
UCRL-JRNL-219092

R-LODs: Fast LOD-Based Ray
Tracing of Massive Models

S.-E. Yoon, C. Lauterbach, D. Manocha

February 17, 2006

The Visual Computer



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



The Visual Computer manuscript No.
(will be inserted by the editor)

Sung-Eui Yoon · Christian Lauterbach · Dinesh Manocha

R-LODs: Fast LOD-based Ray Tracing of Massive Models

Abstract We present a novel LOD (level-of-detail) algo-
rithm to accelerate ray tracing of massive models. Our ap-
proach computes drastic simplifications of the model and
the LODs are well integrated with the kd-tree data structure.
We introduce a simple and efficient LOD metric to bound
the error for primary and secondary rays. The LOD rep-
resentation has small runtime overhead and our algorithm
can be combined with ray coherence techniques and cache-
coherent layouts to improve the performance. In practice,
the use of LODs can alleviate aliasing artifacts and improve
memory coherence. We implement our algorithm on both
32bit and 64bit machines and able to achieve up to 2–20
times improvement in frame rate of rendering models con-
sisting of tens or hundreds of millions of triangles with little
loss in image quality.

1 Introduction
In recent years, there has been a renewed interest in real-
time ray tracing for interactive applications. This is due to
many factors: firstly, processor speed has continued to rise
at exponential rates as predicted by Moore’s Law and is ap-
proaching the raw computational power needed for inter-
active ray tracing. Secondly, ray tracing algorithms can be
parallelized on shared memory and distributed memory sys-
tems. Therefore, the current hardware trend towards desktop
systems with multi-core CPUs and programmable GPUs can
be used to accelerate ray tracing. Finally, recent algorithmic
improvements that exploit ray coherence can achieve a sig-
nificant improvement in rendering time [22,31].

Our goal is to perform interactive ray tracing of massive
models consisting of tens or hundreds of millions of trian-
gles on current desktop systems. Such gigabyte-sized mod-
els are the result of advances in model acquisition, computer-
aided design (CAD), and simulation technologies and their
complexity makes interactive visualization and walk-throughs
a challenging task. In the context of rendering massive mod-
els, ray tracing has an important property: its asymptotic per-
formance is logarithmic in the number of primitives for a
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Fig. 1 St. Matthew Model: We use our LOD-based algorithm to ac-
celerate ray tracing of the St. Matthew model with shadows and re-
flections. We render the 128M triangle model at 512× 512 resolution
with 2 × 2 anti-aliasing and pixels-of-error (PoE) = 4. We are able
to achieve 2 − 3 frames per second on two dual-core Xeon processors
with 4GB of memory. We observe a 2− 20 times increase in the frame
rate due to R-LODs with very little loss in image quality.

given resolution. This is due to the use of hierarchical data
structures such as bounding volume hierarchies or kd-trees.
The asymptotic complexity makes ray tracing an attractive
choice, especially for rendering of massive models.

The logarithmic growth, however, continues only as long
as the system has sufficient main memory to contain the en-
tire model and hierarchical data structures. As models grow
much larger, the size of the hierarchical structure also in-
creases linearly and the underlying ray tracer performs its
computations in an out-of-core manner, slowing down dras-
tically. A major trend in computing hardware has been the
increasing gap between processor speed and memory speed.
Moreover, disk I/O accesses are in general more than three
orders of magnitude slower than main memory accesses. Be-
cause of these gaps, hardware advances are not expected to
provide an efficient solution to the problem of ray tracing
massive models.
Main Contributions: We present a new algorithm to ac-
celerate ray tracing of massive models using geometric levels-
of-detail (LODs). Our approach computes simple and drastic
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simplifications, called R-LODs, of the polygonal model. The
R-LODs have a compact representation and are tightly inte-
grated with the kd-tree. We present a simple and efficient
LOD error metric to bound the error for primary and sec-
ondary rays. Additionally, we use techniques based on ray
coherence and cache-oblivious layouts to improve the per-
formance of our LOD based ray tracing algorithm. R-LODs
also alleviate the temporal aliasing that can arise during ren-
dering of highly tessellated models.

