DSD over conventional estimators is that 
DSD is both a point and an interval estimator. In addition, the DSD yields the 
probability distribution of the system variables/parameters within the estimated 
bounds which provides a probabilistic measure to rank the likelihood of system 
faults in view of modeling uncertainties and/or signal noise. Such information is 
particularly useful for risk informed regulation and risk monitoring of nuclear 
power plants.  
 

The current DSD algorithm is based on the assumptions that: a) the 
measurement noise is uniformly distributed, and, b) the measured variables are 
part of the state variable vector.  Recent theoretical developments [3] have 
extended the applicability range of DSD to arbitrarily distributed (but known) 
signal noise and modeling uncertainties and arbitrary observers.  The new 
theoretical developments have also provided the framework which clarifies the 
previously unexplained relationship between DSD and conventional 
state/parameter estimation techniques.  The paper describes and illustrates the 
relationship of DSD to the generalized maximum likelihood estimator (MLE), 

Tunc
Text Box
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least squares estimator (LSE) and the Kalman filter approach.  

2 Overview of the Recent Developments 

The extended DSD algorithm accepts system equations of the form 
  

),,,k()(~
kkk L2101 =+=+ vxxx  (1) 

 
and observers of the form 
 

),,,k()( L210=+= kkk wxhy  (2) 

where 
 
x  -dimensional vector whose elements are the state variables or 

unknown model parameters 
L

),...,1( Llxl =  of the dynamic system 
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where )( 1 kkg jj + is the probability that the system will move from cell to 

cell during
kj

1+kj ττ )k(tk 1+<≤ .  It can be also shown that [3]: 
 
1. Eqs.(5) and (6) constitute a recursive Bayesian estimator (the original DSD 

algorithm is based on the Chapman-Kolmogorov equation), 
2.  if denotes the actual cell the system is in at time k,sj τkt = and 
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 Eqs.(5) and (6) reduce to the current DSD algorithm [2]. 
 
The )(p kk yj from Eq.(5) can be used to find all the statistical properties of the 
variables to be estimated at times τkt = , including expected values, standard 
deviations and credibility intervals.  Item 3 above indicates the limitations of the 
current DSD algorithm with respect to Eqs.(5) and (6).  Item 1 implies that [3] 
 

1. For constant )0,1,( L== kk θx , the mode of )(p kyθ yields the 

maximum likelihood estimate (MLE) of . θ



2. If in Eq.(1) and in Eq.(2) are both white Gaussian noise and Eq.(1) 
originates from a linear model for the evolution of , then the mean and 
covariance of 

kw
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)( kkp yx obtained from Eq.(6) are equivalent to those 
obtained from a Kalman filter. 

3. The mean of )(p kyθ is also the least-squares estimate (LSE) of . θ
 
These implications are illustrated below using a linearized version of the model in 
[2] for the on-line calibration of the constant temperature power sensor (CTPS), 
proposed for direct core power density distribution measurement in Generation 4 
reactors. 

3 Implementation and Results 

The CTPS [2] can directly measure the local nuclear energy deposition and heat 
transfer rate. This design concept is based on the idea of adding heat through 
resistive dissipation of input electrical energy to a small mass of actual reactor 
fuel pellet analogue which constitutes the sensor core (Node 2). The core is 
surrounded by ceramacast, which is an alumina based ceramic thermal insulator 
(Node 1).  In Mode 1 operation, Node 2 is kept at constant temperature T2 by 
providing the exact amount of input electrical energy (in kW) through a 

feedback control loop irrespective of the nuclear energy (in kW) generated in 
Node 2. At steady state [2] 
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where Ti is the Node i (i=1,2) temperature (K), is the temperature of the 

surrounding coolant, (in K/kW) is the contact resistance between Node 1 and 

Node 2 and  (in K/kW) is the contact resistance between Node 1 and the 

coolant. In Eq.(7), ,  and are not known.  In the current design, only 

is measured. The calibration of the senor is accomplished through the 

determination of  and .  Then can be found from Eq.(7) with the 

measured ,  and known  . For calibration, the sensor is temporarily taken 
out of the control loop (Mode 2 operation), or practically, the supplied electrical 
current is reduced to 1% of the steady state value in Mode 1 operation. Then  

and can be obtained from the dynamic characteristics of the sensor 
temperature in decaying back from the steady state value in Mode 1 to its original 
level through [2] 
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For this study, the data with k=1,…,250 were generated using a finite element 

CTPS model
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 [4]. The noise in Eq.(2) was assumed to be Gaussian noise with 

mean 0 and the variance was calculated by the sample variance of which was 
found to be 0.1.   
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Table 1 below summarizes the results of the comparison of DSD with LSE, MLE 
and Kalman filters. 
 

Parameter/Estimator 
1̂θ  2θ̂  3̂θ  4θ̂  

LSE 5.4854 0.2833 19.6994 2.7906 
MLE 5.4825 0.2831 19.7017 2.7897 
Kalman Filter 6.9525 0.3464 18.4278 3.2104 
DSD (Mode)1 5.4326 0.2798 19.6685 2.7865 
DSD (Mean)2 5.4663 0.2865 19.7247 2.7978 

1For comparison to LSE and MLE 2For comparison to Kalman Filter 

Table 1. Comparison of the Results for Different Estimators  

 
Table 1 shows that there is good agreement between DSD, LSE and MLE results, 
as expected.  In general, the differences between the DSD, LSE and MLE are 
small (within 0.1% to 1.2%).  The larger differences between the Kalman filter 
and other estimator results originate from the white Gaussian noise requirement 
of the Kalman filter.   The data generated for the estimation process using the 
finite difference model of [4] do not necessarily conform to the functional form of 
Eq.(7).  Subsequently, the differences between data behaviour and the functional 
form of Eq.(7) exhibit themselves as correlated noise. 

4 Conclusion  

The new theoretical developments show that DSD is equivalent to LSE, MLE and 
Kalman filter approach for stat/parameter estimation under certain conditions.  



The advantage of DSD is that it is both a point and interval estimator whereas the 
other estimators are only point estimators.  In addition, the DSD yields the 
probability distributions of the estimated quantities over their respective intervals 
which are useful information for risk informed regulation and risk monitoring of 
nuclear power plants. 
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Abstract 

 
The DSD (Dynamic System Doctor) is system independent, 
state/parameter estimation software that can be used for 
both point and interval estimation.  The DSD also yields 
useful information for risk informed regulation and risk 
monitoring of nuclear power plants. The relationship of 
DSD to some conventional estimation techniques is 
described and illustrated using a linearized model for the 
on-line calibration of the constant temperature power 
sensor, recently proposed for direct core power density 
distribution measurement in Generation IV reactors. 

1 Introduction 

The DSD (Dynamic System Doctor) is system independent, state/parameter 
estimation software [1]. The DSD uses a system representation scheme based on 
the transition probabilities between user specified computational cells that 
partition the system state space (cell-to-cell mapping).  These transition 
probabilities are obtained from the user supplied system model. The theoretical 
basis of the DSD and the current DSD algorithm are described in a companion 
paper [2]. The main advantage of the DSD over conventional estimators is that 
DSD is both a point and an interval estimator. In addition, the DSD yields the 
probability distribution of the system variables/parameters within the estimated 
bounds which provides a probabilistic measure to rank the likelihood of system 
faults in view of modeling uncertainties and/or signal noise. Such information is 
particularly useful for risk informed regulation and risk monitoring of nuclear 
power plants.  
 

The current DSD algorithm is based on the assumptions that: a) the 
measurement noise is uniformly distributed, and, b) the measured variables are 
part of the state variable vector.  Recent theoretical developments [3] have 
extended the applicability range of DSD to arbitrarily distributed (but known) 
signal noise and modeling uncertainties and arbitrary observers.  The new 
theoretical developments have also provided the framework which clarifies the 
previously unexplained relationship between DSD and conventional 
state/parameter estimation techniques.  The paper describes and illustrates the 
relationship of DSD to the generalized maximum likelihood estimator (MLE), 
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least squares estimator (LSE) and the Kalman filter approach.  

2 Overview of the Recent Developments 

The extended DSD algorithm accepts system equations of the form 
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kx   state vector at time step τk ( ,...,,k 210= ) 
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kw   measurement uncertainty 

x~  a L - dimensional rule that maps onto (such as by the integration 
of a set of ordinary differential equations) 
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The estimation process takes place in the discretized state/parameter space 
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range of interest )L,...,l(bxa lll 1=≤≤  in the state/parameter space in a 
similar manner to those used by finite difference and finite element methods.   If 
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where )( 1 kkg jj + is the probability that the system will move from cell to 

cell during
kj

1+kj ττ )k(tk 1+<≤ .  It can be also shown that [3]: 
 
1. Eqs.(5) and (6) constitute a recursive Bayesian estimator (the original DSD 

algorithm is based on the Chapman-Kolmogorov equation), 
2.  if denotes the actual cell the system is in at time k,sj τkt = and 

)( 1 kkg jj + )( 1, kksg jj +< for all 1+kj ≠ 1, +ksj , )( 11 ++ kkp yj converges 

to the correct cell irrespective of the initial distribution used, and, 1, +ksj
3. if 

• for all 0=kv L,,,k 210= , 

• the probability )|(p kk yx  is uniform over each cell , kj
• ,  kk )( xxh =
• the integrals in Eq.(6) are approximated by a quadrature scheme, 

 
 Eqs.(5) and (6) reduce to the current DSD algorithm [2]. 
 
The )(p kk yj from Eq.(5) can be used to find all the statistical properties of the 
variables to be estimated at times τkt = , including expected values, standard 
deviations and credibility intervals.  Item 3 above indicates the limitations of the 
current DSD algorithm with respect to Eqs.(5) and (6).  Item 1 implies that [3] 
 

1. For constant )0,1,( L== kk θx , the mode of )(p kyθ yields the 

maximum likelihood estimate (MLE) of . θ



2. If in Eq.(1) and in Eq.(2) are both white Gaussian noise and Eq.(1) 
originates from a linear model for the evolution of , then the mean and 
covariance of 
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)( kkp yx obtained from Eq.(6) are equivalent to those 
obtained from a Kalman filter. 

3. The mean of )(p kyθ is also the least-squares estimate (LSE) of . θ
 
These implications are illustrated below using a linearized version of the model in 
[2] for the on-line calibration of the constant temperature power sensor (CTPS), 
proposed for direct core power density distribution measurement in Generation 4 
reactors. 

3 Implementation and Results 

The CTPS [2] can directly measure the local nuclear energy deposition and heat 
transfer rate. This design concept is based on the idea of adding heat through 
resistive dissipation of input electrical energy to a small mass of actual reactor 
fuel pellet analogue which constitutes the sensor core (Node 2). The core is 
surrounded by ceramacast, which is an alumina based ceramic thermal insulator 
(Node 1).  In Mode 1 operation, Node 2 is kept at constant temperature T2 by 
providing the exact amount of input electrical energy (in kW) through a 

feedback control loop irrespective of the nuclear energy (in kW) generated in 
Node 2. At steady state [2] 
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where Ti is the Node i (i=1,2) temperature (K), is the temperature of the 

surrounding coolant, (in K/kW) is the contact resistance between Node 1 and 

Node 2 and  (in K/kW) is the contact resistance between Node 1 and the 
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For this study, the data with k=1,…,250 were generated using a finite element 

CTPS model
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 [4]. The noise in Eq.(2) was assumed to be Gaussian noise with 

mean 0 and the variance was calculated by the sample variance of which was 
found to be 0.1.   
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Table 1 below summarizes the results of the comparison of DSD with LSE, MLE 
and Kalman filters. 
 

Parameter/Estimator 
1̂θ  2θ̂  3̂θ  4θ̂  

LSE 5.4854 0.2833 19.6994 2.7906 
MLE 5.4825 0.2831 19.7017 2.7897 
Kalman Filter 6.9525 0.3464 18.4278 3.2104 
DSD (Mode)1 5.4326 0.2798 19.6685 2.7865 
DSD (Mean)2 5.4663 0.2865 19.7247 2.7978 

1For comparison to LSE and MLE 2For comparison to Kalman Filter 

Table 1. Comparison of the Results for Different Estimators  

 
Table 1 shows that there is good agreement between DSD, LSE and MLE results, 
as expected.  In general, the differences between the DSD, LSE and MLE are 
small (within 0.1% to 1.2%).  The larger differences between the Kalman filter 
and other estimator results originate from the white Gaussian noise requirement 
of the Kalman filter.   The data generated for the estimation process using the 
finite difference model of [4] do not necessarily conform to the functional form of 
Eq.(7).  Subsequently, the differences between data behaviour and the functional 
form of Eq.(7) exhibit themselves as correlated noise. 

4 Conclusion  

The new theoretical developments show that DSD is equivalent to LSE, MLE and 
Kalman filter approach for stat/parameter estimation under certain conditions.  



The advantage of DSD is that it is both a point and interval estimator whereas the 
other estimators are only point estimators.  In addition, the DSD yields the 
probability distributions of the estimated quantities over their respective intervals 
which are useful information for risk informed regulation and risk monitoring of 
nuclear power plants. 
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INTRODUCTION 
 

Different techniques have been developed and 
used to predict the flux/power density between 
measurement points, namely, using cubic splines to 
interpolate between measured data [1], fittings by 
modal expansions [2, 3], artificial neural networks 
[4], and, finally, least-square fittings [5].  Also, 
there have been few attempts to directly 
incorporate the measurement uncertainty into the 
flux/power shape reconstruction process [6-9].  

Recent work [8,9] has described such a one-
dimensional (1-D) reconstruction procedure which 
leads to computational simplicity when there are a 
large number of observations.  This procedure can 
be also used with a wide range of fitting schemes, 
from simple linear interpolation between data 
points to model based fittings, as well as a variety 
of probability distribution functions (pdfs) to 
represent the measurement uncertainty. 
      The objective of this paper is to demonstrate 
that the 1-D procedures of [8] and [9] can be used 
for three dimensional (3-D) power/flux shape 
construction by decomposing the reconstruction 
process into three 1-D problems locally.  
 
PROCEDURE 
 
    Consider a cube whose vertices are detector 
locations and which also contains another detector 
at its center.  We will assume that thermal neutron 
flux/power density satisfies the Helmholtz equation 
within the cube, i.e. 
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within the cube and 
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for 1 ½ group diffusion theory representation of the 
flux/power distribution under uniform material 
composition within the cube (e.g. through a 
homogenization process).  The symbols in Eq.(2) 
have their conventional definitions.  The solution 
of Eq.(1) using separation of variables yields 
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where iφ is the measured flux/power density at 
detector location i = 1,…,9 and xi, yi, zi are the 
coordinates of the measurement point i.  The other 
quantities in Eq.(3) are arbitrary constants.  These 
constants are determined from the system of 9 non-
linear equations given by Eq(3) using non-linear 
least squares estimation and the mean values of the 
measured pdfs for iφ (e.g. by taking repeated 
measurements for steady-state operation or for 
slow transients or using the procedure described in 
[10]).  Once these constants are determined, then 
two methods can be used to move to the 
probabilistic domain and interpolate between the 
measured pdfs.  Method 1 [8] assumes that the 
expected value )(sϕ  of the flux/power at a point 

ds ≤≤0  between two detector locations i and j 
satisfies again the Helmholtz equation  

0)()( 22 =+∇ sBs ϕϕ    (4) 

with iφ and jφ as boundary conditions and: a) B = 
BBx, By ,Bz if the detectors are placed on the x-, y-and 
z-edges of the cube, respectively, 
b) , and  if 
the detectors are placed on the diagonals of the x-y, 
x-z and y-z surfaces of the cube, respectively, and, 
c)  if the detectors are placed on 
the diametrically opposite vertices of the cube.  For 
Eq.(4) with 
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be shown that [8] 
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with w = s/d (w=0 at location i), where )|( wp φ is 
the pdf of φ  at w. Method 2 [9] imposes the 
additional condition  
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for all w, where iφ , jφ and φ denote the 
corresponding quantities in Eq.(5) for specified 

 .10 ≤≤ F
 

IMPLEMENTATION 
 
      The hypothetical assembly considered for 
illustration was a 300X300X300 cm homogeneous 
cube, placed in vacuum and with diffusion 
parameters as given in [8].  The overall flux 
distribution in the cube was determined 
analytically from Eqs.(1) and (2).  Then the iφ  in 
Eq.(3) were determined from this flux distribution 
for a 30X30X30 cm virtual test cube randomly 
placed in the assembly. 
      The comparison of the overall flux/power 
distribution (S1) with the flux/power distribution 
obtained from the solution of Eq.(3) (S2) was 
carried out for a fixed plane 10cm above the mid x-
y plane.  Figure 1 below shows that the maximum 
relative error (S1-S2)/S1 did not exceed 0.8%.   

 
 

 

Fig.1: Relative error (S1-S2)/S1 10cm above the mid x-y 
plane of the virtual test cube 

Figure 2(a) shows comparison of the solutions 
obtained from Eqs.(3) and (4) for the x-y diagonal 
on  the same plane and indicates good agreement 
(less than 2.5%) difference between the 3-D and 1-
D solutions. 

     For the )|( wp φ  , it was assumed that the  
and 

)(φip
)(φjp  in Eq.(5) are Gaussian with means equal 

to iφ  and , respectively, and 1% standard 
deviation.  Figures 2(b) and 2(c), respectively, 
show the 

jφ

)|( wp φ obtained from Method 1 and 
Method 2.  The bimodal nature of the pdf obtained 
from Method 1 in Fig.2(b) and the low probability 
region between detector locations  reflects the large 
uncertainty in the flux value due to lack of 

observation in this region.  Note that expected 
value in Fig.2 (b) is still very similar to the local 
3D solution shown in Fig.2 (a).   
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Fig.2: Flux comparison for the x-y diagonal direction (a) 

and corresponding )|( wp φ  obtained from Method 
1 (b) and Method 2 (c) 

 
The difference between Fig.2(b) and 2(c) results is 
due to the condition imposed by Eq.(6) which 
assumes that the cumulative probability 
distribution of flux/power density is conserved 
between detector locations.  Another interpretation 



of this assumption is that the uncertainty in 
flux/power at the detector locations also propagates 
according to Eq.(4) between detector locations.  
The assumption is justified if the uncertainty 
originates from possible flux/power fluctuations 
but not if it originates from electronic noise in the 
detection hardware. 
 
CONCLUSION 

 
This study shows that uncertainty on the 
flux/power density between detector locations in a 
3-D problem can be quantified by: 

• locally decomposing in flux/power density 
construction into three 1-D problems, and, 

• using Method 1 or Method 2. 

It is not clear at this point in time whether Method 
1 or 2 should be the method of choice.  Work is 
underway to study Methods 1 and 2 with simulated 
data obtained from actual production codes. 
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Abstract. A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the 
local power deposition rate in nuclear reactor cores proposed for space thermal propulsion.  Such a capability reduces 
the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine.  The 
CTPS operation is sensitive to the changes in the local thermal conditions.  A procedure is described for the automatic 
on-line calibration of the sensor through estimation of changes in thermal .conditions. 

INTRODUCTION  

Substantial effort has been spent since the 1950s on the design and testing of highly enriched uranium fuelled, 
graphite moderated reactor cores for nuclear thermal space propulsion. Due to their compact size and high operating 
temperatures, very strong coupling exists between the nuclear and thermal hydraulic behavior of such cores (Aithal, 
Aldemir, and Vafai, 1994).  Accurate modeling of this coupling in both ground testing of the cores and in-flight 
operation is usually difficult because of the uncertainties in local material compositions, coolant flow paths, reactor 
operation history and possibly nuclear data.  On the other hand, accurate prediction of core power distribution is 
important to determine the local power peaking factors and hence the operating limits of the nuclear engine.  A 
recently proposed constant temperature power sensor (CTPS) (Radcliff, Miller, and Kauffman, 2000a) has the 
capability to measure local core power directly.  While the measurement process is sensitive to local temperature 
and flow variations, such variations can be accounted for using the estimation procedure DSD (Dynamic System 
Doctor) (Wang, Chen, and Aldemir, 2002).   This paper describes how the CTPS-DSD combination can be applied 
to space reactors for accurate prediction of core power distribution.  Three important features of the CTPS-DSD 
combination for space reactors are the following: 

• The sensor core can blend with the fuel matrix of a number of reactor concepts proposed for nuclear 
thermal propulsion, such as the particle bed concept (Powell et al., 1991) or cermet fuel (Kruger, 1991), 
reducing material compatibility problems at high temperatures and high temperature gradients. 

• The measurement procedure is self-calibrating.  This feature is particularly important for space reactors 
where sensor calibration though external means may not be feasible.  

