MCSNA: Experimental Benchmarking of Pu Electronic Structure

PDF Version Also Available for Download.

Description

The objective of this work is to develop and/or apply advanced diagnostics to the understanding of aging of Pu. Advanced characterization techniques such as photoelectron and x-ray absorption spectroscopy will provide fundamental data on the electronic structure of Pu phases. These data are crucial for the validation of the electronic structure methods. The fundamental goal of this project is to narrow the parameter space for the theoretical modeling of Pu aging. The short-term goal is to perform experiments to validate electronic structure calculations of Pu. The long-term goal is to determine the effects of aging upon the electronic structure of ... continued below

Physical Description

PDF-file: 22 pages; size: 3.5 Mbytes

Creation Information

Tobin, J G January 29, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The objective of this work is to develop and/or apply advanced diagnostics to the understanding of aging of Pu. Advanced characterization techniques such as photoelectron and x-ray absorption spectroscopy will provide fundamental data on the electronic structure of Pu phases. These data are crucial for the validation of the electronic structure methods. The fundamental goal of this project is to narrow the parameter space for the theoretical modeling of Pu aging. The short-term goal is to perform experiments to validate electronic structure calculations of Pu. The long-term goal is to determine the effects of aging upon the electronic structure of Pu. Many of the input parameters for aging models are not directly measurable. These parameters will need to be calculated or estimated. Thus a First Principles-Approach Theory is needed, but it is unclear what terms are important in the Hamiltonian. (H{Psi} = E{Psi}) Therefore, experimental data concerning the 5f electronic structure are needed, to determine which terms in the Hamiltonian are important. The data obtained in this task are crucial for reducing the uncertainty of Task LL-01-developed models and predictions. The data impact the validation of electronic structure methods, the calculation of defect properties, the evaluation of helium diffusion, and the validation of void nucleation models. The importance of these activities increases if difficulties develop with the accelerating aging alloy approach.

Physical Description

PDF-file: 22 pages; size: 3.5 Mbytes

Source

  • Journal Name: MCSNA: Experimental Benchmarking of Pu Electronic Structure, vol. 986, N/A, January 1, 2007, pp. 1-20

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-227877
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 940499
  • Archival Resource Key: ark:/67531/metadc895608

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 29, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 29, 2016, 7:33 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tobin, J G. MCSNA: Experimental Benchmarking of Pu Electronic Structure, article, January 29, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc895608/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.