We have implemented and tested our system on two ma-
chines running Windows XP 32-bit and 64-bit with two dual-
core Xeon CPUs and have evaluated its performance on dif-
ferent kinds of models with 20 − 128M triangles. The per-
formance gain of our LOD based ray tracer is proportional
to the reduction in the working set size and the number of
intersection tests. The frame rate improvement varies from
2 times on models with small working set size to almost
20 − 50 times on models with very large working set size.

Our ray tracing algorithm offers the following benefits:
1. Simplicity: R-LODs are very easy to implement and their

representation has small runtime overhead. Our algorithm
maintains the simplicity, coherence, and performance of
the kd-tree data structure.

2. Interactivity: The LOD based ray tracer provides a frame-
work for interactive ray tracing due to the fact that we
can trade off image quality for improved frame rate.

3. Front size: R-LODs reduce the size of the front tra-
versed in the kd-tree. This results in fewer ray intersec-
tion tests and decreases the size of the working set.

4. Coherence: R-LODs make memory accesses more co-
herent and reduce the number of L1/L2 cache misses and
page faults. Furthermore, they can also improve the per-
formance of ray coherence techniques.

5. Generality: Our algorithm is applicable to a wide va-
riety of polygonal models, including scanned and CAD
models.

Organization: The rest of the paper is organized in the
following manner: Section 2 gives a brief summary of prior
work in interactive rendering. We give an overview of our
approach in Section 3 and present the R-LOD representation
and computation algorithm in Section 4. Section 5 shows
acceleration techniques based on cache-coherent layouts and
ray coherence. We describe the implementation of our ray
tracer and analyze its performance on different models in
Section 6. Finally, Section 7 compares our algorithm with
other approaches.

2 Related work
In this section, we give a short overview of interactive ray
tracing and the use of LODs for interactive rendering.
2.1 Interactive Ray Tracing
Ray tracing was introduced by Appel [3] and Whitted [36]
and is a very well studied field. In this section, we just briefly
survey some recent techniques used to accelerate ray tracing,
but a detailed description is available in [27]. At a broad
level, we classify prior approaches into four categories:
Exploiting ray coherence: The underlying idea here is
not to trace each ray by itself, but to utilize the fact that
neighboring rays exhibit spatial coherence. Earlier attempts
to exploit this concept were beam tracing [11], pencil trac-
ing [26] and cone tracing [2]. More recently, Wald et al. [31]
group rays into bundles and use them to accelerate traver-
sal and intersection with primitives for all rays simultane-

Fig. 2 Double Eagle Tanker: The deck of the Double Eagle tanker
with shadows is shown using ray tracing. We are able to achieve 1-3fps
at 512 by 512 image resolution with 2x2 super-sampling and PoE = 4

on a dual Xeon workstation. In this model, the working set of the ray
tracer is low and we are able to achieve up to 2 times improvement in
the frame rate.

ously by taking advantage of SIMD instructions. Reshetov
et al. [22] propose an algorithm to integrate beam tracing
with the kd-tree spatial structure and were able to further
exploit ray coherence.
Hardware acceleration: Another trend has been to use
hardware support to accelerate ray tracing. Purcell et al. [21]
show that ray tracing could be adapted to the streaming model
of current programmable GPUs, which are mainly designed
for rasterization. Schmittler et al. [25] and Woop et al. [38]
present prototypes for a complete and programmable ray
tracing hardware architecture to run at interactive rates.
Parallel computing: Ray tracing is easily parallelizable
due to the fact that all rays can be traced independently.
Parker et al. [19], DeMarle at al. [7], and Dietrich et al. [8]
describe an interactive ray tracer for rendering large scien-
tific or CAD datasets running on shared memory or dis-
tributed architectures. Wald et al. [34] built a ray tracer to
run on clusters of commodity hardware machines and were
able to achieve interactive frame rates for large architectural
and CAD models. Both of these systems are mainly intended
for models that could be kept in the main memory of a shared
memory system or of PCs used in the cluster.
Large datasets: Many algorithms have been presented to
improve the performance of ray tracing on large datasets [7,
10,20,32]. Our approach is complimentary to these meth-
ods and can be combined with them to further improve the
performance.