• The measurement process yields point estimates for the power densities as well as credibility intervals for 
these point estimates so that the uncertainty in the estimated quantities is an automatic output of the 
estimation process.  Such data provide useful inputs for pre-launch determination mission reliability and for decision 
making during the mission. 

THE SENSOR 

As designed for testing purposes, the sensor consists of a fuel pellet surrounded by electrical heating resistance wire 
(see Fig.1). (Radcliff, Miller, and Kauffman, 2000a) The pellet and the wire form the sensor core (Node 2).  The 
core is surrounded by ceramacast which is an alumina based ceramic thermal insulator (Node 1).  Both the sensor 
core and the insulator are coated with thin layers of copper.  A feedback control loop is used to provide the exact 
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amount of input electrical energy qe needed to keep Node 2 temperature T2 constant in time t, well above the 
ambient temperature T0, regardless of nuclear energy deposited (qn). The CTPS is ideally suited for use in the 
proposed nuclear thermal space systems in which the sensors need to be an integral part of the core for the mission 
duration and where sensor calibration though external means may not be feasible. 

The sensor operation involves switching between the feedback-controlled constant-temperature mode (Mode 1) and 
the dynamic temperature decay mode following the opening of the feedback loop (Mode 2) as described by 
(Burghelea and Aldemir, 2003; Liu, Miller, Li,  and Radcliff, 2002;   Radcliff, Miller, and Kauffman,  2000a) 
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Equation (1) has been validated against the results from a finite element code (Liu, Miller, Li, and Radcliff, 2002). 

 

FIGURE 1. The Constant Temperature Power Sensor. 

At steady-state Eq.(1) yields: 
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which corresponds to the constant temperature mode (i.e. Mode 1) operation of the CTPS.  Under linearity 
assumptions Eq.(1) yields for Mode 2 
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where 0θ through 4θ are known functions of 0T , )0(2T  and the parameters of Eq.(1).  In the implementation, C1, C2, 

R1 in Eq.(1) are assumed to be known.  The estimation of nq consists of the following steps: 

1. In Mode 1, measure qe , T1(0) and T2(0) 

2. Switch to Mode 2 and measure T1(t), T2(t)  

3. Assume a value nq′ for nuclear energy deposition rate. 

4. Estimate T0 and R2 from Eq.(1) or 0θ through 4θ  from Eq.(3) using Step 1 through Step 3 results and the 
estimation software described in the next section. Once 0θ through 4θ are estimated, T0 and R2 can be 
determined from these estimates and given C1, C2 and R1 (Radcliff, Miller, and Kauffman, 2000b). 

5. Determine qn from Eq.(2) using Step 4 results. 

6. Compare nq from Step 5 to its Step 3 value nq′ . 

7. If 01.0/)( <′− nnn qqq stop (convergence), otherwise go to Step 3 with nn qq =′ . 

Steps 1 though 4 account for changes in the local temperature and flow variations which affect T0 and R2 in Eq.(1) 
and hence are equivalent to the on-line calibration of the sensor 

THE ESTIMATON SOFTWARE 

The DSD is based on the representation of the system dynamics in terms of transition probabilities between user 
specified cells that partition the system parameter/state space during user specified time intervals ττ )1( +≤≤ ktk  (k 
= 0, 1, 2, ...), such as between data sampling times. These cells are obtained by partitioning the range of interest 

lll bxa ≤≤  for the state variable ),,1( Llxl L=  into 1,,1 −= ll Jj L intervals 1,, 1 +<≤
ljljl axa and the range of 

interest mmm ba
~~ ≤≤α  for the parameter ),,1( Mmm L=α   into 1,,1 −= mm Nn L intervals 1,,

~~
+<≤

mm nmnm axa , in 
a manner similar to those used in finite difference or finite difference methods.  The partitionings are provided as 
user input to DSD. The DSD recursively computes the probability )|,( kk Jnjp that the state variables (e.g. T1(t), 
T2(t)) are in cell j ( j = 1,...J=J1J2…JL) and the unknown parameters (e.g. R2, T0) are in cell n (n = 1,...,N=N1N1…NM) 
during ττ )1( +≤≤ ktk , given that the possible set of cells the state variables can be in at this time is Jk (as observed 
from the monitored data), from 
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 is the transition probability from state variable cell j′  to state variable cell j  during the period 
ττ )1( +≤≤ ktk while the system parameters remain within cell n′ . The quantity ),,(~ τn′′ αxx in Eq.(5) indicates the 

arrival point in the state-space at time τ)1( +k of the trajectory that has departed at time τk from point x′ in 
cell j′ with the system parameters at n′α within cell n′ , as determined from a user provided system model (e.g. 

Eq.(1)).  In applications, the ),|( njjg ′ are usually approximated using a j~′  -point quadrature scheme, i.e. 

1) at time τk , selecting randomly or otherwise (e.g. equidistant) j ′~ starting points from cell j′  for a given n,  

2) from the user provided system model, find the number j~  of trajectories that arrive within cell j at 

τ)1( += kt  (e.g. by integrating Eq.(1) over ττ )1( +≤≤ ktk for each of the j ′~ initial conditions), and,  

3) letting jjnjjg ~/~),|( ′=′ .  

A graphical illustration of this process, along with an example partitioning scheme, is shown in Fig.2 for a second 
order system where only one state variable is monitored. Some sufficient conditions for the convergence of Eq.(4) 
are given in (Wang and Aldemir, 1999)  An important advantage of DSD is that it yields point estimates of the 
system variables to be determined as well as credibility intervals for these point estimates (i.e. state variable and 
parameter ranges inferred from j and n with )0),( ≠njpk  so that the uncertainty in the estimated quantities is an 
automatic output of the estimation process.  

IMPLEMENTATION 

The example nuclear thermal propulsion reactor concept chosen to illustrate the utilization of the CTPS/DSD 
combination is the particle bed reactor (PBR) concept used in (Aithal, Aldemir, and Vafai, 1994).  Figures 3 and 4, 
respectively, show a horizontal cross section of the reactor core and an axial cross section of a PBR fuel element.  
The PBR uses fuel in the form of small diameter particles (100-500 μm) which consist of a highly enriched uranium 
kernel surrounded by multiple layers of pyrographite and sometimes additional ZrC or SiC layers.  The fuel particles 
are held between two porous annuli ("frits") to form a fuel element (Fig.4) and the fuel elements are embedded in 
the moderator block in concentric rings to form the core (Fig.3).  The moderator block is surrounded by a pressure 
vessel, reflected radially and axially for neutron economy.  Hydrogen pumped from the propellant tank flows 
through an annulus located between the radial reflector and the pressure vessel before entering the core.  After 



entering the core, the coolant first passes through the outer cold frit (Zircaloy 2), then directly over the fuel particles 
and finally through the inner hot frit (ZrC) into the outlet plenum to be ejected through a nozzle to develop thrust.  
Partial reactivity control is achieved by varying the hydrogen mass flow rate in the annulus. 

 

25.04/1)2,22|29(,5.04/2)1,22|29(,0)2,29|58(,75.04/3)1,29|58( ======= gggg  

FIGURE 2. An example partitioning scheme and the illustration of the approximation of g( j| j’, n) for a hypothetical dynamical 
system with two state variables x1, x2 and one parameterα . The system is in cells 22,29,58,602)11(9 =+−= jjj at 

times ττττ )3(,)2(,)1(, +++ kkkk respectively.  If only x1 is monitored, the set of possible cells the system can be in are Jk = 
Jk+1 = { j = 55, . . . , 63}, Jk+2 = { j = 37,…,45} and Jk+3 = { j = 10, . . . , 18} (adapted from Dinca, 1997). 
 

For the PBR application, the CTPS is assumed to be imbedded in the fuel element between the hot and cold frit with 
sensor core (i.e. Node 2 in Fig.1) consisting of the same type of particles used in the fuel elements.  For the purposes 
of this illustration, the sensor heater wire and the Node 1 and 2 metal coatings were assumed to be tungsten.  Table 1 
shows the example power and temperature data used for the illustration.  The data in Table 1 have been generated 
with the MCNP (Breimeister, 1989) and HEATING-5 (Turner, Elrod, and Siman-Tov, 1977) codes.  Figure 5 shows 
the results of the estimation using DSD, assuming that the monitored variables are )(),( 21 tTtT and )(tqe .  The 
bars in Fig.5 indicate 100% credibility intervals.  The data for the estimation process was simulated using Eq.(1) 
with 1% noise in the monitored variables.   Figure 5 indicates that the credibility intervals contain the actual (i.e. 
simulated data) and also quantify the uncertainty in the estimation process. 



 

 

FIGURE 3.  The Particle Bed Reactor Core 
(Aithal, Aldemir, and Vafai, 1994). 

FIGURE 4.  A Particle Bed Reactor Fuel Element (Aithal, Aldemir, 
and Vafai, 1994). 

 
 
 
TABLE 1. Example Power and Temperature Data for the Particle Bed Reactor (Aithal, Aldemir, and Vafai, 1994). 
 

Distance from 
Coolant 

Inlet  (cm) 

Power Density qn 
(W/cm3) 

Solid Temperature 
T1(0)=T2(0) (K) 

Coolant Temperature 
(K) 

5 960 480 455 
10 1440 635 610 
20 1888 1230 1208 
30 2040 1580 1560 
40 1888 2104 2085 
50 1456 2521 2503 
55 976 2968 2950 

 

CONCLUSION 

Obtaining accurate power profiles in both ground testing and in-flight operation or reactor cores for nuclear thermal 
propulsion is usually difficult because the strong neutronic-thermal hydraulic coupling of the cores and uncertainties 
in local material compositions, coolant flow paths, reactor operation history and possibly nuclear data. This study 
shows that using CTPS modeled through Eq.(1) and DSD may be a feasible option to obtain direct estimates of the 
power distribution as well as quantifying the uncertainty in the estimated power profiles.  The advantages of the 
CTPS-DSD combination with respect to space reactors are: a) it reduces material compatibility problems at high 



temperatures and high temperature gradients, b) the measurement procedure is self-calibrating, and, c) it provides 
useful inputs for pre-launch determination mission reliability and for decision making during the mission. 

 

 

FIGURE 5. Estimated and Actual Values of the Local Power for the Data in Table 1. 

 

NOMENCLATURE 

Ci = thermal capacitance of Node i (i =1,2) (J/m3K) 
g(j,n|j’,n’) = transition probability from cell pair (j’,n’ ) to cell pair (j,n ) during kτ <t<(k+1)τ (k=0,1,2,..) 
h  = sensor height (m) 
k  

= 
thermal conductivity of the contact layer between Node 1 and 2 (W/m.K) 

pk(j,n)  = probability that the system variables are in cell j (j=1,…,J) and the system parameters are in cell n 
(n=1,…,N) at time t=kτ 

qn  = nuclear energy deposition rate (W/m3) 
qe  = electrical energy deposition rate (W/m3) 
ri = inner radius of the layer between Node 1 and  Node 2(m) 
r0  = outer radius of the layer between Node 1 and Node 2 (m) 
R1 = thermal resistance between Node 1 and 2 (K.m3/W) 
R2 = thermal resistance between Node 1 and the coolant (K.m3/W) 
t    = time (s) 
Ti  = temperature of Node i (i =1,2) (K) 
T0  = coolant temperature (K) 
xl   = system state variable (l=1,…,L) 
αm = system parameter (m=1,…,M) 

* actual value 

|   estimated value 
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ABSTRACT 

This paper presents a theoretical approach combining the 1 ½ group diffusion 
theory with statistical techniques to estimate the flux/power shape probability distribution 
based on statistical interpolation between measured data. Two methods for estimating the 
statistical properties of power density/flux between measurement points are described 
and illustrated on a hypothetical steady state one-dimensional reactor. Results are 
reported using simulated measured data from 15 hypothetical power sensors placed 
within the core. 

1.   INTRODUCTION 

In nuclear reactors, it is important to have knowledge of the power/flux shape at 
all times during the reactor lifetime. This information is, for example, used for 
determining fuel burnup history and is strictly necessary for ensuring safe operation of 
the reactor. Currently, in power reactors, the flux/power map is reconstructed based on 
the signals from out of core or in-core detectors, using diffusion codes and employing 
different methods of flux reconstruction, such as: piecewise cubic splines to interpolate 
between measured data (Han, 1999), fittings based on modal expansions (Pomerantz, 
2002; Fu, 1997), artificial neural networks (Lee, 2002) and least-squares fittings (Lee, 
2003). 
 

There have been relatively few studies that explicitly consider the probability 
distribution of the measurement uncertainty in the flux/power shape construction process 
(Bryson, 1993). The proposed approaches are limited to linear relationships between 
flux/power and location, often requiring long computation times and large memory 
(Bryson, 1993). 

The objective of this research is to develop an approach that can be used to obtain 
the probability distribution function (pdf) of the flux/power distribution at all points in 
the reactor using monitored data from in-core power detectors. The proposed approach 
yields all the statistical properties of the flux/power distribution in the core, including 
expected values and credibility intervals.  Such data could be useful for risk-informed 
regulatory process and may allow reduction in operational thermal margins (and 
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subsequently increasing the power extracted from the core) in view of the reduced 
uncertainty in the estimated local power densities.   

Two possible methods of obtaining the pdfs between detectors locations are 
investigated in this study, both combining the diffusion theory with statistical techniques.  

Section 2 describes the theoretical basis.  Application on a hypothetical steady 
state one-dimensional reactor is presented in Section 3. A discussion of the results is 
given in Section 4. 

2. METHODS 

The two methods considered in this study differ in the assumptions made:  

• Method 1 assumes that, at every point in the reactor, the expected value of the 
power density/flux follows the diffusion theory. 

• Method 2 imposes the additional constraint that the power density/flux can 
achieve all possible values at any specified point in the reactor. 

2.1  Method 1 

Consider a one–dimensional steady state reactor as described by 1 ½ group 
diffusion theory: 
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where  is the measured power density/flux at x = xnh n (or y = 1), is the measured 
power density/flux at x = x

1+nh
n+1 (or y = 0) and 
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Imposing the condition that the expected values of 1φ  and 2φ  satisfy Eq.(1), the pdf of 
the power density/flux, , for given )|( yhp nphp =)1|( , 1)0|( += nphp and at a given 0 
< y < 1  can be written as  
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It can be seen from Eq.(6) that the resulting inferred pdf of power density/flux at location 
xn< x < xn+1 is a weighted sum of the pdfs of power density/flux at locations xn and xn+1. 
This result may be extended for the multigroup case, where energy discriminant detectors 
need to be used to determine the boundary conditions. 

2.2  Method 2 

Integration of Eq.(6) over all possible values of h yields 
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where F(h|y) is the cumulative distribution function (Cdf) for power density/flux at a 
specified y.  It can be seen from Eq.(7) that, for all y, 1)|( =∞ yF  only for small β , and 
not for all β values as would be intuitively expected. Method 2 is a modification of the 
procedure proposed by Read (1999) to search for neutral and charged Higgs bosons in 
electron-positron collisions.  Adapted to the problem under consideration in this study, it 
assumes that power density/flux varies linearly between detector locations and imposes 
the condition that  at all y.  The procedure also requires that the Cdfs 1)|( =∞ yF

( )∫=≡
h

nn dhhphFhF
0

'')()1|(   and   (8) ( )∫ ++ =≡
h

nn dhhphFhF
0 11 '')()0|(

 (3) 



 

at the two consecutive detector locations xn and xn+1, respectively, have the same value F 
as well as at all points between the detector locations, i.e. 

Fn (hn) = Fn+1 (hn+1) = F(h)  = F (9) 

Given and , the can then be constructed using the algorithm shown 
in Fig.1 

( )hpn ( )hpn 1+ )|( yhp
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Fig.1: Method 2 Flowchart 

3.  EXAMPLE RESU

 one-dimensional reactor of length 2L = 300 cm with material properties given 
in Table 1 was considered. A gray control rod of thickness 2 cm and transmissivity 0.9 
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was assumed to be inserted in the reactor at x = 50 cm away from the reactor midplane.  
Data from detectors placed within the core at every 10 cm starting from the reactor 
midplane were simulated by solving Eqs.(1) and (2) within Lx ≤≤0  and with 

 0
)(2)(1 ==

dx
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dx

xd φφ
 

00 == xx
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(10) 
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where for criticality we must have B = 0.0242 cm-1. 

Table 1  Group constants for the example reactor 
 

Group 
Group constant 

1 2 
(cm-1) 0.008476 0.18514 fΣν
(cm-1) 0.01207 0.1210 aΣ

D (cm) 1.2627 0.3543 
(cm-1) 0.0141 - 21 >−Σ

 
The monitored data from the detectors were assumed to be normally distributed 

with the expected value satisfying Eq.(11) and with a 1% standard deviation. Figure 2(a
shows the probability distributions and the e
Figure 2(b) shows the s e 

0 <
Eq.(4) was obtained through homogenization.

It was noted that although the expected values predicted by both methods 
matched the simulated data well (see Fig.2), Method 1 may lead to a bimodal distribution 
and that the predicted expected value between detector locations may fall in a region of 
low probability.  Figures 3 and 4 show the pdfs of reactor power at x = 43 cm and x = 85 
cm, respectively. The bimodal shape predicted by Method 1 in Fig.3 has also been 
observed in other studies (Bursal, 1996) and is due to the fact that and are 
being concentrated in different regions of the state space. The unimodal shape of p(h|y) is 
due to the linearity assumption of Method 2.  Figure 4 shows that if the variation in the 
power density/flux is small with distance (e.g. at x = 85 cm as can be seen from Fig.2) 

) 
xpected values as obtained from Method 1. 

ame information, but as obtained by applying Method 2. In th
region 4  x < 60 cm were the existence of a control rod is assumed, the β coefficient in 

 

( )hpn ( )hpn 1+  

 (5) 



 

 (6) 

and subsequently h(y) is close to linear, then p(h|y) obtained from both Method 1 and 
Method 2 are similar.   

 

 

(a)       (b) 

Fig. 2 Relative power distribution h(x)/h(0)
M

Fig.3  
         at location x = 43 cm 

              Fig. 4  Probability distribution function 
                            at location x = 85 cm 

 for the example reactor: a) Method 1, b) 
ethod 2 

Method 2

Probability distribution function  

 

assuming steady state behavior and 1 ½ group diffusion theory. Such data may be useful 

4.  CONCLUSIONS 

Two methods for estimating the statistical properties of power density/flux 
between measurement points are described and illustrated in a 1-dimensional reactor 
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for risk informed regulation, as well as for establishing meaningful margins on 
operational power levels and setpoints.  

e study show the following: 

 Method 2 estimate the expected value of the power 
s well. 

 a bimodal distribution with the uncertainty on the expected 
e midpoint between detector locations.   

3. odal distribution with the mode of the 
d value. 

idpoint between detector locations is the one 
 2 is not counter-intuitive.  However, it leads to 

ifficulties from a practical viewpoint since credibility intervals for the expected value of 
y/flux in reactor regions away from the detector locations cannot be obtained 

in a meaningful manner.  While Method 2 does not have this problem, it is not clear how 
ffects the results.  One conclusion that arises from these results 

d 1 and Method 2 results as a function of xn allows the 
optimal choice of detector locations. 

NOMENCLATURE 

D 
ν  number of neutrons emitted per fission  

The results of th

1. Both Method 1 and
density/flux between measurement point

2. Method 1 may lead to
value being very large at th

Method 2 always leads to a unim
distribution close to the expecte

Considering the fact that the m
furthest away from the detectors, Result
d
power densit

the linearity assumption a
is that comparison of Metho

 diffusion coefficient 

)(xiφ  neutron flux 
 fission cross section Σf(x) 

h 
p 
F ve distribution function 
 

1 roup 
2 thermal neutrons group 

REFE

F. H. Bursal, 1996. On Interpolating between Probability Distributions, Applied 
Mathematics and Computation, 77, 213-244.  

 Σa(x) absorption cross-sections 
)( group transfer cross-section 21 x→Σ

)(xbΣ    reactivity control cross section 
 power density 
 probability distribution function 
 cumulati

Subscripts 

fast neutrons g
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1. INTRODUCTION 

 

A new in-core reactor power sensor has been under development at The Ohio State University since 1996. 

