Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode

PDF Version Also Available for Download.

Description

The Diamond Amplified Photocathode (DAP) is a novel approach to generating electrons. By following the primary electron beam, which is generated by traditional electron sources, with an amplifier, the electron beam available to the eventual application is increased by 1 to 2 orders of magnitude in current. Diamond has a very wide band gap of 5.47eV which allows for a good negative electron affinity with simple hydrogenation, diamond can hold more than 2000MV/m field before breakdown. Diamond also provides the best rigidity among all materials. These two characters offer the capability of applying high voltage across very thin diamond film ... continued below

Creation Information

Wu,Q. October 1, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Diamond Amplified Photocathode (DAP) is a novel approach to generating electrons. By following the primary electron beam, which is generated by traditional electron sources, with an amplifier, the electron beam available to the eventual application is increased by 1 to 2 orders of magnitude in current. Diamond has a very wide band gap of 5.47eV which allows for a good negative electron affinity with simple hydrogenation, diamond can hold more than 2000MV/m field before breakdown. Diamond also provides the best rigidity among all materials. These two characters offer the capability of applying high voltage across very thin diamond film to achieve high SEY and desired emission phase. The diamond amplifier also is capable of handling a large heat load by conduction and sub-nanosecond pulse input. The preparation of the diamond amplifier includes thinning and polishing, cleaning with acid etching, metallization, and hydrogenation. The best mechanical polishing available can provide high purity single crystal diamond films with no less than 100 {micro}m thickness and <15 nm Ra surface roughness. The ideal thickness for 700MHz beam is {approx}30 {micro}m, which requires further thinning with RIE or laser ablation. RIE can achieve atomic layer removal precision and roughness eventually, but the time consumption for this procedure is very significant. Laser ablation proved that with <266nm ps laser beam, the ablation process on the diamond can easily achieve removing a few microns per hour from the surface and <100nm roughness. For amplifier application, laser ablation is an adequate and efficient process to make ultra thin diamond wafers following mechanical polishing. Hydrogenation will terminate the diamond surface with monolayer of hydrogen, and form NEA so that secondary electrons in the conduction band can escape into the vacuum. The method is using hydrogen cracker to strike hydrogen atoms onto the bare diamond surface to form H-C bonds. Two independent experiments were carried out to determine the transport of the electrons within the diamond and their emission at the surface. In transmission mode measurements, the diamond amplifier was coated with metal on both sides, so results simply depend only on the electron transport within the diamond. The SEY for this mode provides one secondary electron per 20eV energy, which gives the gain of more than 200 for 4.7keV (effective energy) primary electrons under 2MV/m. Laser detrapping can help the signal maintain the gain with lops pulse and duty cycle of 1.67 x 10{sup -7}. In emission mode measurements, in which the diamond is prepared as in the actual application, the SEY is {approx}20 for 700eV (effective energy) primary electrons under 1.21MV/m. The electric field applied and the primary electron energy is limited by the experiment setup, but the results show good trend toward large gain under high field. Thermal emittance of the diamond secondary emission is critical for the beam application. A careful design is setup to measure with very fine precision and accuracy of 0.01eV.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: BNL--81607-2008-IR
  • Grant Number: DE-AC02-98CH10886
  • DOI: 10.2172/939994 | External Link
  • Office of Scientific & Technical Information Report Number: 939994
  • Archival Resource Key: ark:/67531/metadc895600

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 1, 2016, 5:31 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wu,Q. Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode, report, October 1, 2008; United States. (digital.library.unt.edu/ark:/67531/metadc895600/: accessed June 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.