2.2 Interactive Rendering using LODs and Out-of-Core
Techniques
LODs have been widely used to accelerate rasterization of
large polygonal datasets [16]. At a broad level, prior algo-
rithms can be classified into static LODs, view-dependent
simplification, image-based representations and hybrid com-
binations of geometric and image-based representations. Out-
of-core algorithms are an active area in computer graphics
and visualization with the goal to efficiently handle large
datasets [4]. LOD algorithms can be combined with out-of-
core techniques to rasterize large polygonal datasets com-
posed of tens or hundreds of millions of polygons at interac-
tive rates on commodity PCs [23,6,42,9].
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Fig. 3 Performance of Ray Tracing: We precompute simplified ver-
sions of the St. Matthew model and ray trace each simplification sepa-
rately from the same viewpoint. We measure the frame time and work-
ing set size of the ray-tracer, with and without R-LODs by using differ-
ent simplified models on a 64-bit machine with 2GB RAM. Notice the
big jump in frame time for ray tracing without R-LODs, as the working
set of ray tracing with massive models exceeds the available RAM. On
the other hand, our R-LOD based ray tracing combined with cache-
oblivious layouts (CO-layout) achieves near-constant performance in
terms of frame rate and the working size. The cache-oblivious layouts
increase the performance of our LOD ray tracer by 10−60% over the
depth-first layout.

LOD-based based algorithms can also be applied to ac-
celerate ray tracing. Christensen et al. [5] introduce a LOD
approach for an offline ray tracer based on ray differentials
[12]. Wand and Straßer [35] propose an algorithm for multi-
resolution ray tracing of point-sampled geometry based on
ray-differentials. Another approach is to integrate the LODs
into the hierarchical structure [37]. Recently, Stoll et al. [28]
proposed a novel architecture for dynamic multiresolution
ray tracing. They proposed a watertight multiresolution method
by interpolating between discrete LODs for each ray. Their
discrete LODs are computed from choosing proper tessella-
tion levels for subdivision meshes. Also, efficient algorithms
based on depth images can be used to accelerate ray tracing
[15,1].

3 Overview
In this section, we discuss many issues that govern the per-
formance of ray tracing and give an overview of our ap-
proach.
3.1 Ray tracing of massive models
In this paper, we restrict ourselves to triangulated models,
though our approach can also be extended to other primitives
such as point clouds. All efficient ray tracers employ hierar-
chical data structures to avoid testing each ray with every
primitive. We use the kd-tree, which is a special case of the
general BSP tree and has recently become a popular choice
due to its simplicity and performance [10,27]. Each node of
the kd-tree represents one subdivision of the parent’s space
and contains information about the axis-aligned plane used
for the split as well as pointers to its child nodes. We use the
optimized representation proposed by Wald et al. [30] and
extend it to efficiently handle LODs.
Out-of-core ray tracing: Ray tracers taking advantage of
hierarchical data structures should exhibit a logarithmic growth
rate as a function of the model complexity [31]. We mea-

sured the performance of a coherent ray tracer during render-
ing different simplification levels of the St. Matthew model,
as shown in Fig. 3. Our experiment indicates that ray tracing
performance increases as a logarithmic function of model
complexity as long as the kd-tree and primitives of a model
can fit in the main memory. However, once the model size
and the working set size of the kd-tree exceeds the available
main memory of the machine, the disk I/O significantly af-
fects the performance of the ray tracer.
Ray coherence: Recent approaches that exploit spatial and
ray coherence decrease the number of memory accesses and
therefore also the number of disk accesses for large models
[31,22]. These algorithms perform traversals and intersec-
tions for multiple spatially-coherent rays in a group at the
same time. In general, rays in a group exhibit higher coher-
ence at the higher levels of the kd-tree (that usually are in
main memory) because each ray in the group is likely to fol-
low same path in the tree as other rays. However, accesses to
the nodes deeper in the tree are incoherent and, thus, result
in disk cache misses, especially when dealing with massive
models, since bounding box of those nodes become smaller
compared to width of the ray group. Therefore, in order to
accelerate out-of-core ray tracing, we need to reduce the
number of accesses made to the nodes deeper in the tree.
3.2 Our Approach
We mainly address the problem of ray tracing massive mod-
els. If models have high depth complexity, current traver-
sal algorithms based on kd-trees can efficiently handle such
kinds of models. In this case, the working set size is pro-
portional to the number of visible primitives from the pri-
mary and secondary rays. Therefore, we primarily deal with
the problem of fast ray tracing when the number of visible
primitives is high.