This feedback-controlled calorimetric instrument, which is referred to as a constant-temperature power 

sensor (CTPS), is capable of direct measurement of nuclear energy deposition [1]. The CTPS is ideally 

suited for use in the proposed Generation IV power systems in which the sensors become an integral part of 

the fuel for the core lifetime. Previous work [2] to determine the local nuclear energy deposition rate 

with CTPS has used: a) an algebraic model obtained from the solution of the linearized differential 

equations describing the CTPS operation, and, b)  the software package DSD [3] to estimate the operation 

dependent model parameters.  The results of [2] indicated that the model is very sensitive to model and data 

uncertainties. This study directly uses the non-linear differential equations describing the CTPS behavior 

and DSD to estimate the operation dependent model parameters as well . Sections 2 and 3, respectively, 

describe the sensor model and give an overview of the estimation procedure. Section 4 presents the 

implementation and results. 

nq

nq

 

2. THE CTPS  

 

The CTPS consists of a UO2 pellet surrounded by electrical heating resistance wire.  The pellet and the wire 

form the sensor core (Node 2).  The core is surrounded by ceramacast which is an alumina based ceramic 

thermal insulator (Node 1).  Both the sensor core and the insulator are coated with thin layers of copper.  A 

feedback control loop is used to provide the exact amount of input electrical energy needed to keep 

Node 2 temperature T

eq

2 constant in time (t), well above the ambient temperature T0, regardless of . The 

sensor operation involves switching between the feedback-controlled constant-temperature mode and the 

dynamic temperature decay mode following the opening of the feedback loop as described by 

nq
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where kC  , ro (0.575 mm), ri ( 0.3mm) are, respectively,  the thermal conductivity, outer and inner radius of 

the copper layer between Node 1 and Node 2, hs is the height of the sensor, T2 is Node 2 temperature, and 

C1 and C2 are,  respectively, thermal capacitances of Node 1 and Node 2.  Other notation in Eq.(1) are as 

defined previously.  The model described by Eq(1) has been validated against a finite element code [3].  At 

steady-state Eq.(1) yields 

 

 ( 01
2

1 TT
R

qq en −=+ )         (2) 

which corresponds to the constant temperature mode operation of CTPS. 

 

3. AN OVERVIEW OF DSD [4] 

 

The DSD is based on the representation of the system dynamics in terms of transition probabilities between 

user specified cells that partition the system parameter/state space during user specified time intervals. The 

DSD recursively computes the probability that the state variables (e.g. T)J|n,j(p kk 1(t), T2(t)) are in 

cell j ( j = 1,...,J) and the unknown parameters (e.g. R2, T0) are in cell n (n = 1,...,N) during the data-

sampling time period ττ )k(tk 1+≤≤ k (k = 0, 1, 2, ...), given that the possible set of cells the state 

variables can be in at this time is Jk (as observed from the monitored data), from 
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where  is the transition probability from state variable cell )n,j|j(g ′ j′  to state variable cell j  during 

the period ττ )k( 1+≤tk ≤ when the system parameters are within cell n. The  can be 

approximated by: 1) at time

)n,j|j(g ′

τk , selecting randomly or otherwise (e.g. equidistant) M ′ starting points from 



cell  for a given n, 2) using the given system model (e.g. Eq.(1)) to find the number M of trajectories 

that arrive within cell j at 

j′

τ)k(t 1+=  (e.g. by integrating Eq.(1) over ττ )k(t 1+k ≤≤ for each of 

the  = 1, 2, . . ,  m′ M ′ initial conditions), and, c) letting M/M)n,j|j(g ′=′ . A graphical illustration 

of this process is given in [5] and some sufficient conditions for the convergence of DSD are given in [6].   

nq τk=

n′ q

0<n nq

 

4. IMPLEMENTATION AND RESULTS 

 

In the implementation, C1, C2, R1 in Eq.(1) are assumed to be known.  T1, T2 and qe are assumed to be 

measured.  The estimation of for each data sampling time t (see Section 3) was carried out 

iteratively through the following steps: 1) Assume ; 2) Estimate Tnq

q

0 and R2 from Eq.(1); 3) Determine qn 

from Eq.(2) using Step 2 results; 4) Compare n  to its previous value q ; 5) If ( /)nn q′−  

stop (convergence), otherwise go to Step 2 with .  The T01.q 1(t) and T2(t) data for the estimation 

were generated from Eq.(1) with T0=700 K, T1(0)=721.095 K, T2(0)=782.538 K, C1=0.008041 J/K, 

C2=0.744024 J/K, R1=5.41 K/W, R2=1.85 K/W, qn=1.68 W qe=9.6766 W and superimposed 1%random 

noise on the observed data (i.e. T1 and T2 ).  The k as a function of TCu 2 was represented by a third order 

polynomial. Figure 1 shows the estimation results, as well as the partitioning scheme used with Eq.(3).  

Convergence on qn was obtained in 12 iterations on the average per data sampling interval.  The results 

indicate that the estimation scheme works well for both constant and time-varying ambient temperature T0.  

 

5. CONCLUSION 

  

The results of the study show that DSD be used with CTPS to estimate the local power density in nuclear 

reactor cores both for steady-state and transient conditions with noisy data. 
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Fig.1:  Estimation results (bars) for constant and time-varying T0: a) constant T0; b) qn for constant T0; c) 

time-varying T0; b) qn for time-varying T0.  Solid lines indicates the true values. 
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INTRODUCTION OVERVIEW OF DSD WITH RPS 
  
The DSD (Dynamic System Doctor) is dynamic 
system state/parameter estimation software [1] 
that can automatically account for modeling 
uncertainties/signal noise in the estimation 
process.  This capability is accomplished through 
the representation of system evolution in terms 
of probability of transitions within a user 
specified time interval τ  (e.g. data sampling 
interval) between sets of user defined 
parameter/state variable magnitude intervals (or 
cells) that partition the search space.  The DSD 
yields the probability that the 
parameters are in cell and the state variables 
are in cell at time

)j,n(kp
n

j τk=t .  Then  
can be used to determine the lower and upper 
bounds on the estimated values of state 
variables/parameters, as well as their probability 
distribution within these bounds.   

)j,n(kp

The RPS philosophy is to progressively 
eliminate the regions of the search space where 

through the on-line definition of 
the cells.  Figure 1 shows the DSD algorithm 
with RPS.  The DSD assumes that a system 
model is available which can be used the system 
location is state space at time 

0=)j,n(kp

τ)k(t 1+=  
),,k( 210= from the knowledge of its location 

at time τkt = and the known values of the 
system parameters. The algorithm consists of the 
following steps: 
 

Specify, respectively, the state variable and 
parameter ranges of interest, RPS stopping 
rules and monitored data uncertainty.  The 
parameter and state variable ranges of 
interest define the search space for the 
estimation process.  The RPS stopping rules 
define the smallest cell size that needs to be 
used for the estimation of the unmonitored 
state variables/parameters. The choice of 
such a cell is usually based on the accuracy 
level desired for the variables/parameters to 
be estimated. 

1. 

2. 

 
A potential limitation in the implementation of 
DSD is that excessively long run times and large 
memory requirements may result for large or 
rapidly evolving systems if the cell definitions 
are provided as fixed initial input. Recently a 
recursive partitioning scheme (RPS) for cell 
definitions was proposed that substantially 
reduces the estimation time and memory 
requirements [2]. This paper investigates the 
sensitivity of the RPS to the ranges of interest for 
the state variables/parameters to be estimated 
using the constant temperature power sensor 
(CTPS) [3]. The CTPS has been proposed for 
direct measurement of local power density in 
nuclear reactor cores and requires the on-line 
estimation of ambient conditions for reliable 
operation.   A practical implication of such a 
parametric search is the determination of the 
power range the CTPS can be operated in. 

Read data from the monitors at each time 
point τkt = ),,k( 210= . 
Define the intervals for the monitored 
variables so as to contain the variation/noise 
on the monitored data, centered on their 
median values.   

3. 

4. 

5. 

Define the intervals for the unmonitored 
variables and the parameters by bisecting 
each range of interest.  Along with the 
intervals defined in Step 3, these intervals 
form the cells that partition the search space. 
Input the initial probability distribution 

to be used to start the estimation 
process.  The is usually chosen as 
the uniform distribution, however, results of 
the estimation are not dependent on the 
choice of . 

)j,n(p0

)j,n(p0

)j,n(p0
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Determine the cell-to-cell transition 
probabilities  by: a) selecting 

points in cell  at time
)n,j|j(g ′′

j′J ′ τkt = , b) 
finding the number of arrival points J in cell 
j at time τ)k( 1+=

′

t from the system 
model, assuming that the system parameters 
remain in their cell n at time τk=

J
t , and, 

c) letting  . )n,j|j ′′ J=(g /′

6. Steps 2 through 8 are repeated until  
converges in the probability sense, i.e.  
are all zero except for the cells containing the 
actual system locations in the system state and 
parameter spaces It should be mentioned at this 
point that the algorithm may not converge for 
rapidly evolving systems during one data 
sampling interval

)j,n(pk

,n(pk )j

ττ )k(tk 1+<≤ .  However, 
even in this situation, previous work shows that 
the expected values of the parameters/state 
variables to be estimated are often found to be 
close to their actual values [4]. 

Find from )j,n(pk7. 

8. 

)j,n(kp
j n

)n,j|j(g)j,n(kp ′′−∑
′
∑
′

′′= 1  
 

If all , then subdivide each and 
go to Step 3. Otherwise, 
normalize by dividing it by the total 
probability of finding the system in the 
search space, increment the time index k and 
go to Step 2. The probability of finding the 
system in the search space is not necessarily 
1, because the system may leave the search 
space during 

0=)j,n(pk

)j,n(pk

ττ )k( 1+<tk ≤ depending on 
its location at τkt = . 

THE CTPS  
 
The CTPS consists of a UO2 pellet surrounded 
by electrical heating resistance wire.  The pellet 
and the wire form the sensor core (Node 2).  The 
core is surrounded by ceramacast which is an 
alumina based ceramic thermal insulator (Node 
1).  Both the sensor core and the insulator are 
coated with thin layers of copper.  A feedback 
control loop is used to provide the exact amount 
of input electrical energy  needed to keep 
Node 2 temperature T

eq
2 constant in time, well 

above the ambient temperature T0, regardless of 
. The sensor operation involves switching 

between the feedback-controlled constant-
temperature mode (Mode 1) and the dynamic 
temperature decay mode (Mode 2) following the 
opening of the feedback loop as shown below in 
Fig.2. 

nq

 

 

 

 Fig.1: DSD Algorithm with RPS Fig.2: CTPS Operation  



The quantities C1, C2 and R1 in Fig.2 are 
assumed to be known.  T1, T2 and qe are assumed 
to be measured. 
 
IMPLEMENTATION AND RESULTS 
 
In the implementation, the estimation of for 

each data sampling time 
nq

τk=t  was carried out 
iteratively as shown in Fig.2. The T1(t) and T2(t) 
data for the estimation were generated from the 
equations describing the dynamic temperature 
decay mode in Fig. 2 with T0=700 K, 
T1(0)=721.095 K, T2(0)=782.538 K, 
C1=0.008041 J/K, C2=0.744024 J/K, R1=5.41 
K/W, R2=1.85 K/W, qn=1.68 W qe=9.6766 W 
and superimposed 1% random noise on the 
monitored data (i.e. T1 and T2 ).  The noise level 
is substantially larger than the anticipated 
measurement uncertainty during the operation of 
the sensor.  The in Fig.2 as a function of TCuk 2 
was represented by a third order polynomial. 
Table 1 shows the estimation results.  The last 
row shows the average number of switches 
between Mode 1 and Mode 2 for convergence in 
qn and indicates that the computational demand 
for RPS is relatively insensitive to the size of the 
search space, however, increases with the 
refinement of the stopping rule as also expected 
from DSD applications with progressively 
refined fixed partitioning schemes. 
 
CONCLUSION 
  
The results of the study show that DSD with 
RPS be used with CTPS to estimate the local 
power density in nuclear reactor cores for fuel 
temperature ranges within 300 K to 1000 K.  
Similarly, the estimation scheme works within 
the coolant temperature range of (i.e. T0) of 300 
– 1000K.  While these temperatures ranges 
include most of the operational range of current 
reactors, further studies are needed to investigate 

the suitability of measurement scheme to high 
temperature, gas cooled Generation IV reactors.  
 

Table 1 
Estimation Results for RPS 

Case  
1 2 3 

T0 Range (K) 
 

650-
850 500-900 300-

1000 
T1/T2 Range (K) 

 
50-

1250 300-900 300-
1000 

R2 Range (K/W) 0-5 0-5 0-5 
Stopping Rule 
(%of range) 1 2.0/1.0 1.5 

Average Number 
of Intermodal 

Iterations 
7.25 8.94/11.

47 8.63 
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INTRODUCTION

The Schwinger inverse method [1], a novel solution 
method for solving inverse transport problems, was 
recently developed and tested in one-dimensional 
spherical geometries [1, 2]. In this paper, the method is 
applied to solving the inverse problems of source weight 
fraction identification and shield composition 
identification in finite two-dimensional cylindrical 
geometries.   

THE SCHWINGER INVERSE METHOD 

The Schwinger inverse method [1] was derived from 
a perturbation-theory approach to the inverse transport 
problem. Instead of calculating the effect of a system 
perturbation on a quantity of interest (the usual use of the 
Schwinger functional), the quantity of interest was 
assumed to be given (from a measurement) and the 
Schwinger functional was manipulated to produce an 
equation for the system perturbation. The equation is 
applied iteratively. The quantity of interest is the leakage 
of a discrete gamma-ray line from radioactive decay, 
which implies that the scattering term in the transport 
equation can be ignored.  

Shield Material Identification 

The method was used to derive the following 
equation for the composition of an unknown shield layer 
[2]: 
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In this equation, g
t  is the total photon cross section in 

the current iteration for the unknown material at the 
energy corresponding to line g and g

t  is the updated 
cross section that will be used in the next iteration. The 
terms g , g , and gM  are the forward flux, adjoint 
flux, and leakage calculated for line g in the current 
iteration; gq  is the source for line g ( /cm3·s); and gM 0  is 
the measured leakage for line g. The integral in the 

numerator in Eq. (1) is over the entire problem, but the 
integral in the denominator is over the unknown material 
region only. Once the G macroscopic cross sections are 
found, the unknown material is identified using cross 
section tables [2]. 

Source Weight Fraction Identification 

The method was also used to derive an equation for 
unknown isotope weight fractions in a gamma-emitting 
source material [1]: 
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In this equation, S  is the mass density of the source 
material, AN  is Avogadro’s number, g

t,j  is the total 
microscopic cross section for source isotope j and line 
energy g, g

iq  is the source strength of isotope i for line g,
and jA  is the gram atomic weight of isotope j. The term 

jjj fff  is the update to the weight fraction in the 
current iteration to obtain the weight fraction to use in the 
next. 

TEST PROBLEM 

The methods for source and shield identification were 
tested on the finite cylindrical geometry shown in Fig. 1. 
A highly enriched uranium source is surrounded by a 
shield consisting of aluminum on the bottom and side of 
the cylindrical shield and nickel on the top. The top of the 
shield is twice as thick as the bottom. This axial 
asymmetry allows for more physically realistic test 
problems than were possible with the one-dimensional 
spherical problems of Refs. 1 and 2.  

The quantities of interest were the total leakage (into 
4 ) of four decay lines from uranium, 144, 186, 766, and 
1001 keV. The forward and adjoint angular fluxes of Eqs. 
(1) and (2) were calculated for each line using the 
PARTISN discrete-ordinates code [3] with no scattering. 

(1)

(2)
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Leakage measurements were simulated in two ways. 
The first was by using PARTISN with the same angular 
(S8) and spatial discretizations as used to calculate the 
flux in the iterative calculation. Thus, these “measured” 
and calculated leakages were exactly consistent. The 
second way of simulating measured leakages was by 
using a Monte Carlo code, which simulated a real 
measurement of the total leakage. These measurements 
are shown in Table I.  

Schwinger iterations were run until the calculated 
line leakages were within 0.01% of the measurements. 

RESULTS

Shield Material Identification 

Converged cross sections on the left side of Eq. (1) 
were compared to known cross sections from a library of 
40 candidate materials using a root-mean-squared (rms) 
difference, where the rms difference for material m is 

.)(1(rms)
1

2
,

G

g

g
mt

g
tm G

The materials with the lowest rms differences were 
considered candidates for the unknown.  

When S8 measurements were used, nickel was 
successfully identified as the only suitable candidate for 
the unknown layer, having an rms difference two orders 
of magnitude smaller than any other material (see Table 
II). With Monte Carlo measurements, nickel still had the 
smallest rms difference, but was one of nine possible 
shield materials. 

Source Weight Fraction Identification 

Initial guesses for the weight fractions of uranium in 
the source were 235U: 0.5000, 238U: 0.5000. When S8
measurements were used, the actual source weight 
fractions (235U: 0.9473, 238U: 0.0527) were found in one 
iteration of Eq. (2). With Monte Carlo measurements, 
slightly less accurate weight fractions of 235U: 0.9300, 
238U: 0.0700 were calculated in one iteration. 

CONCLUSIONS 

The Schwinger inverse method has previously been 
applied to the separate problems of determining unknown 
source [1] and shield compositions [2] in one-dimensional 
spherical geometries. In this paper, the method was 
successfully applied to these problems in a more 
physically realistic two-dimensional cylindrical geometry.  

In this work, the total leakage into 4  was the 
quantity of interest. To model more realistic scenarios, the 
quantity of interest should be the gamma-ray flux at a 

particular detector location outside the object. We are 
currently studying ways to mitigate the discrete-ordinates 
ray effects in order to allow such calculations to be made 
accurately.
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TABLE I. Measured Leakages. 
Line (keV) S8 Monte Carlo  

144 4.58897E+2 4.274E+2 ± 7.79% 
186 4.54920E+3 4.577E+3 ± 5.40% 
766 1.22674E+0 1.193E+0 ± 2.15% 
1001 3.47231E+0 3.393E+0 ± 2.06% 

(3)
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Fig. 1. Geometry for numerical test problems.  
Dimensions are in cm.   
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TABLE II. Materials with the Lowest rms Difference in 
the Shield Identification Problem (Actual Material Was 
Nickel, Initial Guess Was Lead). 

S8 Measurements Monte Carlo Measurements 
1  Nickel 8.612E-04 
2  Copper  2.952E-02 
3  Cobalt  8.705E-02 
4  SS316  1.967E-01 
5  Iron   2.390E-01 

1  Nickel    1.636E-01 
2  Copper   1.694E-01 
3  Cobalt   1.831E-01 
4  SS316   2.191E-01 
5  Cadmium  2.193E-01 
6  Iron 2.287E-01 
7  SS304  2.293E-01 
8  Carbon Steel 2.321E-01 
9  Silver 2.781E-01 
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INTRODUCTION 

The constant-temperature power sensor (CTPS) 
[1, 2] is a feedback-controlled calorimetric 
instrument capable of direct measurement of 
nuclear energy deposition.  A conceptual system 
for power measurements in reactor cores using 
such sensors has been developed using DSD [3].  
The DSD is state/parameter estimation technique 
for dynamic systems.  It yields the probability 
distribution functions (pdfs) of the quantities to 
be estimated in their discretized space from a 
user-provided system model and using 
monitored system data along with their 
associated uncertainties.  The data uncertainties 
provide inputs for the discretization process 
which partitions space of the quantities to be 
estimated into computational cells, in a similar 
manner to those used by the finite difference or 
finite element methods.  It has been shown that a 
probabilistic map of core power distribution can 
be constructed with DSD using simulated signals 
from an array of sensors distributed in a 
hypothetical reactor core [4].   

This paper investigates the computational 
feasibility of the estimation algorithm proposed 
in [4].  The goal is to have an estimation engine 
able to construct the probabilistic map of core 
power distribution in real-time.  Parallel 
implementation of the algorithm is investigated 
on multiple processors, attempting to determine 
the minimum number of processors necessary to 
run the estimation algorithm under real-time 
constraints. 

THE CTPS 

The CTPSs [1, 2] are sensors capable of direct 
measurement of nuclear power density (qn).  The 
CTPS concept is based on control of the energy 
balance about a small mass of fissionable 
material.  The sensor core is a UO2 pellet (Node 
2) surrounded by an insulator material (Node 1).  
An electrical heating resistance wire is wound on 
Node 2.  A feedback control loop is provided 
that adjusts the necessary input of electrical 
energy (qe) such that the Node 2 temperature is 
maintained constant.   

The sensor behavior is described by [5]: 
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where T1 and T2 are the temperatures of Node 1 
and Node 2, respectively, T0 is the temperature 
of the coolant in contact with Node 1, C1 and C2 
are the thermal capacitances of Nodes 1 and 
Node 2, respectively, R1 is the thermal resistance 
between Node 2 and Node 1 and R2 is the 
thermal resistance between Node 1 and the 
coolant.  

At steady-state conditions, the energy balance 
around Node 2 is described by 

qn + qe =   (T2 – T0)/(R1+ R2) . (2) 

By measuring qe and T2, qn can be estimated 
from Eq. (2) if R2 and T0 are known. 

