A Multi-Layer Phoswich Radioxenon Detection System (7th Qtr Report), Reporting Period 10/01/07 - 12/31/07

PDF Version Also Available for Download.

Description

Description of activities conducted this report period: (1) Electronics Development--To improve the overall performance of the two-channel digital pulse processor (DPP2), the PCB has been redesigned and the new printed board is now under assembly. The system is enhanced with two new fast ADCs from Analog Devices (AD9230-250), each with a sampling rate of 250 MHz and a resolution of 12 bits. The data bus uses a high performance Low Voltage Differential Signaling (LVDS) standard. The offset and gain of each channel are separately controlled digitally by the GUI software. (2) GUI Software Development--A GUI is being developed using the ... continued below

Creation Information

Hamby, David M. January 29, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Description of activities conducted this report period: (1) Electronics Development--To improve the overall performance of the two-channel digital pulse processor (DPP2), the PCB has been redesigned and the new printed board is now under assembly. The system is enhanced with two new fast ADCs from Analog Devices (AD9230-250), each with a sampling rate of 250 MHz and a resolution of 12 bits. The data bus uses a high performance Low Voltage Differential Signaling (LVDS) standard. The offset and gain of each channel are separately controlled digitally by the GUI software. (2) GUI Software Development--A GUI is being developed using the Python programming language. All functions from the preceding MATLAB code have been re-implemented including basic waveform readout, pulse shape discrimination, and plotting of energy spectra. In addition, the GUI can be used to control sampling runs based on the number of pulses captured, either in real or live time. Calibration coefficients and pulse shape discrimination boundaries can be changed on the fly so that the detector may be characterized experimentally. Plots generated by the GUI can be exported as graphic data. At present, the software has only been tested using one channel, pending availability of the new DPP board (DPP2). However, the functions have been written to allow easy expansion to two channels. (3) Light Collection Modeling--The XEPHWICH design has been modeled to determine its light capture efficiency. Research in the 7th quarter includes additional simulations representing significant increase in data resolution, well over an order of magnitude greater than previous simulations. The final data set represents approximately 11 billion visible photons divided equally among 110 thousand data points. A laboratory experiment is being designed and executed to experimentally determine light capture efficiency as a function of position within the scintillators. (4) Radioxenon Fission Source--We have designed and constructed a fission chamber to be used for the collection of radioxenon gases following neutron bombardment of HEU in the Oregon State University TRIGA reactor. The aluminum housing and all vacuum fittings have been assembled, awaiting an HEU transfer from PNNL. Students have worked closely with PNNL and OSU Radiation Safety personnel to facilitate transfer of the HEU. The OSU TRIGA Reactor Operations Committee has approved the experiment. (5) Spectral (beta) Recognition--Spectral identification by a neural network developed in our laboratory was compared to that of solvers of a linear system of equations. Data indicate that our neural network is capable of identifying three beta emission sources ({sup 14}C, {sup 36}Cl, and {sup 99}Tc) simultaneously with reliability to within 3%.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: 7th Quarter Technical Report
  • Grant Number: FC52-06NA27322
  • DOI: 10.2172/922616 | External Link
  • Office of Scientific & Technical Information Report Number: 922616
  • Archival Resource Key: ark:/67531/metadc895519

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 29, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 6, 2016, 1:43 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hamby, David M. A Multi-Layer Phoswich Radioxenon Detection System (7th Qtr Report), Reporting Period 10/01/07 - 12/31/07, report, January 29, 2008; United States. (digital.library.unt.edu/ark:/67531/metadc895519/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.