We assume that each ray or ray bundle is represented
by a pyramidal beam or frustum. As described in the multi-
level ray tracing of Reshetov et al. [22], during traversal the
frustum is checked for intersection with the bounding box of
the current kd-tree node by using an inverse frustum culling
approach. This results in two interesting cases:
1. Models with large primitives: If the bounding box of
the node is larger than the frustum, it is likely that the node
intersects with the whole beam, i.e. we can exploit spatial
coherence. Typically, architectural models or CAD models
result in such cases whenever the model is coarsely tessel-
lated, has large planar primitives or is viewed at close range.
2. Highly tessellated models: In this case, the bounding box
is much smaller than the frustum. This implies that the beam
needs to be split into smaller sub-beams. However, if the
beam represents just one ray, then further subdivision is not
possible, even though the sub-tree represented by the node
has a high number of descendants and, thus, there is high
local geometric complexity. Therefore, ray coherence ap-
proaches like multi-level ray tracing and ray packet tracing
fall back to normal ray tracing and may not offer much ben-
efit. For example, consider ray tracing a St.Matthew model
consisting of 128M triangles at a resolution of 10242 pri-
mary rays. Assume that every ray hits the model and half
of the model’s triangles are visible to the eye. In this case,
fewer than 1% of the actual triangles are hit by one of the
rays. Moreover, each of these triangles is sampled as a rep-
resentative of several triangles in the subtree. This has two
consequences: first, the memory accesses may be incoherent
because each triangle may lie in a different part of memory.
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Fig. 5 LOD Representation: A R-LOD consists of a plane with ma-
terial attributes. It serves as a drastic simplification of triangle prim-
itives contained in the bounding box of the subtree of a kd-tree node.
Its extent is implicitly given by its containing kd-node. The plane rep-
resentation makes the intersection between a ray and a R-LOD very
efficiently and results in a compact representation.

Secondly, temporal aliasing can occur between frames since
it is likely that a different triangle will be chosen in succes-
sive frames.

Our novel LOD-based ray tracing algorithm handles this
second case by choosing our precomputed R-LOD represen-
tation when traversal determines that a LOD metric is satis-
fied. This means that traversal can stop before reaching the
deep levels of the tree, reducing the number of incoherent
accesses and the size of the working set, while maintain-
ing ray coherence so that related techniques still work well.
As a result, we obtain significant improvements in rendering
speed.

4 LOD-Based Ray Tracing
In this section we present the R-LODs that are used to ac-
celerate ray tracing. We first describe our R-LOD represen-
tation and the modified traversal algorithm. Then we present
our LOD error metric and the R-LOD construction algo-
rithm.
4.1 R-LOD Representation for Ray Tracing
Our goal for interactive ray tracing is to design a LOD rep-
resentation that retains the benefits of kd-tree based acceler-
ation algorithms, i.e. simplicity, efficiency and low runtime
overhead.

A R-LOD consists of a plane with material attributes
(e.g. color), which is a drastic simplification of the descen-
dant triangles contained in an inner node of the kd-tree, as
shown in Fig. 5. Each R-LOD is also associated with a sur-
face deviation error which is used to quantify the projected
screen-space error at runtime.

Let us assume that the original tree has height h, where
h ≈ log

2
(n), and n is the number of triangles in the original

model. The R-LOD associated with a kd-tree node at height
k is a simplification into a plane of the 2k descendant trian-
gles. Our choice to use such a representation is motivated by
the following goals:
Simple and efficient LOD representation: Current ray ob-
ject intersection algorithms based on the kd-tree are highly
optimized for interactive ray tracing. We use simple repre-
sentations for LODs to minimize storage and traversal over-
head. Each R-LOD adds 4 bytes to an inner node of the kd-
tree. We also use a simple and fast LOD selection algorithm
to reduce the traversal overhead.
Drastic model simplification: The computational workload
of ray tracing is a logarithmic function of the model com-
plexity. If the model size is reduced by a factor of m, the

pixel inscribed spere with
(Rp)

projection plane

kd-node

center

R̂ ≤ R

R
R̂p

Sphere enclosing
the kd-node

Fig. 6 Projection-based LOD Metric: We place a projection plane at
the intersection point between a ray and the kd-node. The plane is or-
thogonal to the ray. Based on this projection plane, we conservatively
check whether the R-LOD satisfies the error metric.