As can be seen from Eq. (2), an accurate 
estimation of qn in the measuring mode depends 
on the accurate estimation of T0 and R2.  The 
CTPS has two modes of operation: i) power 
measurement mode when qe is measured and qn 
is estimated using Eq.(2), and, ii) calibration 
mode during which R2 and T0 are estimated from 
Eq.(1).  In the power measurement mode, qe is 
such that T1 and T2 are constant.  In the 
calibration mode, qe is interrupted.  Then T1 and 
T2 decrease to steady-state values as described by 
Eq.(1).  In Eq.(1), T1, T2 and qe are measured 
quantities.  The R2, T0 and qn parameters are to be 
estimated.  All the other quantities in Eq.(1) are 
assumed to be known (e.g. through previous off-
line measurements) 

THE DSD  

The DSD uses a representation of system 
evolution in time in terms of probability of 
transitions between sets of magnitude intervals 
of system state-variables (i.e. T1 and T2 for 
Eqs.(1) and (2))  and parameters (i.e. R2,T0, qn 
for Eqs.(1) and (2)) within the user specified 
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time intervals ττ )k(tk 1+≤≤  (k=0,1,..).  These 
sets form computational cells that partition the 
system state and parameter spaces.  If location of 
the system in the state-space is known for 
specified system parameters (such as for the 
problem under consideration since T1 and T2 are 
measured), the DSD generates the transition 
probability ),n,'j|j(g τ  from cell j’ to j in the 
state-space within ττ )k(tk 1+≤≤ given that 
the system parameters are in cell n at time kτ 
from 
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In Eq.(3), the elements of the vectors x and  
are the state variables and system parameters, 
respectively.  The vector

α

)k,,'(~ ταxx denotes the 
location of the system in the state-space at time 

τ)k(t 1+= given that it departed from point  
at time 

'x
τkt = for specified , is the volume 

of cell j’ and is the volume of cell n .  The 
point

α jv ′

nv
)k,,'(~ ταxx is determined from a user 

provided system model describing system 
evolution in time, such as Eqs.(1) and (2).  If the 
system parameters do not change 
within ττ )k(tk 1+≤≤ , the DSD determines the 
joint pdf for the mean value of the state-
variables and parameters over cell pair j,n at time 

)n,j(pk

τkt = recursively from 

),,k()n,j(p),n,'j|j(g)n,j(p k
'j

k L101 =′= −∑ τ .  (4) 

DETERMINATION OF POWER 
DISTRIBUTION  

Figure 1 shows schematically the procedure for 
the determination of power distribution.  First, 
the ),n,'j|j(g τ  in Eq.(4) are determined from 
Eqs.(1) and (3), monitored T1(kτ) , T2(kτ) and qe . 
Then the joint pdf , 
where n denotes the cells in the R

n),ĵ(p), q,T(Rp knk ≡02

2-T0-qn space, 
and  denotes the observed system location in 
the discretized T

ĵ
1-T2 space, is updated using 

Eq.(4).  The following steps are used for the 
estimation of qn at each CTPS location: 

1. p(R2,T0, qn) is integrated (or summed in the 
discretized R2-T0-qn space) over all possible 
values of qn to obtain  the joint pdf p(R2,T0).   

2. p(R2,T0) from Step 1 yields a probability for 
R2 and T0 being in each set of intervals 
partitioning the R2-T0 space. 

3. Using the boundaries of these intervals as 
inputs for Eq.(2), upper and lower bounds 
are found for qn for the probabilities 
identified in Step 2. 

4. Superimposition of the intervals and the 
corresponding probabilities from Step 3 
yields the pdf for qn. 

Once the pdfs for qn is found at CTPS locations, 
the approach described in [6] can be used to 
generate the pdfs for qn between these locations. 

PARALLEL IMPLEMENTATION 

Parallel implementation of the above-described 
monitoring scheme was investigated on multiple 
processors, attempting to determine the 
minimum number of processors necessary to run 
the estimation algorithm under the real-time 
constraints.  The algorithm was implemented in 
C/C++ and ran on multiple processors using 
Message Passing Interface (MPI) directives for 
assigning jobs and coordinating communication 
between the parallel processes.  Computation 
time measurements were taken by running the 
algorithm on the Pentium IV Cluster of the Ohio 
Supercomputing Center for different problem 
sizes (i.e. the number of cells partitioning the 
estimated parameter space) and for different 
numbers of processors.  

The power monitoring scheme was implemented 
on an example application taken from [5].  It 
consisted of seven sensors axially distributed 
within a cylindrical reactor core of a pebble bed 
type reactor.  A reactor transient in which the 
coolant temperature decreases exponentially with 
1 hour period was assumed.  

RESULTS 

The computation time needed for the estimation 
algorithm was assumed to be 6 seconds of real 
time (duration of the calibration mode).  For a 
problem size of 64x64x64 cells partitioning the 
R2-T0-qn space, the computation time was 23 s 
for 1 processor, 15 s on 2 processors, 7 s on 4 
processors and 4 s on 8 processors.  At the same 
time, the parallelization efficiency (serial 
time/parallel time/number of processors) 
decreased from about 80% on 2 processors to 
about 70% on 8 processors.   
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This study shows that the DSD algorithm is 
computationally feasible for implementation for 
an on-line, real-time power monitoring system 
using parallel processing.  

The optimum number of processors needed 
depends on how fast the sensors need to be 
calibrated and on the available processor 
resources.  For 4 processors, the computation 
time is the nearest to real-time for the assumed 
transient used for this study, but fewer number 
processors may be adequate for steady-state 
operation where the parameters to be estimated 
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Fig. 1: Power Monitoring System 
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INTRODUCTION 
 
The evolution of flux and power distributions in 
nuclear reactor cores is usually tracked using 
diffusion codes.  Due to modeling as well as 
operational uncertainties, it is often necessary to 
validate/improve the predicted distributions 
through in-core flux and temperature 
measurements.  A variety of techniques have 
been developed for this purpose, including using 
cubic splines to interpolate between measured 
data [1], fittings based on modal expansions 
[2,3], artificial neural networks [4] and least-
squares fittings [5]. 
 
There have been few attempts to directly 
incorporate the measurement uncertainty into 
flux/power shape construction process [6, 7].  
This paper describes a procedure which 
approaches the problem in the spirit of [6] and 
explicitly represents measurement uncertainty 
through user specified probability distribution 
functions (pdfs) in the construction process.  The 
difference is that the procedure presented here is 
a probabilistic interpolation scheme rather than 
fitting scheme which maximizes the conditional 
pdf of the estimated flux/power shape given the 
observations [6].  The proposed procedure is not 
restricted to linear relationships between 
flux/power and location [6] and also leads to 
computational simplicity for a large number of 
observations.  The procedure can be also used 
with a wide range of approaches to power/flux 
shape construction, from simple linear 
interpolation between data points to model based 
fittings, as well as a variety of pdfs to represent 
measurement uncertainty.  The procedure is 
illustrated using 1½ group diffusion theory 
model for a hypothetical one-dimensional 
reactor. 
 
THE PROCEDURE 
 
Consider a one dimensional reactor with length 
2L whose steady-state neutronic behavior is 
described by 1½ group diffusion theory, i.e. 
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where )(xbΣ indicates the control poison cross 

section at location x and the rest of  the symbols 
have their conventional definitions.   We will 
assume that: 1) group parameters of Eq.(1) are 
known functions of x, 2) the pdfs 

)()|( 11 φφ nn pxp = of )(1 nxφ at nx are known 

for n = 1,…,N on Lx 20 ≤≤ , and, 3) expected 
value 
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which means that a sufficient condition for 

)|( 1 xp φ to satisfy is 
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The solution of Eq.(4) with specified 

)()|( 11 φφ nn pxp =  and )()|( 1111 φφ ++ = nn pxp  
yields )(1 xφ in 1+≤< nn xxx  (n = 1,…,N-1).  If 

power is directly measured [8], it can be also 
shown from Eq.(1)in a similar manner that , for 
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constant material properties 
within 1+≤< nn xxx , 
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where )|( yhp is the pdf of power density h at y .  
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for the expected value >< )(yh of power density 

at y. For small β  (e.g. small interval ],[ 1 nn xx + ), 
Eq.(6) yields  
 

yhpyhpyhp nn )()1)(()|( 1 +−≈ +  (8) 

 
which is the result from the statistics literature 
for >< )(yh  varying linearly within 10 ≤≤ y  

[11].  
 
Although Eqs.(4) and (5) are in principle partial 
differential equations, they become ordinary 
differential equations once the numerical values 
of the boundary conditions are specified and 
subsequently can be solved  using standard code 
packages for non-uniform material distributions.  
It is not difficult to see that equations similar to 
Eq.(4) can be generated for a multi-group 
counterpart of Eq.(1). In the multi-group case, 
energy discriminant sensors need to be used to 
determine the boundary conditions, such as the 
SiC detectors developed by Westinghouse [10]. 
 
AN EXAMPLE ILLUSTRATION 
 
For the purposes of illustration, we will assume 
that power density is directly measured in a 
hypothetical, one dimensional reactor placed in 
vacuum with uniform material distribution as 
given in Table 1 and  L = 150 cm. 

 
From Eq.(1) and the relationship between power 
and flux, we have 
 

)0()cos()0()( Lxxhxh ≤≤= β  (9) 

 
For criticality, we must have 300/πβ ≈ cm-1 (or 

0707.0=Σb cm-1 from Eq.(4) and Table 1 data).  

 
Table 1 

Group Constants for the  
Example Reactor [11] 

 
Group Group Constant 

1 2 

fΣν (cm-1) 0.008476 0.18514 

aΣ (cm-1) 0.01207 0.1210 

D (cm) 1.2627 0.3543 

21 >−Σ (cm-1) 0.0141 - 

 
Figure 1 shows: a) the data 1021 ,, hhh �  from 10 

hypothetical power sensors placed at 
Lxxx ≤<<≤ 10210 � , generated from Eq.(9) 

assuming 1% random error,  b) )|( xhp  obtained 

from Eqs.(5) and (6) assuming 
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and, c) >< )(xh obtained from Eqs.(5) and (7). 

 

 
Fig.1:  Relative Power Distribution h(x)/h(0) 

for the Example Reactor 
 



Figure 1 indicates that the match between the 
simulated data and >< )(xh is excellent.  Figure 

1 also shows how the )|( yhp  yields the 

uncertainty ranges for the estimated power 
between measurement points.   The )|( yhp can 

be used to obtain other statistical properties of 
)(xh as well.  For example, the probability that 

power is within 10% of the expected value can 
be found from 
 

�
><

><
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)(09
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Similarly, 90% confidence interval for the 
expected value of power at y can be found from 
the solution of 9.0)|( =>< yhp for <h>. 
 
CONCLUSION 
  
The proposed procedure provides a fast way to 
estimate the expected value as well as all other 
statistical properties of power/flux between 
measurement points.  The accuracy of estimation 
depends on the assumed pdfs at the measurement 
points and the core model used with the 
procedure (i.e. Eq.(5)) 
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ABSTRACT 
 

The constant-temperature power sensor (CTPS) is a 
feedback-controlled calorimetric instrument capable of 
direct measurement of nuclear energy deposition.  The 
CTPS simulates a section of the nuclear fuel element.  
The sensor operation is sensitive to the ambient coolant 
temperature and contact resistance.  A procedure is 
described which estimates these quantities on-line for an 
array of sensors and constructs a map of probabilistic core 
power distribution. 
 
Keywords: nuclear reactors, power distribution, 
parameter estimation. 

 
1. INTRODUCTION 

 
The constant-temperature power sensor (CTPS) [1] is a 
feedback-controlled calorimetric instrument capable of 
direct measurement of nuclear energy deposition.  The 
CTPS simulates a section of the nuclear fuel element.  In 
that respect, is especially suitable for high temperature 
environments of the planned Generation IV reactors and 
reactors for nuclear thermal propulsion. 
 
This paper describes a conceptual system for power 
measurements in the reactor core using such sensors.  The 
monitoring system will process sensor signals from the 
reactor core in such a manner that probabilistic 
information, in the form of probability distribution 
function (pdf) of reactor power density (qn) is obtained at 
the sensor location.  This signal processing would be in 
addition and independent of the normal signal processing 
that is normally performed in a nuclear power plant, and it 
would be used for informational purposes only, to assist 
the operator; it would not have any control over the 
reactor core. 
 
The paper shows how a map of probabilistic core power 
distribution can be constructed using simulated signals 
from an array of sensors distributed in a hypothetical 
reactor core.  An estimation algorithm, called DSD 
(Dynamic System Doctor) [2] is implemented that 
processes the sensor signals to obtain the power density 
pdfs at sensor locations.   

 
2. THE MONITORING SYSTEM 

 
The monitoring system will consist of: (a) an array of 
sensors distributed in the reactor core and associated 

circuitry, (b) an estimation engine, (c) a module to 
interpolate the pdf for qn between sensors locations [3], 
and, (d) a scheduler to manage data acquisition and multi-
thread/distributed processing.  All the components of the 
monitoring system except the interpolation module 
presented in an earlier publication [3] are described 
below. 
 
Sensor – The CTPS 
The CTPS concept is based on control of the energy 
balance about a small mass of fissionable material.  
Figure 1 shows the structure of a CTPS for current 
electricity generating nuclear power plants.  The sensor 
core (Node 2) is UO2 pellet.  An electrical heating 
resistance wire surrounds the core.  Energy in the sensor 
core is deposited through nuclear interactions and from 
resistive dissipation through the wire, while energy is 
removed through conductive and convective heat transfer 
to the reactor coolant.  A feedback control loop is 
provided that adjusts the necessary input of electrical 
energy such that the Node 2 temperature is maintained 
constant.  At steady-state conditions, the energy balance 
around the core is described by 
 

qn + qe =   (T2 – T0)/R2   (1) 
 
where qn denotes the nuclear energy deposited (or the 
reactor power density), qe is the electrical energy input, R2 
is the thermal resistance between sensor and coolant, T2 is 
the temperature of Node 2 and T0 is the coolant 
temperature.  By measuring qe and T2, qn can be estimated 
from Eq. (1) above if R2 and T0 are known. 

 
Fig. 1 Constant Temperature Power Sensor  

 
The CTPS has two modes of operation: i) power 
measurement mode when qe is measured and qn is 
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estimated using Eq.(1), and, ii) calibration mode during 
which R2 and T0 are estimated. 
 
As it can be seen from Eq. (1), an accurate estimation of 
qn in the measuring mode depends on the accurate 
estimation of T0 and R2.  Coolant temperature T0 is 
typically measured at coolant inlet and outlet from the 
reactor core and it is not measured at each sensor location.  
The thermal resistance R2 depends on the coolant 
temperature, flow speed and local geometry and it is 
impossible to be measured directly.  The calibration mode 
is designed to provide information on these two variables. 

In the calibration mode, the electrical current through the 
resistive wire that surrounds the sensor core is interrupted.  
The sensor temperature then decreases to a steady-state 
value directly dictated by the input of nuclear energy, the 
coolant temperature and the thermal resistance between 
the sensor and coolant.  T0 and R2 are estimated by 
observing the dynamic behavior of Node 1 and Node 2 
temperatures. 

The estimation is done through DSD [4,5] which uses a 
representation of system evolution in time in terms of 
probability of transitions between sets of magnitude 
intervals of system state-variables within the user 
specified time intervals ττ )k(tk 1+≤≤  (k=0,1,..).  
These sets form computational cells that partition the 
system state-space in a similar manner to those used by 
finite difference and finite element methods.  The DSD 
generates the transition probability ),'j|j(g τ  from cell 
j’ to j from 
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A two node lumped parameter model has been developed 
for the CTPS [3], representing Node 1 and 2 (see Fig.1) 
temperature behavior during the calibration mode.  By 
writing the energy conservation equations for
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where T1 indicates Node 1 temperature; C1, C2 are, 
respectively,  thermal capacitance of Nodes 1 and 2; R1 is 
the thermal resistance between Node 2 and Node 1.  The 
other notation in Eq.(2) is as defined previously. 
 
Estimation Engine 
In Eq.(4) all the variables except R2, T0 and qn are 
assumed to be known.  A flowchart of the estimation 
engine for these parameters is shown in Fig. 2. 

End of 
recalibration 

Calibration Mode 
 
• Measure T1, T2 at t=kτ and t=(k+1)τ 
• Use Eqs. (2) and (4) to identify cells in 

the qn -T0 –R2 space that allow this 
transition 

• Obtain p(R2, T0, qn) over each cell from 
Eq. (3)

Integrate over qn to 
obtain p(R2, T0) 

Measuring Mode 

• Measure T1, T2 
• Obtain p(qn)using 

p(R2, T0)  
 

Need to 
recalibrate

Start 

No

Yes 

NoYes

 
  the two 

nodes, the system equations are obtained as [3]: Fig. 2 Estimation engine  



In the calibration mode, DSD is run to estimate the values 
for T0, R2 and qn, in terms of joint pdf p(R2,T0, qn) over the 
discretized R2-T0-qn space by measuring T1 and T2 and 
using  Eqs.(2)-(4).  At the end of calibration, p(R2,T0, qn) 
is integrated over all values of qn to obtain joint pdf of 
p(R2,T0).  
Before the actual algorithm is started, the following are 
defined for each of the three unknown parameters (R2, T0, 
qn): a) the ranges of interest (minimum and maximum 
values R2,min, R2,max, T0,min, T0,max, qn,min, qn,max), b) the 
number of intervals for each range that will discretize the 
qn-T0-R2 space into cells, and, c) error σ for the 
temperature measurements T1 and T2.  A three 
dimensional matrix which represents the cells in terms of 
cell-centered values of R2, T0, qn and which will store pk(j)  
(see Eq.(3)) is created and initialized to a uniform 
distribution p0(j) (Figure 3(a)).  
 
At t = 0, the sensor starts in the calibration mode trying to 
estimate the values for T0, R2, qn.  Values of T1, T2 and qe 
for t=0 and t=1 seconds are read from an input file that 
simulates the actual sensor signals.  Since CTPS is in the 
calibration mode, qe = 0 in Eq.(4).  Using the simulated 
T1(0), T2(0), T1(1) and T2(1), the DSD then searches for 
the cells that would make this transition possible within 
the error σ for the temperature measurements from 
Eqs.(2) - (4) using an equal-weight 4-point quadratures 
scheme to evaluate the integral in Eq.(2).  
 
The algorithm continues for t = 2, 3... 6 seconds.  The 
temperature signals are read again, the cell—to-cell 
transition probabilities are recomputed from Eq.(2) based 
on the current time step and used for recalculating the 
cell-averaged values of pk (R2, T0, qn) from Eq.(3) for k=2, 
3…6.  After each time step the probabilities are rescaled 
such that they sum to unity over all cells.  After 6 
seconds, the sensor is switched back to the measurement 
mode. 
 
At the end of calibration mode, cell-averaged values of 
p(R2, T0, qn) for each cell j in the qn-T0-R2 space are 
obtained in the form of from Eq.(3).  Integration 
of p(R

)j(p6

2, T0, qn) over qn yields the joint pdf for R2 and T0. 
 
Using this probability distribution function of R2 and T0 
obtained at the end of the calibration mode, a probability 
distribution function of qn can be obtained. By using the 
minimum and maximum values for R2 and T0 in a cell of 
nonzero probability P, the cell minimum and maximum 
values for qn (qn,min and qn,max) can be obtained from Eq. 
(1). It results that qn is in interval (qn,min, qn,max) with a 
probability P. Repeating the calculation for all cells in the 
R2 - T0 space, a pdf of qn is derived. 
 
Fig.3 shows graphically how this estimation engine works 
in the discretized qn-T0-R2 space.  Fig. 3(a) shows the 
initial qn-T0-R2 space, where all cells have assigned equal 
nonzero probabilities (i.e.  ).  Then using Eqs.(2) – 

(4) at successive time steps, the number of cells that have 
nonzero probabilities narrows down  (Fig. 3(b) and Fig. 
3(c)).  

)j(p0

 
 

 
Fig. 3 A graphical illustration of the estimation engine 

 
The different shades of gray represent different 
probabilities, darker gray represent higher probability 
than lighter gray.  Figure 3(d) shows the probability 
distribution function of R2 and T0 that is obtained at the 
end of calibration mode and which is used for obtaining 
the pdf p(qn) in the measuring mode (Fig. 3(e)). 
 
Scheduler 
The estimation engine has been implemented in Java, 
taking advantage of the modularization capabilities of 
object-oriented programming.  A thread class, running the 
estimation engine was created.  The purpose of the 
scheduler is synchronize the threads such that data for all 
sensors at same moment in time can be collected, put 
together, analyzed and interpolated.  Figure 4 shows the 
conceptual scheduler structure as it would be 
implemented in a plant.  The pdf for qn between sensor 
locations (local power estimation) will be estimated using 
the procedure described in [3]. 

