Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code

PDF Version Also Available for Download.

Description

The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, ... continued below

Physical Description

68

Creation Information

Chilton, Sven & Chilton, Sven H. July 1, 2008.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths.

Physical Description

68

Source

  • Related Information: Designation of Academic Dissertation: doctoral; Academic Degree: PHd; Name of Academic Institution: UCB; Location of Academic Institution: Berkeley, CA

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: LBNL-836E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 936526
  • Archival Resource Key: ark:/67531/metadc895570

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • July 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 11:56 a.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chilton, Sven & Chilton, Sven H. Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code, thesis or dissertation, July 1, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895570/: accessed October 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.