tree traversal overhead reduces by only log(m). As a result,
m has to be a significant number, say 23or 24.
Error-controllable LOD rendering: In order to control the
errors caused by using R-LODs, we associate a deviation
error metric and compute a screen-space projection in terms
of pixels-of-error (PoE) deviation. Also, we assume that our
drastically simplified LOD representations are mainly used
given small PoE values (e.g., 1–4 pixels at image resolution
1024 × 1024) for high-quality rendering. However, one can
efficiently explore a model with a high PoE; once a desired
view is found, high-quality image can be acquired by setting
a low PoE.

4.2 Runtime Traversal with R-LODs
Our new traversal algorithm is a modification of the efficient
traversal algorithm described in Wald’s thesis [30] and [29].
We recursively traverse the kd-tree from the root node or
the entry-point that is computed using multi-level ray trac-
ing. When we reach an intermediate node associated with
a R-LOD, we check whether we can use the R-LOD based
on our LOD error metric. If the current R-LOD satisfies the
LOD error metric, we perform an intersection test between
a R-LOD and the ray. If there is an intersection, we stop the
traversal and return the intersection data of the R-LOD to
compute shading and shoot secondary rays, if necessary. If
there is no intersection, the algorithm does not traverse the
child nodes of the intermediate node associated with the R-
LOD. Each R-LOD is bounded by a kd-node and therefore,
the extent of the plane of the R-LOD is implicitly bounded
by the kd-node during tree traversal. The implicit extent of
the plane results in a compact R-LOD representation.

4.3 LOD Error Metric Evaluation
We use a projection-based algorithm integrated with surface
deviation error to select appropriate LODs for ray tracing.
Conservative projection algorithm: We use a projection
method to efficiently compare the screen-space area of the
R-LOD after the perspective projection with the PoE in the
screen-space. Conceptually, we position a projection plane
at the intersection between the ray and the kd-tree node. The
plane is set to be orthogonal to the ray, as shown in Fig. 6.
We enclose the R-LOD (and its corresponding simplified ge-
ometry) in a sphere. The area of the R-LOD projected onto
the projection plane is conservatively measured by comput-
ing πR2, where R is the radius of the sphere. Let Rp be the
radius of a sphere inscribed in a rectangular shape pixel of
the image screen. In this case, Rp is simply half of the width
of the pixel. Then, the projected area of a pixel in the pro-
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(a) No LOD (b) PoE = 4

Fig. 4 Forest Model: We render the forest model consisting of 32 million triangles with shadow rays using PoE = 0 and PoE = 4. The image
resolutions are 512 × 512 without anti-aliasing to highlight image quality differences. We are able to render the model given the viewpoint at
the 1.6 frames per second and achieve 5 times improvement by using R-LODs.

jection plane satisfies the following relationship:

dnear

Rp

=
dmin

R̂p

⇒ R̂p = dmin

Rp

dnear

= dminC, (1)

where R̂p is the projected radius of Rp, dnear is the distance
from the viewer to the image plane, and dmin is the distance
from the viewer to the intersection point between the ray and
the kd-node. Since Rp

dnear

(= C) is a constant, the projected
radius, R̂p, is a simple linear function of the distance, dmin,
along the ray from the eye to the intersecting node. We select
an R-LOD if R̂p, is bigger than the radius, R, associated with
the R-LOD. Our LOD metric is very efficient as it requires
only one multiplication and dmin is already known during
the tree traversal.
Surface deviation: The error metric described above con-
servatively measures the projected screen-space area of the
R-LOD. We augment the metric to take into account the sur-
face deviation of a R-LOD. For this we first measure the sur-
face deviation between the plane of the R-LOD and all the
contained triangles. We combine the surface deviation and
the projected screen-space area of the R-LOD in the follow-
ing geometric formulation. We compute the volume of the
surface deviation along the plane and add this volume to the
volume of the sphere enclosing the R-LOD. We then treat the
summed volume as a volume of an imaginary sphere and use
its radius as the error bound of the R-LOD. In this geometric
formulation, these two seeming different error bounds can
be treated in a uniform manner.
Error quantization: The exact representation of the plane
and associated materials takes 32 bytes. Instead of directly
associating this information with each node of the kd-tree,
we quantize the error bounds associated with the R-LODs
and store the quantized error bound as well as an R-LOD in-
dex in a 4 byte structure as the part of the kd-node in order
to reduce the working set size during traversals. Therefore,