(a) (b) 

(c) 

q qn n
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R2 R2
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qn
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Fig.4 The conceptual scheduler structure 

 
3. EXAMPLE SYSTEM AND RESULTS 

 
Since real sensor data cannot be obtained at this point of 
the research, a simulation of sensors signals was 
performed.  It was assumed that seven sensors are axially 
distributed within the core of a pebble bed type reactor 
[6].  The power/flux is assumed to follow a cosine 
function axially.  The coolant temperature increases 
continuously from the inlet to the outlet.  Data for steady-
state power conditions were taken from [6] and are shown 
in Table 1.  The sensors locations and normal power 
densities and coolant temperatures are shown in Table 1. 

 

Sensor # 
Distance from 
Coolant Inlet 

(cm) 

Deposited 
Nuclear Energy 

qn (W) 

Coolant 
Temperature 

(K) 
1 5 3.09 455 
2 10 4.63 610 
3 20 6.07 1208 
4 30 6.56 1560 
5 40 6.07 2085 
6 50 4.68 2503 
7 55 3.14 2950 
 
Table 1 Simulated data for the example system 
 

From steady-state conditions, it is assumed that a cooling 
transient occurs in which the coolant temperature start 
decreasing, while the power density qn and the thermal 
resistance R2 remain constant.  The coolant temperature 
follows 
 

   (5) 360010
00 0 )/-(t-) e( T (t) T =

 
where the time t is given in seconds [6]. 
 
The sensor recalibration is performed every minute, for a 
six seconds time interval.  During these six seconds qe = 
0.  Since the thermal energy input to the sensor core 
consists only of the nuclear heat, decay in the sensor 
temperature will be observed.  After the decay, the 

electric current is switched on again, the sensor 
temperature increases back to its setpoint value (which is 
indicated in the last column of Table 1).  
 
The estimation engine was run with 7 parallel threads, 
each thread handling one sensor.  Because of the 
relatively long computation times, a parallel 
implementation on multiple processors of the estimation 
algorithm was also created, this time using C++ and MPI.  
It was observed that reasonable computation times were 
achieved when the estimation algorithm it is run on more 
than two processors. 
 
The results in terms of pdfs of qn are shown in Fig. 6 and 
7.  Figure 6 shows a sample pdf for all sensors at a given 
moment in time.  Fig. 7 shows the pdf for Sensor 1 at 
different moments in time.  Both figures represent results 
for a transient in which the nuclear energy remains 
constant, while the coolant temperature decreases.  In 
both cases, it can be seen that the probability distribution 
functions are centered around the expected value for qn 
(listed in column 3 of Table 1).  In Figure 6, it can be seen 
that since qn at detector locations do not vary with time, 
neither do the pdf’s. 
 

 
 

 Distance from coolant inlet (cm) 

   
   

   
q n
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) 

Fig. 5 Pdf of power density at all sensor locations, at 
t=7 seconds  

 



 

 
 
 

Fig 6 Evolution in time of pdf of power density for 
Sensor #1 

 
4. CONCLUSIONS 

 
This study illustrates how the CTPS can be used with 
DSD for an array of sensors to construct a probabilistic 
map of power distribution in a nuclear reactor.  The study 
also extends the work reported in [6] from the estimation 
of R2 and T0 to the estimation of qn as well as R2 and T0 
using Eq.(2).  The results of the study indicate that the 
estimation engine described in Fig.2 can be implemented 
in a computationally feasible manner to obtain 
probabilistic maps of power distribution in nuclear reactor 
under steady-state operation as well as transients. 
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Abstract 
 

The DSD (Dynamic System Doctor) is system independent, 
state/parameter estimation software. The DSD is based on 
the modeling of system evolution in terms of probability of 
transitions within user specified time intervals between sets 
of user defined parameter/state variable magnitude intervals 
that partition the system state space. Recently a recursive 
partitioning scheme has been developed for DSD that 
reduces the estimation time and memory requirements, as 
well as making DSD more user friendly. The scheme is 
illustrated using a non-linear model for the constant 
temperature power sensor, proposed for direct core power 
distribution monitoring in Generation 4 nuclear power 
reactors 
 

1 Introduction 

The DSD (Dynamic System Doctor) is a system independent, state/parameter 
estimation software [1] based on the cell-to-cell mapping technique (CCMT).  
The CCMT models the system evolution in terms of probability of transitions in 
time between sets of user defined parameter/state variable magnitude intervals 
(cells) within a user specified time interval (e.g. data sampling interval). It yields 
the lower and upper bounds on the estimated values of system 
variables/parameters (which may be important in the determination of the 
operational safety margins for the system), as well as the probability distribution 
of the variables/parameters within these bounds which provides a probabilistic 
measure to rank the likelihood of system faults in view of modeling uncertainties 
and/or signal noise.  
 

The original DSD algorithm requires the cell definitions as input to the 
estimation process which may lead to long run times and large memory 
requirements.  Recently a recursive scheme for cell definitions was proposed for 
DSD that reduces the estimation time and memory requirements [2]. This paper 
illustrates the estimation time and memory savings using a non-linear model for 
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the constant temperature power sensor (CTPS), proposed for direct core power 
distribution monitoring in Generation 4 nuclear power reactors [3]. 

2 Overview of the DSD Algorithm with Recursive 
Partitioning [2] 

The DSD estimation algorithm is based on the representation of the system 
dynamics in terms of transition probabilities between user specified cells that 
partition the system parameter/state space during user specified time intervals 

ττ )k(tk 1+<≤ (k = 0, 1,…).  These cells are obtained by dividing the range of 
interest  for the state variable lll bxa ≤≤ )L,,l(xl L1=  into 

intervalsll J,,j L1=
lj,lΔ and the range of interest mmm b~a~ ≤≤α  for the 

parameter )M,,m(m L1=α   into mm N,,n L1= intervals , in a manner 
similar to those used in finite difference or finite element methods.  Such 
partitionings are provided as user input to DSD. A sample partitioning for a 
second order system where only one of the state variables is monitored is shown 
in [2], as well as how the cell-to-cell transition probability 

mn,m
~
Δ

),n,j|j(g τ′′ from 
cell to cell j′ j during ττ )k(tk 1+<≤ while the system parameters remain in 
cell can be approximated using a 4-point quadrature scheme.  The DSD yields 
the a posteriori probabilities  that 
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using the estimated at time )n,j(pk τkt = as a priori probabilities The 

determined from Eq.(1) can then be used to determine all the statistical 
properties of the system state, such as expected values and credibility intervals of 
the system variables. 

)n,j(pk

 
If the values of the system parameters change in time, the estimation 

procedure may lose track of the variables to be estimated, i.e. all the 
obtained from Eq.(1) will be zero. In the original DSD algorithm with 

this fixed partitioning scheme (FPS), the estimation process will reinitialize itself 
in this situation by starting from the initial probability and estimate the 
new parameter by the recursive use of Eq.(1) again by searching over all the cells. 
This approach may lead to excessive computational time if there are frequent 
parameter changes during system evolution and a large number of 
variables/parameters to be estimated. The recursive partitioning scheme (RPS) 

)n,j(pk

)0 j,n(p



reduces the computational time for reinitialization (as well as overall memory 
requirements for DSD) through following steps: 

 
1. Input parameter and state variable ranges of interest (i.e. lll bxa ≤≤  and 

mmm b~a~ ≤≤α ), RPS stopping rules and monitored data uncertainty.  Read 
data from the monitors. 

2. Define the intervals
lj,lΔ for the monitored variables so as to contain the 

variation/noise on the monitored data, centred on their median values.  
Define the cells for the unmonitored variables by bisecting each state 
variable range of interest lll bxa ≤≤  and each parameter range of interest 

mmm b~a~ ≤≤α  (i.e. 22 == ml N,J for all l and to be estimated). m
3. Specify to be used to start the estimation process (usually uniform) )j,n(p0

4. Determine the cell-to-cell transition probabilities ),n,j|j(g τ′′ by 
quadratures or by sampling over the cells specified in Step 2. 

5. Find from Eq.(1). )j,n(pk

6. If all , then bisect each 0=)j,n(pk lj,lΔ and go to Step 3. Otherwise, 

normalize by dividing it by the total probability of finding the 
system in the search space, increment the time index k and go to Step 2.  

)j,n(pk

 
Steps 2 through 6 are repeated until convergence, i.e.  are all zero 

except for the cells containing the actual system locations.  It should be 
mentioned at this point that the algorithm may not converge for rapidly evolving 
systems during one data sampling interval

)j,n(pk

ττ )k(tk 1+<≤ .  However, even in 
this situation, previous work  a with reduced order reactor dynamics model shows 
that the expected values of the parameters/state variables to be estimated are often 
found to be close to their actual values [4]. 

3 The CTPS 

The CTPS consists of a UO2 pellet surrounded by an electrical heating resistance 
wire. The pellet and the wire form the sensor core (Node 2). The core is 
surrounded by ceramacast, which is an alumina based ceramic thermal insulator 
(Node 1). Both the sensor core and the insulator are coated with thin layers of 
copper to provide a pathway for heat transfer from the sensor core to the 
surrounding coolant.  A feedback control loop is used to provide the exact amount 
of input electrical energy (in kW) needed to keep the temperature Teq 2 (in K) of 
the Node 2 constant in time (t), well above the surrounding coolant temperature 
T0 (in K), regardless of the nuclear energy (in kW) deposited into Node 2  
(Mode 1 operation).  In Mode 1 operation we have 
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where is the temperature of the ceramacast insulator, (in K/kW) is the 

contact resistance between Node 1 and Node 2 and  (in K/kW) is the contact 
resistance between Node 1 and the coolant. 
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A mode-switching algorithm has been proposed to accomplish the 

compensation of the change in the sensor response with the change in as a 

function of and other coolant properties. In Mode 2 operation, the sensor is 
temporarily taken out of the control loop, or practically, the supplied electrical 
current is reduced to 1% of the steady state value.   In this mode of operation, the 
time rates of change in Node 1 and Node 2 temperatures are described by 
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where is the thermal capacitance (in KJ/K) of Node i (i=1,2).  For 

constant , and , Eq.(3) yields 
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where i1θ and i3θ are known functions of , sensor properties and Mode 1 
sensor temperatures,  
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The resistance and the capacitances and  is a function of the sensor 
properties only and can be determined off-line.  Then the nuclear energy 
deposition rate and the resistance can be estimated directly through Eq.(3) 

and measured (i =1 and/or 2) and or, for constant sensor properties, 

through Eqs.(4), (5) (6) and the measured and . The sensor operation 
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involves switching between the feedback-controlled constant-temperature mode 
(i.e. Mode 1) and the dynamic temperature decay mode following the opening of 
the feedback loop (i.e. Mode 2).  

4 Implementation and Results  

Two cases were considered, one of normal operation with a switch between the 
operation modes of the sensor with constant coolant temperature  (Case 1), and 

a second one, a slow transient with decreasing  (Case 2). Node 1 and 2 
temperatures for the estimation process were simulated using Eq.(3) with the 
parameter values given in Table 1. 

0T

0T

 
T0(K) T2(K) C1(J/K) C1(J/K) R1(K/W) R2(K/W) qn(W) qe(W) 

1000.0 1085.9 0.00804 0.744 5.709 1.857 1.68 9.67 
 

Table 1. Steady-State Parameter Values Used for the Generation of Simulated CTPS Data  
 

The choice of the temperature data in Table 1 reflects the expected steady-state 
operational conditions in Generation 4 gas cooled reactors. 
 

Figures 1 and 2, respectively, show the estimation results for Case 1 and Case 
2 using RPS. The spikes starting at around t=10 s in both Figs.2 and 3 at around 
indicate the time at which the initial switch from Mode 1 to Mode 2 is made.  The 
figures show that while DSD temporarily looses track of qn at the time of the 
switch, recovery is very rapid and DSD with the RPS is able to estimate qn with 
the desired accuracy (within 1% of the range of interest) for the rest of the time 
interval of interest (i.e. until 100 s).  Comparison of the run times and memory 
requirements to obtain the results in Figs.2-4 to those obtained using the original 
FPS for comparable accuracy indicates a speedup by a factor of 5 in the run time 
with RPS and a reduction by a factor of 2 in memory requirements. 

 

 
Figure 1. Simulated and Estimated qn as a Function of Time for Case 1 



 

 
Figure 2. Simulated and Estimated qn as a Function of Time for Case 2 

5 Conclusion 

The results of this study show that the DSD with RPS leads to substantial run 
time and memory savings compared to the original FPS.  The results of the study 
also show that the use of CTPS with DSD may be a feasible option for direct 
measurement of power distribution in Generation 4 reactors. 
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Abstract –The cell-to-cell-mapping technique (CCMT) models system evolution in terms of probability of
transitions within a user-specified time interval (e.g., data-sampling interval) between sets of user-defined
parameter/state variable magnitude intervals (cells). The cell-to-cell transition probabilities are obtained
from the given linear or nonlinear plant model. In conjunction with monitored data and the plant model,
the Dynamic System Doctor (DSD) software package uses the CCMT to determine the probability of
finding the unmonitored parameter/state variables in a given cell at a given time recursively from a
Markov chain. The most important feature of the methodology with regard to model-based fault diagnosis
is that it can automatically account for uncertainties in the monitored system state, inputs, and modeling
uncertainties through the appropriate choice of the cells, as well as providing a probabilistic measure to
rank the likelihood of faults in view of these uncertainties. Such a ranking is particularly important for
risk-informed regulation and risk monitoring of nuclear power plants. The DSD estimation algorithm is
based on the assumptions that (a) the measurement noise is uniformly distributed and (b) the measured
variables are part of the state variable vector. A new theoretical basis is presented for CCMT-based
state/parameter estimation that waives these assumptions using a Bayesian interpretation of the approach
and expands the applicability range of DSD, as well as providing a link to the conventional state/
parameter estimation schemes. The resulting improvements are illustrated using a point reactor xenon
evolution model in the presence of thermal feedback and compared to the previous DSD algorithm. The
results of the study show that the new theoretical basis (a) increases the applicability of methodology to
arbitrary observers and arbitrary noise distributions in the monitored data, as well as to arbitrary uncer-
tainties in the model parameters; (b) leads to improvements in the estimation speed and accuracy; and
(c) allows the estimator to be used for noise reduction in the monitored data. The connection between DSD
and conventional state/parameter estimation schemes is shown and illustrated for the least-squares esti-
mator, maximum likelihood estimator, and Kalman filter using a recently proposed scheme for directly
measuring local power density in nuclear reactor cores.

I. INTRODUCTION

State0parameter estimation techniques play an im-
portant role in dynamic system analysis for fault detec-
tion, system identification, and adaptive control. Although
parameter estimation in linear systems is by now a well-
established field, nonlinear system parameter estimation
is still a popular research area.

Among the large number of conventional parameter
estimation techniques used for nonlinear dynamic sys-
tems, the largest category is based on optimizing the value
of the estimates by minimizing a predefined objective func-
tion or loss function~i.e., least squares, weighted least
square, minimum mean square error!. These techniques
usually involve solving a linear or nonlinear minimiza-
tion problem with or without constrains. Closed-form
solution of the nonlinear minimization problem is often
not available, and numerical methods~e.g., dynamic
programming, discrete Euler-Lagrange equations, the*E-mail: aldemir.1@osu.edu
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Gauss-Newton method! have been proposed and widely
used in parameter estimation. Mook1 considers the opti-
mal state and parameter estimation under model error for
nonlinear dynamic systems. The unknown parameters
are estimated using the least-squares method by mini-
mizing the model error estimate. The minimization prob-
lem is solved as a two-point boundary-value problem.
The method is shown to be accurate and robust with
respect to large errors in system model and measured
data, but the model error estimate may contain disconti-
nuities in case of noisy measurement. In Albuquerque
and Biegler’s2 paper, the objective function is defined as
the sum of a set of functions that depend on the states
and inputs at one time, and the constrains are differential
equations. A nonlinear dynamic programming~NLP!
problem is defined by discretizing the differential equa-
tions. Even though the paper presents a faster solver for
the NLP problem, the major limitation of this approach
is that the size of the NLP problems grows linearly with
the number of data sets and the heavy computational
load makes it difficult to solve larger problems directly.
Guay and McLean3 present a method for estimation of
parameters in nonlinear dynamic systems described by
a set of ordinary differential equations by optimization
of the Box and Draper~or least-squares! criterion. The
decoupled direct method is applied to evaluate the gra-
dient and Hessian matrix of the objective function with
respect to the parameters. The authors state that using
second-order sensitivity coefficients to evaluate the
Hessian matrix can lead to more accurate and reliable
results. However, the computation of higher-order
sensitivity coefficients increases drastically the com-
putational time and storage. The computational load
and storage are also the major problem associated with
Hjelmstad’s method4 in order to obtain acceptable accu-
racy. Another least-squares method, developed by Liu,5

includes a fast adaptive least-squares algorithm for pa-
rameter estimation that is based on Householder trans-
formations. The author indicates that this algorithm
requires computation and storage load in the order of
O~N! instead ofO~N2!, whereN is the number of pa-
rameters to be estimated. One limitation of this algo-
rithm is that it requires the system to be linear with respect
to the unknown parameters. In addition, the estimated
parameters may not converge to the true value in case of
correlated noise. Dimogianopoulos and Lozano6 pro-
pose a least-squares–based nonrecursive identification
algorithm in their paper. The authors chose theL2 norm
of the identification error with a forgetting factor as the
minimization criterion. This technique is capable of deal-
ing with slowly time-varying parameters without ex-
plicit knowledge of the noise bound or the region where
the true parameters lie. However, the bounds on the noise
and the parameter variations should be small to obtain
meaningful properties of the estimates.

Another widely used technique in parameter estima-
tion problems is to use linearized system models about

an operating point. Hopkins and Van Landingham7,8 pro-
pose a method of simultaneous parameter and state esti-
mation called pseudolinear identification~PLID! for
stochastic linear time-invariant discrete-time systems with
single input single output7 and multiple inputs multiple
outputs.8 The authors state that the PLID is known to
converge, but in the presence of a large amount of noise,
this convergence may be practically impossible or so
slow as to be useless. Douce and Zhu9 describe a method
for the modeling of nonlinear single-input single-output
systems using a modified least-squares method. The ap-
plication of this method requires that the nonlinear sys-
tems be perturbed only in a restricted operating range
and the system can be linearized inside this operating
range. An autoregressive moving average model is used
in order to approximate a wide range of nonlinear sys-
tems. A weighted least-squares algorithm for parameter
estimation is proposed in order to handle the nonlinear-
ity of the dynamic system. Recently, Lyashevskiy and
Chen10 have developed an innovative identification pro-
cedure by applying the harmonic linearization method.
Using this technique, the nonlinearity of the system is
replaced by a set of harmonic linearized elements, which
is obtained through the describing function method. The
unknown parameters are solved from a set of algebraic
equations that are obtained from the self-oscillations. One
limitation of this technique is that it can be applied only
for dynamic systems with limit cycles.

A technique that can perform parameter estimation
and also deal with unobservable states and variables in
nonlinear dynamic systems is to generate observers. Ri-
cardo and Tomei11 demonstrate adaptive observers that
guarantee fast exponential convergence. However, the
method is only applicable for a class of nonlinear dy-
namic systems that are linear with respect to unknown
parameters, and the construction of the observers re-
quires the system to be in adaptive observer form.
Sliding-mode control and estimation techniques have
also been shown to be an effective tool in parameter0
state estimation problems. The sliding-mode approach
to state0parameter estimation in nonlinear dynamic sys-
tems consists of designing the model with discontinu-
ous parameters and enforcing sliding modes such that
the model and plant outputs coincide. Then, the average
values of the discontinuous parameters depend on the
unknown states0parameters and can be used for their
evaluation. McCann and Islam12 have applied the sliding-
mode observer method to the operation of a switched
reluctance motor to estimate the rotor position and ve-
locity. Sliding-mode observers have also been used in
nuclear reactivity and xenon concentration estimation
problems by Wang, Aldemir, and Utkin.13 Kim, Riz-
zoni, and Utkin14 apply the sliding-mode estimation idea
to an automotive engine diagnosis and control problem.
The unknown charge efficiency, mean mass flow rate of
air, and throttle angle are estimated through a well-
designed sliding-mode observer. The results show that
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the observer estimates the actual states within reason-
able accuracy.

Statistical parameter estimation methods are also used
in dynamic system analysis. The advantage of statistical
methods is that these methods deal with uncertainty and
noise directly. One commonly used statistical parameter
estimation technique is Bayesian estimation. Bolviken
et al.15 use Bayesian state estimation in nonlinear sys-
tems. The unknown state vectors are drawn many times
from the posterior distribution, and the average is used
to be the approximate of the posterior mean. The authors
apply the Monte Carlo technique to randomly select points
in the range of interest and argue that the Monte Carlo
uncertainty is small compared to the inherent uncer-
tainty in the optimal Bayesian estimate. A limitation of
this technique is that it gives only sample points of the
posterior distribution; the actual posterior distribution is
unavailable. Charalambous and Logothetis16 apply the
maximum-likelihood idea to the nonlinear stochastic sys-
tem parameter estimation problems. The expectation max-
imization algorithm, an interactive numerical method, is
used to generate the parameter estimates by computing
the log-likelihood ratio restricted to the measured data.
However, the technique is still a point estimator without
providing an efficient way to evaluate the uncertainty of
the estimation results. Also, the estimation algorithm is
system specific and needs to be individually set up for a
given system.

Expert systems, neural networks and genetic algo-
rithms have been also used for parameter estimation.
Parlos and Atiya17 use artificial neural networks for the
identification of a nonlinear model for a U-tube steam
generator. The system identification consists of estimat-
ing unknown parameters and0or system variables, which
cannot be monitored, in order to obtain a complete model
for the system. A similar work by Patton, Lopez-Toribio,
and Uppal18 uses artificial intelligence techniques for
fault detection and identification in process systems. Mar-
seguerra and Zio19 apply a genetic algorithm for estimat-
ing the effective nuclear parameters and the initial
conditions in tracking xenon evolution using measured
power and reactivity. The authors state that the estima-
tion results given by this approach are very close to the
true values.

The literature survey shows that the parameter0state
estimation of nonlinear systems seems to have the fol-
lowing difficulties:

1. Heavy computational load and large computer
memory are required if accurate estimates of the param-
eters are desired. This requirement usually reduces the
capability of most methods for on-line implementation.

2. Noise is difficult to handle, especially when the
noise is large.

3. Most methods cannot account for random varia-
tions in the parameters.

4. Most estimators are point estimators without pro-
viding likelihood of possible parameter values, which
renders their implementation difficult for probabilistic
risk analysis.

5. Often, the algorithms are system specific and need
to be designed for the given system.

The recent developments in state0parameter estimation
show that the representation of system dynamics via the
cell-to-cell mapping technique20 ~CCMT! may reduce
these difficulties. The CCMT models the system evolu-
tion in terms of probability of transitions in time be-
tween sets of user-defined parameter0state variable
magnitude intervals~cells! within a user-specified time
interval ~e.g., data-sampling interval!. The cell-to-cell
transition probabilities are obtained from the given sys-
tem model. Then, using the Chapman-Kolmogorov equa-
tion, the probability of finding the system in a given cell
at a given time interval is recursively determined from a
Markov chain. The most important feature of the meth-
odology with regard to model-based fault diagnosis is
that it can automatically account for uncertainties in the
monitored system state, inputs, and modeling uncertain-
ties through the appropriate choice of the cells, as well
as providing a probabilistic measure to rank the likeli-
hood of faults in view of these uncertainties. Such a
ranking is particularly important for risk-informed reg-
ulation and risk monitoring of nuclear power plants. Other
important features of this methodology are as follows:

1. It does not require a linearization of the system.

2. It allows flexibility in system representation. Dif-
ferential or difference equations21,22 as well as almost
any type of input0output model~e.g., neural net,23 re-
sponse surface! can be used to generate the cell-to-cell
transition probabilities.

3. The discrete-time nature of the methodology is
directly compatible with a lookup table implementation,
which is very convenient for the use of data that may be
available from tests or actual incidents.

4. It does not require model inversion~which may
lead to singularity problems! or inverse models~which
usually have a limited range of applicability!.

5. It is both an interval and a point estimator. Sub-
sequently, it yields the lower and upper bounds on the
estimated values of state variables0parameters as well as
their expected values. A knowledge of such bounds is
particularly important in the determination of safety mar-
gins during operation.

The Dynamic System Doctor24 ~DSD! software package
has been developed for the on-line implementation of
this methodology in a system-independent and user-
transparent manner. The software has been successfully
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tested on a variety of nuclear and mechanical dynamic
systems.20–22An interactive demonstration version of DSD
is available from the internet.25

The DSD estimation algorithm is based on the as-
sumptions that the measurement noise is uniformly dis-
tributed and the measured variables are among the state
variables. From an implementation viewpoint, this as-
sumption implies that arbitrary observers and measure-
ment noise or model uncertainties with arbitrary
distributions are not allowed. This paper presents a new
theoretical basis for the DSD algorithm that waives these
assumptions using a Bayesian interpretation of CCMT-
based state0parameter estimation~Sec. II!. The new theo-
retical basis expands the applicability range of DSD
and leads to improvements in the estimation algorithm
~Sec. III!, as well as providing a better understanding
of the relationship of CCMT-based state0parameter es-
timation to conventional state0parameter estimation tech-
niques~Sec. IV! and of the origins of some unexplained
phenomena encountered in previous work~Sec. II.B!.
Section V gives the conclusions of the study.

II. A NEW THEORETICAL BASIS FOR
CCMT-BASED STATE0PARAMETER

ESTIMATION

The new theoretical basis is developed in two steps.
In Sec. II.A, a continuous Bayesian state0parameter es-
timator is presented for an arbitrary dynamical system.
Section II.B applies this Bayesian estimator to a discret-
ized representation of the system used by CCMT and
develops a generalized algorithm applicable to arbitrary
stochastic variations in the dynamical system variables
and parameters. Section II.B also shows that this gener-
alized algorithm reduces to the previous DSD algorithm
under the assumptions that the measured variables are
part of the state variable vector and the measurement
noise is uniformly distributed.

II.A. A Continuous Bayesian Estimator

Consider the dynamic system

_x 5 f ~x! 1 vvv

and

yk 5 h~xk! 1 wk ~k 5 0,1,2, . . .! , ~1!

where

x 5 L-dimensional vector whose elements are the
state variablesxl ~l 5 1, . . . ,L! of the dynamic
system

vvv 5 system noise~e.g., due to stochastic variation
of system parameters! or a measure of model-
ing uncertainties, in general

xk 5 state vector at time stepkt ~k 5 0,1,2, . . .!

yk 5 M-dimensional vector whose elementsym,k
~m51,2, . . . ,M ! are the measured data at time
stepkt ~k 5 0,1,2, . . .!

wk 5 measurement uncertainty

h 5 M-dimensional vector whose elements are
known nonlinear functions

f 5 L-dimensional vector whose elements are
known nonlinear functions.

Equation~1! does not exclude parameter estimation prob-
lems because we can always define an unknown set of
constant parametersu as a set of state variables that sat-
isfy the equation

û 5 0 . ~2!

Similarly, systems whose dynamics explicitly depend on
time can be described by Eq.~1! by regarding time as
another state variable satisfying

_t 5 1 . ~3!

Subsequently, Eqs.~1! and~2! allow system parameters
that are functions of time. Then, by defining the follow-
ing new state variables:

z 5 Fx

uG , ~4!

the new dynamic system can be described as

_z 5 F _xûG5 Ff ~x! 1 vvv

0 G
and

yk 5 h~Czk! 1 wk ~k 5 0,1,2 . . .! , ~5!

whereC is a matrix withC 5 @I 0 # andI is theL 3 L
identity matrix.

Let xk denote the state variable value at time stept 5
kt. The estimation problem is stated as the following:

Given an initial guessp~x06 y0! of the probabil-
ity distribution function~pdf! of the unknown state
variable vectorx0 at timet 5 0, estimate the condi-
tional distributionp~xk6 yk, yk21, . . . ,y0! 5 p~xk6 Tyk!
of xk given the measurementsyk from time stept 5 0
until time stept 5 kt. The Tyk 5 @ ykyk21. . .y0# is
called the information vector that includes all the
measurements from the initial time step until time
stept 5 kt.

While the main motivation for this problem statement is
to lay the groundwork for a more generalized theoretical
basis for DSD that will be developed in Sec. II.B, the
problem statement also addresses the issue of signal val-
idation as will be illustrated later in this section.
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Proposition 1:

Assume

1. p~ yk116xk11! andp~xk116xk! are, respectively, known pdf ’s forwk and forvvv in Eq. ~1! or ~5! .

2. wk are statistically independent for allk.

3. vvv does not depend on the system history.

4. p~ yk11, xk116 Tyk! are Borel measurable overxk11 [ Vk11, andp~xk6 Tyk! are Borel measurable overxk [ Vk,
whereVk is the set of all possiblexk at time stepkt~k 5 0,1,2 . . .!.

Then,p~xk6 Tyk! can be recursively determined from

p~xk116 Tyk11! 5

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

p~xk116xk!p~xk6 Tyk! dxk

, ~6a!

or sinceL~xk116 yk11! [ p~ yk116xk11! can be regarded also as the likelihood ofxk11 given the observationyk11,
equivalently,

p~xk116 Tyk11! 5
L~xk116 yk11!pprior ~xk116 Tyk!

E
Vk11

dxk11L~xk116 yk11!pprior ~xk116 Tyk!

~6b!

with

pprior ~xk116 Tyk! 5 E
Vk

p~xk116xk!p~xk6 Tyk! dxk ,

where Tyk11 5 @ yk11yk . . .y0# .

A practically important situation that satisfies as-
sumptions 1, 2, and 3 is whenvvv represents random fluc-
tuations in system parameters andwk corresponds to white
noise. However, these assumptions do not exclude cor-
related noise since correlated noise can be regarded as
the transformation of a white noise process through a
linear filter ~when the power spectral density of the cor-
related noise is in rational form!.26Assumption 4 implies
that

1. all Vk11k 5 0,1, . . . must be closed under finite
intersection and union of some open subintervals
in the ranges of interestal # xl # bl ~l 51, . . . ,L!
for the state variables0parameters

2. for a given 0, p~ yk11, x 6 Tyk! , 1,x [ Vk11

and is important for the existence of the integrals in
Eq.~6!. Since for given initial conditions within the ranges
of interestal # xl # bl , the system motion is restricted to
trajectories generated by Eq.~1!, neither of these impli-
cations may need be true in the case of nonlinear systems.

Proof:

From the definition of conditional probability and the
information vector Tyk,

p~ yk11, xk116 Tyk! 5
p~ yk11, xk11, Tyk!

p~ Tyk!
5

p~xk11, Tyk11!

p~ Tyk!

~7!

p~ yk116 Tyk! 5
p~ Tyk11!

p~ Tyk!

] p~xk116 Tyk11! 5
p~ yk11, xk116 Tyk!

E
Vk11

p~ yk11, xk116 Tyk! dxk11

.

~8!

Assumption 4 needs to be used27 in the decomposition
of p~ Tyk116 Tyk! to obtain Eq.~8! from Eq.~7!. Now, con-
sider the following conditional pdf ’s:

p~ yk116xk11, xk, Tyk! 5
p~ yk11, xk11, xk, Tyk!

p~xk11, xk, Tyk!
,

p~xk116xk, Tyk! 5
p~xk11, xk, Tyk!

p~xk, Tyk!
,
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and

p~xk6 Tyk! 5
p~xk, Tyk!

p~ Tyk!
. ~9!

From Eq.~8! and assumption 4, the joint pdfp~ yk11, xk116 Tyk! can be written as

p~ yk11, xk116 Tyk! 5E
Vk

p~ yk11, xk11, xk6 Tyk! dxk

5E
Vk

p~ yk11, xk11, xk, Tyk!

p~ Tyk!
dxk

5E
Vk

p~ yk11, xk11, xk, Tyk!

p~xk11, xk, Tyk!

p~xk11, xk, Tyk!

p~xk, Tyk!

p~xk, Tyk!

p~ Tyk!
dxk

5E
Vk

p~ yk116xk11, xk, Tyk!p~xk116xk, Tyk!p~xk6 Tyk! dxk . ~10!

Note that the conditional probabilities in Eq~9! have the following properties:

p~ yk116xk11, xk, Tyk! 5 p~ yk116xk11!

and

p~xk116xk, Tyk! 5 p~xk116xk! . ~11!

Equation~11! holds becauseyk11 only depends on the value ofxk11 andwk11 by Eq. ~1!. Whenxk11 is given, the
probability of yk11 will be determined by the value ofwk11, whose value does not depend on any previous system
states by assumption 2. Similarly,p~xk116xk! only depends onxk andvvv by Eq. ~1!, andvvv is independent of system
history by assumption 3. Using Eqs.~10! and~11!, Eq. ~8! can be written as

p~xk116 Tyk11! 5

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

p~xk116xk!p~xk6 Tyk! dxk

,

which completes the proof.
Equation~6! constitutes a Bayesian rule for recur-

sive determination ofp~ xk116 Tyk11! for known
p~ yk116xk11! and p~xk116xk!. Convergence properties
of Eq. ~6! will be discussed within the context of its
discrete formulation in Sec. II.B and also in Sec. IV.
Note that ifh~xk! 5 xk, then Eq.~6! can be used as a
recursive rule for signal validation as illustrated in
Secs. III.B and III.C. Also, as indicated in Proposi-
tion 1, a practically important situation is when the
modeling uncertainties and the measurement uncertain-
ties are represented by zero mean random white Gauss-
ian noise. In this situation,

xk11 5 Ix~xk! 1 DBt , ~12!

where

DBt 5 E
kt

~k11!t

dBt 5E
kt

~k11!t

vvv~t ! dt

Ix~xk! 5E
kt

~k11!t

f ~x~s!! ds1 xk

andBt denotes the Brownian motion28 whose pdf is the
joint normal distribution of the elements ofDBt . Then,
from Eq.~12! we have

p~xk116xk! 5
1

~2psp
2!L02 e

2
~xk112 Ix~xk!!'~xk112 Ix~xk!!

2sp
2 , ~13!

wheresp is the standard deviation of the modeling un-
certainty. Similarly, whenwk is white Gaussian noise,
from Eq.~1! we can write

p~ yk116xk11! 5
1

~2psm
2!M02 e

2
~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 ,

~14!

where againsm is the standard deviation of the noise. In
Eqs.~13! and~14!, the standard deviationssp andsm are
assumed to be constant for allkt ~k 5 0,1,2, . . .!. Sub-
stituting Eqs.~13! and~14! into Eq.~6! yields the Bayes-
ian rule for the recursive estimation of the conditional
distributionp~xk6 Tyk! when the modeling and measure-
ment uncertainties are random white Gaussian noise:
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p~xk116 Tyk11!

5

1

~2psp
2!L02~2psm

2!M02 E
Vk

e
2F ~xk112 Ix~xk!!'~xk112 Ix~xk!!

2sp
2 1

~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 G

p~xk6 Tyk! dxk

1

~2psp
2!L02~2psm

2!M02 E
Vk11

dxk11E
Vk

e
2F ~xk112 Ix~xk!!'~xk112 Ix~xk!!

2sp
2 1

~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 G

p~xk6 Tyk! dxk

[

1

~2psm
2!M02 e

2F ~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 G

pprior ~xk116 Tyk!

1

~2psm
2!M02 E

Vk11

dxk11e
2F ~ yk112h~xk11!!'~ yk112h~xk11!!

2sm
2 G

pprior ~xk116 Tyk!

~15!

with

pprior ~xk116 Tyk! 5
1

~2psp
2!L02 E

Vk

e
2F ~xk112 Ix~xk!!'~xk112 Ix~xk!!

2sp
2 G

p~xk6 Tyk! dxk .

In the case there are no system noise and0or model-
ing uncertainties andIx~xk! @see Eq.~12!# is invertible,
thenvvv5 0 and

p~xk116xk! 5 d~xk11 2 Ix~xk!! 5 d~l ~xk11! 2 xk! ,

~16!

wherel ~xk11! is the inverse of Ix~xk! andd denotes the
Dirac delta function; i.e.,

E
«

d~x 2 [x! dx 5 1

with « as an infinitesimally small ball around[x and
d~x 2 [x! 5 0 for x Þ [x. As an example for the inverse
function l ~xk11! and measurable setsxk [ Vk, consider
the system

_x 5 x .

Then,

xk11 5 Ix~xk! 5
xk

etk
etk11

and

xk 5 l ~xk11! 5
xk11

etk11
etk .

The setsxk [ Vk are measurable because eachxk is a
continuous function of and any continuous function is
~Borel! measurable.27 Continuing on with the case where
there is no system noise0or modeling uncertainties and
Ix~xk! is invertible, from Eqs.~6! and~16! we have

p~xk116 Tyk11!

5

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

p~xk116xk!p~xk6 Tyk! dxk

5

E
Vk

p~ yk116xk11!d~l ~xk11! 2 xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

d~l ~xk11! 2 xk!p~xk6 Tyk! dxk

[
L~xk116 yk11!pprior ~l ~xk11!6 Tyk!

E
Vk11

L~xk116 yk11!pprior ~l ~xk11!6 Tyk! dxk11

. ~17!

Equation~17! is the special case of Eq.~6! for the situ-
ation where there is no model uncertainty@i.e., vvv5 0 in
Eq. ~1!# . If Eq. ~1! has no closed-form solution or the
closed-form solution is not invertible, Eq.~6! needs to
be evaluated numerically. Section II.B shows how such a
numerical evaluation can be performed using the CCMT.

II.B. Application of the Continuous Bayesian
Estimator to the Discretized Representation

of the System Used by CCMT

The CCMT describes the dynamic system evolution
in terms of probability of transitions between user-
specified variable magnitude intervals or cells in the sys-
tem parameter0state-space during user-specified time
intervalskt # t # ~k11!t ~k5 0,1,2 . . .!. The cell sizes
may correspond to the desired estimation accuracy in
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unknown state variables or may be defined to contain the
signal noise.

Assume that thel’th componentxl of the state vari-
able vectorx 5 @x1, x2, . . . ,xL # falls within the range of
interestal # x l # bl ~l 51, . . . ,L! at all times. This range
of interest is partitioned intoJl ~l 51, . . . ,L! user-defined
intervals

Dl, jt 5 $xl : al, j l # xl , al, j l11;al,1 5 al ,al, J111 5 bl %

j l 5 1, . . . ,Jl ; l 5 1, . . . ,L . ~18!

The setsVj 5 $D1, j1,D2, j2, . . . ,DL, jL %~ j 5 1, . . . ,J 5

) l51
L Jl ! at locationsj 5 ~ j1, j2, . . . , jL ! in the discretized

L-dimensional state-space constitute computational cells
in a similar manner to those used by finite difference
and finite element methods. The cellxk [ Vj,k [ Vk that

the system is in at timet 5 kt contains a subsetEVk of
Vk but may also include points that are not withinEVk,
i.e., points that may not be achievable by the system
under any initial condition sinceVk consists of a union
of semiopen subintervals withinal # xl # bl ~l 51, . . . ,L!.
Figure 1 illustrates such a possible partitioning for a
hypothetical second-order system with three trajectories
corresponding to three sets of initial conditions and in-
dicates the possible cells the system can be in if one of
the state variables is directly measured. As Fig. 1 shows,
the set EVk contains the system locations within cell~7,6!
for trajectories 1 and 2 att 5 kt @and possibly other
points of cell~7,6! that the system could have reached
under other initial conditions# . On the other hand, cell
~7,6! may contain points that are never achievable by
the system under any initial condition due to the

Fig. 1. A possible partitioning for a second-order system.
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equations governing the dynamics of the system, just as the trajectory 3 location att 5 kt is not within cell~7,6! but
rather in cell~8,6!. Subsequently, cellVk provides a subcover27 for EVk ~but not forVk!.

Integrating both sides of Eq.~6! over the possible cellsjk11 where the system might be in at timet 5 ~k11!t, we
obtain

p~ jk116 Tyk11! 5

E
jk11

dxk11E
Vk

dxk p~ yk116xk11!p~xk116xk!p~xk6 Tyk!

(
jk11

E
jk11

dxk11E
Vk

dxk p~ yk116xk11!p~xk116xk!p~xk6 Tyk!

, ~19!

where

p~ jk116 Tyk11! 5 E
jk11

p~xk116 Tyk11! dxk11 ~20!

is the probability that the system is in celljk11 at time~k11!t. Note that from the definition ofp~ jk6 Tyk! in Eq. ~20!,
we can write

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk 5 (
jk

E
jk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
jk

p~xk6 Tyk! dxk

p~ jk6 Tyk! . ~21!

Substituting Eq.~21! into Eq.~19! we obtain

p~ jk116 Tyk11! 5

E
jk11

dxk11E
Vk

dxk p~ yk116xk11!p~xk116xk!p~xk6 Tyk!

(
jk11

E
jk11

dxk11E
Vk

dxk p~ yk116xk11!p~xk116xk!p~xk6 Tyk!

5

E
jk11

(
jk

E
jk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
jk

p~xk6 Tyk! dxk

p~ jk6 Sxk! dxk11

(
jk11

E
jk11

(
jk

E
jk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
jk

p~xk6 Tyk! dxk

p~ jk6 Tyk! dxk11

5

(
jk

p~ jk6 Tyk! EE
jk11, jk

p~ yk116xk11!p~xk116xk!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxkdxk11

(
jk11

(
jk

p~ jk6 Tyk! EE
jk11, jk

p~ yk116xk11!p~xk116xk!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxk dxk11

. ~22!

STATE0PARAMETER ESTIMATION 9

NUCLEAR SCIENCE AND ENGINEERING VOL. 147 MAY 2004



The fundamental difference between Eqs.~6! and~22! is
that the integrations in Eq.~6! are carried over the pos-
sible system locations at timest 5 kt andt 5 ~k11!t as
determined from Eq.~1! and given initial conditions and
represented, respectively, by the setsVk andVk11, whereas
the integrations in Eq.~22! are carried over cellVk at
jk and cellVk11 at jk11, which the system is in at these
times and which contain the subsetsEVk , Vk ~k50,1, . . .!.
In view of the explanation given above for the differ-
ence betweenVk and EVk, the p~ jk6 Tyk! as defined by
Eq. ~20! can be regarded as an outer measure27 for EVk.
The limitations and advantages of this approximation
will be discussed later in this section.

Now, define the cell-to-cell transition probability as

g~ jk116 jk! 5 EE
jk11, jk

p~ yk116xk11!p~xk116xk!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxkdxk11 . ~23!

The g~ jk116 jk! does not includeyk11 and Tyk as argu-
ments for notational simplicity and also becauseyk11
and Tyk are measured data points~and hence fixed!, whereas
jk11 and jk are arbitrary cells~i.e., variables!. Then,
Eqs.~22! and~23! yield the discrete counterpart of Eq.~6!
as

p~ jk116 Tyk11! 5

(
jk

g~ jk116 jk!p~ jk6 Tyk!

(
jk11

(
jk

g~ jk116 jk!p~ jk6 Tyk!
. ~24!

The cell-to-cell transition probabilities can be calculated
numerically from

g~ jk116 jk! 5 EE
jk11 jk

fw~ yk11 2 h~xk11!!

3 fDB~xk11 2 Ix~xk!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxkdxk11

' (
r

(
q

fw~ yk11 2 h~ [xk11
r !!

3 fDB~ [xk11
r 2 Ix~ [xk

q!!

3
p~ [xk

q6 Tyk!

E
jk

p~xk6 Tyk! dxk

D [xk
qD [xk11

r , ~25!

where

fDB, fw 5 user-specified pdf ’s for the system noise
@e.g., see Eq.~13!# and measurement noise
@e.g., see Eq.~14!# , respectively

[xk
q 5 quadrature points selected in celljk with

D [xk
q denoting small volumes that sur-

rounds [xk
q

[xk11
r 5 quadrature points selected in celljk11 with

D [xk11
r denoting the small volume that sur-

rounds [xk11
r .

Equation~25! constitutes a quadrature rule for the nu-
merical approximation ofg~ jk116 jk!; however, Monte
Carlo sampling can be also used for the approximation
of the integrals in Eq.~25!. The Ix~ [xk

q! can be evaluated
by any numerical integration technique from Eq.~1!. At
this point it should be mentioned that the equations de-
scribing the evolution of the system do not have to be
differential equations as assumed in Eq.~1!. All that is
needed is a ruleIx~xk! that yields the system location in
the state-space at time~k11!t given its location at time
kt, such as difference equations, neural nets, response
surfaces, tabular data, or algebraic equations.

If there is no modeling uncertainty, Eq.~25! can be
simplified using Eq.~16!. In this situation,

g~ jk116 jk! 5 EE
jk11 jk

p~ yk116xk11!d~xk11 2 Ix~xk!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxkdxk11

5E
jk

p~ yk116 Ix~xk!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~xk!! dxk

5E
jk

fw~ yk11 2 h~ Ix~xk!!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~xk!! dxk

' (
i

fw~ yk11 2 h~ Ix~ [xk
i !!!

3
p~ [xk

i 6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~ [xk
i !!D [xk ,

~26!

10 WANG and ALDEMIR

NUCLEAR SCIENCE AND ENGINEERING VOL. 147 MAY 2004



whereek11~ Ix~xk!! is defined as

ek11~ Ix~xk!! 5 H0 Ix~xk! Ó jk11

1 Ix~xk! [ jk11 ,
~27!

[xk
i ~i 5 1, . . . ,N! are points selected in celljk, andD [xk

i

is the small volume that surrounds[xk
i . In measure

theory, ek11~ Ix ~xk!! is called the indicator27 of EVk11
for Ix~xk! [ EVk11. The ek11~ Ix~xk!! is not Borel mea-
surable if EVk11 is not a Borel set, which would mean that
the integral over celljk11 in Eq. ~26! might have not
existed for some nonlinear systems if the integration were
carried over EVk11 rather than celljk11. Carrying the in-
tegration over celljk11 assures the existence of the inte-
gral as discussed above with regard to proposition 1 and
Eq.~22!; however, it may lead to loss of resolution in the
estimate as will be indicated below.

Further simplification of Eq.~26! can be made by
assuming that the probabilityp~ [xk

i 6 Tyk! is constant over
D [xk

i and selecting the points[xk
i equally spaced inside the

cell; then,

p~ [xk
i 6 Tyk!

E
jk

p~xk6 Tyk! dxk

5
p~ [xk

i 6 Tyk!

Np~ [xk
i 6 Tyk!D [xk

5
1

ND [xk

5
1

Vk

,

~28!

where Vk is the volume of celljk ~i.e., the product
D1, j1 D2, j2 . . .DL, jL ! and Eq.~26! becomes

g~ jk116 jk! 5 E
jk

fw~ yk11 2 h~ Ix~xk!!!

3
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~xk!! dxk

' (
i51

N

fw~ yk11 2 h~ Ix~ [xk
i !!!

3
p~ [xk

i 6 Tyk!

Np~ [xk
i 6 Tyk!D [xk

ek11~ Ix~ [xk
i !!D [xk

5 (
i51

N 1

N
fw~ yk11 2 h~ Ix~ [xk

i !!!

3 ek11~ Ix~ [xk
i !! . ~29!

Equations~23! and~24! are similar to the recursive esti-
mation rule reported in Ref. 20 on which the DSD soft-
ware package is based. However, the definition of the
cell-to-cell transition probabilities through Eq.~23! dif-
fers from this rule in the following respects:

1. The rule in Ref. 20 assumes there is no model
uncertainty~except possibly small random fluctuations
in system parameters that are contained within cellsVj !.

Equation~23! allows representing arbitrary distributions
of the model uncertainties through the termp~xk116xk!.

2. The rule in Ref. 20 assumes that only the state
variables are directly measured; i.e.,

yk 5 3
y1

y2

I

yi

4
k

5 3
x1

x2

I

xi

4
k

1 3
w1

w2

I

wi

4
k

k 5 1,2, . . .

] yk 5 @1 0# F [xSxGk

1 wk ,

where [x 5 @x1, x2, . . . ,xi # is the vector whose elements
are the monitored state variables andSx 5 @xi11,
xi12, . . . ,xL # is the vector whose elements are the unmon-
itored state variables. Hence, Eq.~23! allows arbitrary
observers, whereas Ref. 20 is restricted to the directly
measured components of the state variable vector.

3. The rule in Ref. 20 assumes thatwk is uniformly
distributed; i.e.,

fw~wk! 5 H1 6wk6# l

0 otherwise ,
~30!

while Eq.~23! allows arbitrary distributions ofwk through
the termp~ yk116xk11!.

4. In Ref. 20, cells Zj 5 $ j1 j2 . . . j i % and Nj 5
$ j i11 j i12 . . . jL % are defined in the monitored and unmon-
itored state variable spaces~i.e., j 5 $ Zj Nj %!, respec-
tively. The cells Zj contain the measured data pointy, and
Nj contain the measurement noise~i.e., Zjk 5 $ [xk : 6 [xk 2
yk6# l%!. The cell-to-cell transition probabilities are cal-
culated from

g~ jk116 jk! [ g~ Zjk11, Njk116 Zjk, Njk!

5E
jk

dxk

Vk

ek11~ Ix~xk!! , ~31!

wherejk is the cell containingxk andVk is the volume of
jk ~i.e., the productD1, j1 D2, j2 . . . DL, jL ! as defined before.

It can be shown that ifjs,k denotes the actual cell the
system is in at timet 5 kt andg~ jk116 jk! , g~ js,k116 jk!
for all jk11 Þ js,k11, then20

lim
kr`

p~ jk116 Tyk11! r djs,k11, jk11
,

djs,k11, jk11
5 H1 if jk11 5 js, k11

0 otherwise

irrespective of the choice ofp~ j06 y0!; i.e.,p~ jk116 Tyk11!
converges to the correct celljs,k11 irrespective of the
initial distribution used. The practical implication of
this result is that the choice of cells should be such that
the correct system trajectory can be adequately repre-
sented by theg~ jk116 jk!. Figure 2 illustrates such a
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representation for a hypothetical second-order system in
its phase-space. Note that the probabilitiesp [
p~ jk116 Tyk11! are highest on or close to the actual
trajectory.

While the conditiong~ js,k116 jk! . g~ jk116 jk! is prac-
tically not convenient for the selection of the cells due to
the computational effort required in its implementation,
it implies that convergence will be obtained with suffi-
ciently small cells. If the cells are small enough, we will
haveg~ js,k116 jk! 5 1 if jk11 5 js,k11 andg~ jk116 jk! 5 0
otherwise. Since this condition is obtained in Ref. 20
using just the counterpart of Eq.~24! and not Eq.~31!,
the condition is also valid for Eqs.~23! and~24!. Appen-
dix A shows that Eq.~23! reduces to Eq.~31! when dif-
ferences 1 through 4 are removed.

At this point it should be indicated that both the
original DSD algorithm defined through Eqs.~24! and
~31! ~and subsequently the convergence criteria above!
and the improved algorithm defined in Eqs.~23! and
~24!, in principle, still assumep~xk6 Tyk! to be measurable
over thex range of interest. For the improved algorithm,
this assumption is implicit in the steps:~a! replacing
integration over thex range of interest in Eq.~6! by a
sum of integrals over cellsVj in Eq. ~22! and~b! repre-
sentingp~xk6 Tyk! over cellsVj through its values at[xk

q in
Eq. ~25!, which are assumed to be constant overD [xk

q.
The assumption is carried over to Eq.~31! when differ-
ences 1 through 4 are removed. In that respect, refine-
ment of the partitioning scheme~i.e., decreasing the size

of Vj ! or the quadrature scheme@e.g., increasing the num-
ber of points [xk

q in Eq. ~25!# , as it is the conventional
wisdom for finite difference or finite element tech-
niques, may not lead to better resolution in the estimated
quantities ifVk containing all possiblexk at timet 5 kt
are not measurable sets. A good example is the situation
studied in Ref. 29, which uses an algorithm similar to
original DSD algorithm to identify the domains of attrac-
tion ~DOA! of the van der Pol oscillator~a limit cycle
and a single point! and calculates the cell-to-cell transi-
tion probabilitiesg~ jk116 jk! both analytically~exactly!
and numerically from the counterpart of Eq.~31!. It is
shown that the analytical approach@which implicitly as-
sumes thatIx~xk! in Eq. ~31! is integrable overVk# leads
to loss of resolution in the estimated DOA with respect
to the DOA estimated by the numerical approximation of
the integral in Eq.~31!. The paper shows that the loss of
resolution arises from an artificial connectivity between
the sets EVk ~for which Vk provide a finite subcover! dur-
ing the determination ofg~ jk116 jk!; however, it does not
explain the origin of the connectivity. In light of the
difference between Eqs.~6! and ~22! as explained ear-
lier, the connectivity can be attributed to forcing the orig-
inally noncompact EVk to be compact during the analytical
determination ofg~ jk116 jk! through integration over the
subcoverVk @which is the union of intervalsDl, j l 5 $xl :
al, j l # xl , al, j l11;al,1 5 al ,al, J111 5 bl % as given by
Eq. ~18! for somej l ~ j l 51, . . . ,Jl ; l 51, . . . ,L! and hence
connected30# rather than EVk. Such an explanation has

Fig. 2. Approximation of the phase-space trajectory of a hypothetical second-order system by CCMT.
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extended implications31 regarding previous work on re-
liability and safety analysis of dynamic systems32 as well.
On the other hand, experience with the original DSD
algorithm shows that evaluation of the integral in Eq.~31!
using quadratures can often yield successful results even
when Vk are not measurable, possibly also because
p~ jk6 Tyk! provides an outer measure for the setEVk as
indicated above in the discussion of the difference be-
tween Eqs.~6! and~22!. In addition to the problem con-
sidered in Ref. 29, a good example is the capability of
the original DSD algorithm to determine33 the bifurca-
tion parameter~which corresponds to the fuel-to-coolant
heat transfer coefficient! of the well-known reduced-
order boiling water reactor~BWR! model described in
Ref. 34 with observed neutron flux, temperature, and
pressure. The search in Ref. 23 is carried over a range of
the bifurcation parameters in which the BWR behavior
can switch from stable to periodic to chaotic. TheVk of
the system trajectories in neither periodic nor chaotic
behavior are Borel measurable, i.e.,Vk are not closed
under finite intersection and union of some open sub-
intervals in the ranges of interest since we cannot define
a sequencezk

~s! [ Vk such that limsr` zk
~s!

r xk [ Vk.

III. IMPLEMENTATION

This section compares the recursive procedure de-
fined by Eqs.~23! and~24! to the rule reported in Ref. 20
using a xenon evolution model and presents the results.

III.A. System Description

The system under consideration has been proposed
by Chernick35 and consists of three first-order, nonlinear
differential equations:

L
df

dt
5 Sr 2

sx

cSf

X 2 gfDf ,

dX

dt
5 yX Sf f 2 lx X 1 l I I 2 sX Xf ,

and

dI

dt
5 yI Sf f 2 l I I , ~32!

where

L 5 effective neutron generation time

f 5 neutron flux

X 5 135Xe concentration

I 5 135I concentration

c 5 conversion coefficient from xenon absorption
rate to reactivity

r 5 reactivity at zero flux and zero xenon poisoning

sX 5 microscopic absorption cross section for135Xe

Sf 5 core-averaged macroscopic absorption cross
section

g 5 flux coefficient of reactivity

lX 5 135Xe decay coefficient5 0.07530h

lI 5 135I decay coefficient5 0.10350h

yI 5 135I yield 5 0.06386

yX 5 135Xe yield5 0.00228

The values for the parameterslX,lI , yX, yI are generic
data. The other model parameters are reactor-specific
quantities, and the values obtained from The Ohio State
University Research Reactor36 will be used in this paper
~Table I!. For the purpose of this study, Eq.~32! is nor-
malized as

L
df

dt
5 Sr 2

sx

c

X

Sf

2 gfDf ,

dS X

Sf
D

dt
5 yX f 2 lX

X

Sf

1 lI

I

Sf

2 sX

X

Sf

f ,

and

dS I

Sf
D

dt
5 yI f 2 l I

I

Sf

. ~33!

The transient considered is a small step insertion of re-
activity with r 5 0.0005. Only the flux is assumed to be
measured, and the measurement is corrupted by noise;
i.e.,

yk 5 fk 1 wk ,

whereyk is the measurement andwk is the noise with the
pdf fw~wk!. The subscriptk is the time step index. We
will assume the noise is white noise andfw has the same
functional form for allt 5 kt.

TABLE I

Reactor-Dependent Parameters of Eq.~32!

c
g

~cm2{s!
sx

~cm2!
L
~s!

1.2384 3.973 10216 1.9843 10218 0.083
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Two cases will be considered in this section:

1. Given fw~wk! to be white Gaussian noise, esti-
mateX0Sf , I0Sf .

2. Given fw~wk! to be uniformly distributed, esti-
mateX0Sf , I0Sf .

Sections III.B and III.C describe the results for cases 1
and 2, respectively.

III.B. Estimation Results with Gaussian Noise
(Case 1)

Table II shows the data used in case 1 for the simu-
lation of the measured flux. The simulated system evo-
lution is shown in Fig. 3. The results for the actual flux
were obtained from the integration of Eq.~33! using a
fourth-order Runge-Kutta scheme. The results for the
measured fluxyk at time t 5 kt ~k 5 0,1,2, . . .! were
obtained by sampling from a normal distribution with
mean zero and standard deviation 0.00123 1013 ~see
Table II! using a random number generator and algebra-
ically adding the result to those obtained for the flux
f~t !. Since the noise is assumed to be Gaussian, it can-
not be contained within a single cellVj , and the proce-

dure described in Ref. 20 does not converge. In order to
apply the new procedure described in Sec. II, the parti-
tioning data used are shown in Table III.

Since there is no model uncertainty, the transition
probabilitiesg~ jk116 jk! are calculated from Eq.~26! @and
subsequently from Eq.~29!# with h~ Ix~xk!! 5 Ix~xk! and
fw having 0 mean and 0.00123 1013 standard variation.
The total number of quadrature points[xk

i ~i 5 1, . . . ,N!
selected in the approximation ofg~ jk116 jk! through
Eq. ~29! is N 5 3 3 3 3 3 5 9.

The estimated 99.99% credibility interval as a func-
tion of time for the measured values of flux and the
estimated value ofX0Sf , I0Sf are shown, respectively,
in Figs. 4, 5, and 6. From Fig. 4, we can see that the
estimated intervals for flux~denoted by vertical bars!
contain the measured datayk at all time points. Since
the estimation process cross-correlates the measured data
in view of the given pdf forwk @i.e., throughp~ yk116xk11!
in Eq. ~23!# and the system model~i.e., throughp~xk6 Tyk!!
in the determination ofg~ jk116 jk!, Fig. 4 implies that
the improved estimation procedure described by Eqs.~23!
and ~24! @or Eqs.~24! and ~26! when there is no mod-
eling uncertainty# can be also used for model uncertainty0
noise reduction in the measured data as will be shown

TABLE II

Data Used for Simulation of Xenon Evolution for Case 1

Initial Value
of f

Initial Value
of X0Sf

Initial Value
of I0Sf

Time Stept
~h!

Mean of
the Noise

Standard Deviation
of the Noise

0.013 1013 0.43 1013 0.53 1013 0.015 0 0.00123 1013

Fig. 3. Actual fluxf and its measured value~both simu-
lated! for case 1.

Fig. 4. Estimated interval of fluxf as a function of time
~solid line indicates the measured value of flux!.
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below. While the estimated interval forX0Sf , I0Sf is
still large after 40 time steps~see Figs. 5 and 6!, the
mean of the estimated distributions forf and X0Sf ,
I0Sf are close to their true values at all times as shown
in Figs. 7, 8, and 9, respectively. Figure 10 shows the
ratio of the posterior standard deviation over the noise
standard deviation~sestimate0snoise! for the flux. To-
gether with Fig. 7, which shows that the posterior mean
converges to the true flux value, Figs. 7 and 10 demon-
strate that the improved estimation procedure can re-
duce the uncertainty on the measurements by a factor
of sestimate0snoise5 60% for f after about 0.5 h.

Figures 11 and 12, respectively, show the evolution
of the posterior variance forX0Sf , I0Sf for case 1 using
t 5 0.015 h and the partitioning data in Table III. The
respective posterior standard deviations in the estimated
values ofX0Sf , I0Sf aresX 5 2.75973 1013 andsI 5
17.19133 1013 at the first time step. This uncertainty

TABLE III

The Partitioning Data Used for Case 1

Variables
Possible

Maximum Value
Possible

Minimum Value
Number
of Cells

Number of
Quadrature Points
[xk
i ~i 5 1, . . . ,N!
in Eq. ~26!

f 0.143 1013 0 103 3
X0Sf 103 1013 0.3973 1013 303 3
I0Sf 603 1013 0.3973 1013 303 3

Fig. 5. Estimated interval ofX0Sf as a function of time.

Fig. 6. Estimated interval ofI0Sf as a function of time.
Fig. 7. Mean value of the estimated distribution off for

case 1~solid line indicates the true value!.
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decreases tosX 5 0.178131013 andsI 5 6.105531013

at t 5 20t ~or 0.3 h! and stabilizes aroundsX 5 0.083
1013 andsI 5 0.83 1013 after t 5 65t ~or 1 h!.

III.C. Estimation Results with Uniform Noise
(Case 2)

Table IV shows the data used in case 2 for the sim-
ulation of measured values off. The simulated system
evolution is shown in Fig. 13.

The measured data were simulated by using the pro-
cedure described for case 1 in Sec. III.B with the data
listed in Table IV. The unknown state variablesX0Sf ,

I0Sf are estimated by two methods:~a! using the im-
proved procedure through Eqs.~24! and~26! and~b! the
previous DSD algorithm reported in Ref. 20. Both meth-
ods use the partitioning data listed in Table V. The evo-
lution of the estimated 99.99% credibility intervals for
f, X0Sf , I0Sf using the improved procedure is shown in
Figs. 14, 15, and 16, respectively, and the corresponding
expected values are shown in Figs. 17, 18, and 19. Fig-
ures 14 through 19 show that again the measured data
are within the expected uncertainty margins and conver-
gence is rapid. Figure 14 also illustrates the signal vali-
dation capability of the improved procedure. The fluxf
is estimated as 0.118331013 # f # 0.123731013 with

Fig. 8. Mean value of the estimated distribution ofX0Sf

for case 1~solid line indicates the true value!.

Fig. 9. Mean value of the estimated distribution ofI0Sf

for case 1~solid line indicates the true value!.

Fig. 10. The ratio of the estimated posterior standard de-
viation and the noise standard deviation forf.

Fig. 11. The evolution of posterior variance forX0Sf for
case 1.
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TABLE IV

Data Used for Simulation of System Evolution for Case 2

Initial Value
of f

Initial Value
of X0Sf

Initial Value
of I0Sf

Time Stept
~h!

Uncertainty Level
l 3 1013

@see Eq.~30!#

0.013 1013 0.43 1013 0.53 1013 0.015 0.012

Fig. 12. The evolution of posterior variance forI0Sf for
case 1.

Fig. 13. Actual fluxf and its measured valuey~t ! ~both
simulated! for case 2.

Fig. 14. Estimated interval of fluxf as a function of time
using Eqs.~24! and ~26! for case 2~solid line indicates the
measured value of flux!.

Fig. 15. Estimated interval ofX0Sf as a function of time
using Eqs.~24! and ~26! for case 2~solid line indicates the
measured value!.
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TABLE V

The Partitioning Data Used for Case 2

Variables
Possible

Maximum Value
Possible

Minimum Value
Number
of Cells

Number of
Quadrature Points
[xk
i ~i 5 1, . . . ,N!
in Eq. ~26!

f 0.143 1013 0 103 5
X0Sf 103 1013 0.3973 1013 303 3
I0Sf 603 1013 0.3973 1013 303 3

Fig. 16. Estimated interval ofI0Sf as a function of time
using Eqs.~24! and ~26! for case 2~solid line indicates the
measured value!.

Fig. 17. Mean value of the estimated distribution off for
case 2.

Fig. 18. Mean value of the estimated distribution ofX0Sf

for case 2.

Fig. 19. Mean value of the estimated distribution ofI0Sf

for case 2.
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99.99% confidence at timet 5 20t ~or 0.3 h!, which is
1 2 ~0.12372 0.1183!00.0125 55% smaller than the
measurement uncertainty level~see Table IV!. Similarly,
at time t 5 150t ~or 2.25 h!, the flux f is estimated as
0.09243 1013 # f # 0.09793 1013, which is also 12
~0.09792 0.0924!00.0125 54% reduction of the mea-
surement noise. These results again show that Eqs.~24!
and~26! can be also used to reduce the uncertainty in the
measurements for noisy data.

Figures 20 through 23 show the estimation results
for case 2 using the DSD algorithm in Ref. 20 with the
same partitioning data listed in Table V. Comparing
Figs. 20 through 23 to their respective counterparts,

Figs. 15, 16, 18, and 19, shows that better estimation
results are obtained by using Eqs.~24! and~26! than the
previous DSD algorithm. The estimation process con-
verges faster and provides smaller credibility intervals
for the unknown variables.

IV. THE RELATIONSHIP OF THE CCMT-
BASED STATE0PARAMETER ESTIMATION

TO CONVENTIONAL TECHNIQUES

As indicated in Sec. I, the original DSD algorithm is
based on the Chapman-Kolmogorov equation, which does

Fig. 20. Estimated interval ofX0Sf as a function of time
using the rules in Ref. 20 for case 2.

Fig. 21. Estimated interval ofI0S f as a function of time
using the rules in Ref. 20 for case 2.

Fig. 22. Mean value of the estimated distribution ofX0Sf

using the rules in Ref. 20 for case 2.

Fig. 23. Mean value of the estimated distribution ofI0Sf

using the rules in Ref. 20 for case 2.
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not provide a convenient framework to investigate the
relationship of DSD to conventional state0parameter es-
timation techniques. On the other hand, Sec. II.B shows
that the DSD algorithm is a special case of the hierarchi-
cal Bayes rule defined through Eq.~6! where the priors
p~xk6 Tyk! are recursively determined from

p~xk116 Tyk11!

5
L~xk116 yk11!pprior ~xk116 Tyk!

E
Vk11

dxk11L~xk116 yk11!pprior ~xk116 Tyk!

5

E
Vk

p~ yk116xk11!p~xk116xk!p~xk6 Tyk! dxk

E
Vk11

dxk11 p~ yk116xk11!E
Vk

p~xk116xk!p~xk6 Tyk! dxk

5
p~ yk116xk11!p~xk116 Tyk!

p~ yk116 Tyk!
~34!

] p~xk116 Tyk! 5Ep~xk116 Tyk11!p~ yk116 Tyk! dyk11 .

~35!

Equation~35! assumes thatyk as well asxk [ Vk at each
t 5 kt constitute measurable sets. This assumption is
realistic since the pdf forwk 5 yk 2 h~xk! is often de-
scribed through a measurable function~e.g., uniform,
Gaussian!. Then, for a stationary process~e.g., constant
parameter vectoru 5 @u1u2 . . .uM # to be estimated! with
the range of interest covering all possible values ofu
under consideration, the following can be shown37:

1. There is a unique solutionp~u! to Eq.~34!.

2. The sequencep~xk! converges monotonically in
L1 norm top~u!.

3. *6p~xk! 2 p~u!6dxk r 0 exponentially with in-
creasingk.

Other implications of Eq.~6! from estimation theory
are as follows:

Implication 1:For a set of constant parametersu 5
@u1u2 . . .uM # , the mode ofp~u6 Tyk! yields the maximum
likelihood estimate~MLE ! of u ~Ref. 38!.

Implication 2:For a set of constant parametersu 5
@u1u2 . . .uM # and forwk being white Gaussian noise, the
MLE of u is the least-squares estimate~LSE! of u
~Ref. 39!. Therefore, under these assumptions, the mode
of p~u6 Tyk! is also the LSE ofu.

Implication 3: If wk andvvv in Eq. ~1! are both white
Gaussian noise andf ~x!,h~x! are linear inx, then the
mean and covariance ofp~xk6 Tyk! obtained from Eq.~6!
are equivalent to those obtained from a Kalman filter.38

Subsequently, Eqs.~23! and ~24!, which constitute
the improved DSD algorithm and are equivalent to Eq.~6!
when the system evolution is represented using CCMT,
provide a practical state0parameter estimation proce-
dure that yields the same results as

1. the Kalman filter approach for linear dynamical
systems when the modeling uncertainties~i.e.,vvv!
and measurement noise~i.e., wk! have white
Gaussian pdf ’s

2. the MLE for algebraic systems with constant
parameters

3. the LSE for algebraic systems with constant pa-
rameters when the measurement noise is white
Gaussian.

It should be emphasized, however, the improved DSD
algorithm contains the Kalman filter, MLE, and LSE as
special cases and has a broader range of applicability
than any one of these methods. Section IV.B illustrates
implications 1, 2, and 3 using the constant temperature
power sensor described in Sec. IV.A.

IV.A. Constant Temperature Power Sensor

The following notation is used in Secs. IV.A and
IV.B:

Mi 5 mass of nodei ~i 5 1,2! ~kg!

Ci 5 specific heat capacity of nodei ~ i 5 1,2!
~J0kg{K !

Ai 5 external area of nodei ~i 5 1,2! ~m2!

Tis 5 steady-state temperature of nodei ~i 5 1,2!
~K !

U1 5 node-1-to-coolant heat transfer coefficient
~W0m2{K !

U2 5 node-2-to-node-1 heat transfer coefficient
~W0m2{K !

T̀ 5 coolant temperature~K !

Th 5 sensor heater wire reference temperature~K !

ih 5 electric current input into the heater wire~A!

a 5 heater wire temperature coefficient of resis-
tance~10K !

Rh 5 heater wire reference resistance~V!

_qn 5 nuclear energy input rate into node 2~W0kg!.

A recently developed in-core calorimetric instru-
ment called constant temperature power sensor40,41~CTPS!
can directly measure the local nuclear energy deposition
and heat transfer rate. The direct measurement of the
local nuclear energy deposition and the local heat trans-
fer rate reduces the uncertainty in the predicted thermal
margins, resulting in improvement in performance and
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economy of new reactor designs. This design concept is
based on the idea of adding heat through resistive dissi-
pation of input electrical energy, to a small mass of ac-
tual reactor fuel analogue~mode 1!. The CTPS~Fig. 24!
consists of a highly enriched UO2 core ~node 2! sur-
rounded by electrical heating resistance wire. The core is
contained in an alumina-based ceramic thermal insulator
~node 1!. The sensor core and the insulator are coated
with thin layers of copper. Heat is lost from the insulator
to the surrounding coolant. A feedback control loop is
used to provide the exact amount of input electrical en-
ergy in order to keep the fuel mass at a constant temper-
ature regardless of the nuclear energy generated in node 2.
In steady state~i.e., mode 1!, the input electrical energy
required will be related to the actual nuclear energy de-
position, given the assumption that the external heat trans-
fer rate remains constant; i.e.,

M2 _qn 1 @ih2Rh~11 a~T2s 2 Th!!#

5 A2U2~T2s 2 T1s! 5 A1U1~T1s 2 T̀ ! . ~36!

Equation~36! is simply an energy balance between the
sensor nodes and surrounding coolant, where_qn, U1, U2,
andT̀ are unknown. TheT1s is a known function ofT̀
andT2s ~which is measured!. The estimation process con-
sists of the following steps:

1. Supplyih until steady-state conditions are reached
~mode 1!.

2. Take the sensor temporarily out of the control
loop ~mode 2!, or practically, reduce the supplied elec-
trical currentih to 1% of the steady-state value in mode 1.
In mode 2, the variation of the node 2 temperatureT2 as
a function of timet can be represented as40

T2~t ! 5 T̀ 1 u1e2u2 t 1 u3e2u4 t 1 w , ~37!

where the exponentsu2 andu2 are related through

u2 1 u4

5 2
C2 M2~U2 A2 1 U1 A1! 1 C1 M1~21024ih

2Rha 1 U2 A2!

C1 M1C2 M2

and

u2u4

5
21024ih

2RhaU2 A2 1 U1 A1~21024ih
2Rha 1 U2 A2!

C1 M1C2 M2

.

~38!

In Eq.~37!, the quantityw represents model0measurement
uncertainty as in Eq.~1!. Equation~38! is obtained from
the two-node, lumped parameter representation of CTPS
under the assumption that the deviation of the node tem-
peratures in mode 2 from their steady-state values in
mode 1 is small enough to allow linearization around
these mode 1 temperatures.

3. MeasureT2~t ! @which also yieldsT̀ after the ex-
ponentials in Eq.~37! die out# and estimateui ~i 51, . . . ,4!
through Eqs.~24! and~26!.

4. Solve forU1 andU2 from Eq. ~38! with ui ~i 5
1,2! obtained in step 3.

5. Using theT̀ obtained in step 3 andUi ~i 5 1,2!
found in step 4, solve for_qn from Eq.~36!.

Work to date shows that the CTPS model parameters can
be estimated using the improved procedure through
Eqs. ~24! and ~26!, even when the sensor behavior is
represented through coupled nonlinear differential equa-
tions42 rather than a single algebraic equation such as
Eq. ~37!.

IV.B. Illustrations

Table VI summarizes the results of the comparison
of DSD with LSE, MLE, and Kalman filters using the
CTPS described in Sec. IV.A. The LSE results were ob-
tained by minimizing the objective function

Fig. 24. The constant temperature power sensor.

TABLE VI

Comparison of the Results for Different Estimators

Parameter0Estimator Zu1 Zu2 Zu3 Zu4

LSE 5.4854 0.2833 19.6994 2.7906
MLE 5.4825 0.2831 19.7017 2.7897
Kalman filter 6.9525 0.3464 18.4278 3.2104
DSD ~mode!a 5.4663 0.2865 19.7247 2.7978
DSD ~mean!b 5.4787 0.2829 19.6954 2.7865

aFor comparison to LSE and MLE.
bFor comparison to Kalman filter.
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(
k51

N

@T2,k 2 T̀ 2 Zu1e2 Zu2 tk 2 Zu3e2 Zu4 tk # 2 ~39!

with respect to Zu1, Zu2, Zu3, Zu4, whereT2,k 5 T2~tk!. The
likelihood function used for MLE was

F 1

M2p~0.1!
GN

exp32

(
k51

N

~T2,k 2 T̀ 2 Zu1e2 Zu2 tk 2 Zu3e2 Zu4 tk !2

0.2
4 .

~40!

The Kalman filter results were found from

Zuk 5 Zuk21 1 Kk~T2,k 2 T̀ 2 Zu1,k21e2 Zu2,k21 tk

2 Zu3,k21e2 Zu4,k21 tk ! , ~41!

where

Zuk 5 @ Zu1,k Zu2,k Zu3,k Zu4,k# ,

Hk
T 5 3

e2 Zu2,k tk

2 Zu1,k tke2 Zu2,k tk

e2 Zu4,k tk

2 Zu3,k tke2 Zu4,k tk

4 ,

Kk 5 Pk21Hk
T~HkPk21Hk

T 1 0.1!21 ,

and

Pk 5 ~I 2 KkHk!Pk21 ~42!

with I representing a 43 4 unit matrix andP0 5 10 I .
The partitioning data used for the DSD estimation are
shown in Table VII. In all cases, the noisewk in Eq. ~1!
was assumed to be Gaussian noise with mean 0, and the
variance was calculated by the sample variance ofT2,k as
0.1. The dataT2,k 5 T2~tk! with k 5 1, . . .,250 were gen-
erated using the more detailed finite element CTPS model
described in Ref. 40.

Table VI shows that there is good agreement among
the DSD, LSE, and MLE results, as expected. In general,
the differences among the DSD, LSE, and MLE are small
~within 0.1 to 1.2%!. In order to investigate the origin of
the larger differences between the Kalman filter and other

estimator results, another set of dataT2,k 5 T2~tk! with
k51, . . .,250 generated using Eq.~37! and the measure-
ment noise was simulated by sampling again from a nor-
mal distribution with mean 0 and variance 0.1 using a
random number generator~see Table VIII!. The estima-
tion results are shown in Table IX, which indicates that
with the data generated by Eq.~37! and Gaussian noise,
the difference between the DSD and Kalman filter is
reduced to,2.5%. The MLE and LSE results are in
good agreement with the DSD results in both Tables VI
and IX because, as indicated above, for a set of constant
parametersu 5 @u1u2 . . .uM # , ~a! the mode ofp~u6 Tyk!
yields the MLE of u and ~b! if wk is white Gaussian
noise, the MLE ofu is the LSE ofu. The explanation of
the reduction of the difference between the DSD and
Kalman filter results from Tables VI through IX is that
the data generated from the finite element model of
Ref. 40 do not conform to the functional form of Eq.~37!.
Subsequently,wk in Eq. ~37! is not strictly Gaussian as
assumed by the Kalman filter approach@see implication
3 following Eq.~35!# .

V. CONCLUSION

This study shows that the CCMT-based state0par-
ameter estimation procedure, originally based on the
Chapman-Kolmogorov equation20~or in its algorith-
mic form, DSD!, is equivalent to a recursive Bayesian

TABLE VII

DSD Partitioning Data Used for the CTPS Model

Parameter u1 u2 u3 u4

Maximum 7 0.6 22 3.5
Minimum 4 0.0 17 2.5
Number of cells 89 89 89 89
Number of quadrature points
[xk
i ~i 5 1, . . . ,N! in Eq. ~26!

3 3 3 3

TABLE VIII

Parameter Used for Simulation of Measured
Temperature from Eq.~37!

Parameter u1 u2 u3 u4

Mean of
the Noise

Variance of
the Noise

Value 5.4 0.28 19.7 2.8 0.0 0.1

TABLE IX

Comparison of the Results for Different Estimators for Data
Simulated from Eq.~37! and Gaussian Noise

Parameter0Estimator u1 u2 u3 u4

LSE 5.8026 0.2904 19.0819 2.9245
MLE 5.7935 0.2900 19.0888 2.9223
Kalman filter 5.8972 0.2948 18.9750 2.9163
DSD ~mode!a 5.8061 0.3000 19.1939 2.9388
DSD ~mean!b 5.7775 0.2889 19.0978 2.9174

aFor comparison to LSE and MLE.
bFor comparison to Kalman filter.
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estimator in the discretized system state0parameter space.
This Bayesian interpretation of the DSD algorithm

1. increases the applicability of methodology to ar-
bitrary observers and arbitrary noise distribu-
tions in the monitored data as well as to arbitrary
uncertainties in the model parameters

2. leads to improvements in the estimation speed
and accuracy, as illustrated using the Chernick
model35 of xenon evolution with temperature
feedback

3. establishes a link to conventional estimation
schemes such as MLE, LSE, and Kalman filter as
illustrated by the CTPS model.40

The improved DSD algorithm contains MLE, LSE, and
the Kalman filter as special cases and has a broader range
of applicability than any one of these methods regarding
system representation, modeling uncertainties and mea-
surement noise again as illustrated by the CTPS exam-
ple. The Bayesian interpretation also provides a possible
explanation for the origins of some unexplained phenom-
ena encountered in previous work.29

APPENDIX A

DERIVATION OF EQ.~31! FROM EQ.~23!

First, using Eq.~30! and noting thatyk11 5 [xk11 1 wk11 from difference 2, we have

p~ yk116xk11! 5 fw~ yk11 2 [xk11! 5 H1 6 [xk11 2 yk116# l

0 else
5 H1 [xk11 [ Zjk11

0 [xk11 Ó Zjk11 .
~A.1!

Recalling thatj 5 $ Zj Nj % andx 5 $ [x Sx% , the transition probabilityg~ Zjk11, Njk116 Zjk, Njk! can be written from Eq.~23!
as the following:

g~ jk116 jk! [ g~ Zjk11, Njk116 Zjk, Njk! 5 EE
Zjk11, Njk11

EE
Zjk, Njk

p~ yk116 [xk11, Sxk11!p~ [xk11, Sxk116 [xk, Sxk!

3
p~ [xk, Sxk6 Tyk!

E
jk

p~xk6 Tyk! dxk

d [xkd Sxkd [xk11d Sxk11

5 EE
Zjk11, Njk11

EE
Zjk, Njk

fw~ yk11 2 [xk11!p~ [xk11, Sxk116 [xk, Sx !

3
p~ [xk, Sxk6 Tyk!

E
jk

p~xk6 Tyk! dxk

d [xkd Sxkd [xk11d Sxk11 , ~A.2!

where [xk and Sxk denote the location of the monitored and unmonitored system variables in their respective spaces.
Using Eq.~A.1!, Eq. ~A.2! becomes

g~ jk116 jk! 5 g~ Zjk11, Njk116 Zjk, Njk!

5 EE
Zjk11, Njk11

EE
Zjk, Njk

p~ [xk11, Sxk116 [xk, Sxk!
p~ [xk, Sxk6 Tyk!

E
jk

p~ [xk, Sxk6 Tyk! d [xkd Sxk

d [xkd Sxkd [xk11d Sxk11

5 EE
jk11, jk

p~xk116xk!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxk11dxk , ~A.3!
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wherejk11 5 $ Zjk11 Njk11% andjk 5 $ Zjk Njk% . If there is no modeling uncertainty~i.e., difference 1 above!, Eq. ~16!
holds, and Eq.~A.3! becomes

g~ Zjk11, Njk116 Zjk, Njk! 5 EE
jk11, jk

p~xk116xk!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxk11dxk

5 EE
jk11, jk

d~xk11 2 Ix~xk!!
p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

dxk11dxk

5E
jk

p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

ek11~ Ix~xk!! dxk , ~A.4!

whereek11~ Ix~xk!! is as defined in Eq.~27!. Finally, by
assuming that the system location is uniformly distrib-
uted over the celljk and using Eq.~28!,

p~xk6 Tyk!

E
jk

p~xk6 Tyk! dxk

5
1

Vk

. ~A.5!

Then,

g~ Zjk11, Njk116 Zjk, Njk! 5
1

Vk
E

jk

ek11~ Ix~xk!! dxk , ~A.6!

which is the same as Eq.~31!.
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