only if the error bound of an R-LOD is satisfied within the
PoE bound, we load the exact R-LOD representation by us-
ing the R-LOD index. When considering a path from a leaf
node of the kd-tree to the root node, the error bounds asso-
ciated with the nodes increase as a geometric series. There-
fore, we use a geometric distribution equation to quantize
the error values associated with the R-LODs. We found that
5 bits are enough (i.e. 10%–20% quantization error) to con-
servatively quantize the error bound of the R-LODs in our
benchmarks; therefore, each R-LOD index is stored in 27
bits, which are enough to indicate all the R-LODs in our
tested models.

Secondary rays: Our LOD metric based on conservative
projection also extends to secondary rays. These include re-
flection (in which a ray reflects at an intersection point with a
reflective triangle) and shadow rays. This is mainly because
these secondary rays can be expressed as a linear transfor-
mation [11]. In the case of reflection, the radius, Rp, of the
sphere inscribed in the pixels of the image space increases
linearly based on the sum of the distance from the viewer to
an intersecting reflective triangle, and to another intersecting
object along the primary or reflective secondary rays. Simi-
larly, our metric also works well for shadow rays and again
we use a linear transformation. One issue with using LODs
for shadow rays is that they can result in self-shadowing ar-
tifacts when different versions of the R-LODs are selected
by the primary ray and the shadow ray. We overcome this
problem by ignoring the intersections between the shadow
ray and the primitives that are within the LOD error bounds
associated with the R-LOD selected by the primary ray.

Our projection-based method does not work with refrac-
tion, since refraction is not a linear transformation [11]. In
this case, we can use a more general, but expensive method
based on ray differentials [12], to decide whether an R-LOD
satisfies the PoE bound after refraction.



6 Sung-Eui Yoon et al.

4.4 R-LOD Construction
Our goal is to compute a plane that approximates the tri-
angles that are contained in the subtree of an intermediate
kd-node and also their material properties. If a triangle con-
tained in the subtree is not fully contained in the bounding
box of the node, we clip the triangle against the box and
do not consider the clipped portion of the triangle. We use
principal component analysis (PCA [13]), to compute the
plane. PCA computes the eigenvectors that provide a statis-
tical description of input points. We perform PCA computa-
tion based on the vertices of the triangles, but also take into
account the size of the triangles by associating the area of
the triangle as a weight for each vertex. The plane is com-
puted based on the eigenvector associated with the largest
eigenvalue and this eigenvector represents the normal to the
plane1. We compute material properties that are mean val-
ues of the contained triangles and associate them with the
R-LOD. The surface deviation of the plane against the geo-
metric primitives is computed based on the smallest eigen-
value, which corresponds to a variance of geometry along
the normal of the plane.
Hierarchical R-LOD computation: We can compute the
R-LODs associated with each node of the tree in a bottom-
up manner. However, a naive algorithm would compute the
R-LOD for each node independently and this can result in a
O(n log n) algorithm.

Instead, we present a R-LOD computation algorithm that
has linear time complexity and is well suited for out-of-core
computation. Each element, σij , of (i, j)th component of a
covariance matrix for PCA is defined as the following:

σij =

n∑

k=1

(V k
i − µi)(V

k
j − µj), (2)

where V k
i is the ith component (e.g. x, y, and z) of kth vertex

data, µi is the mean of V k
i , and n is the number of vertices.

This equation can be reformulated as:

σi,j =
n∑

k=1

V k
i V k

j −
2

n

n∑

k=1

V k
i

n∑

k=1

V k
j +

1

n2

n∑

k=1

V k
i

n∑

k=1

V k
j ,

(3)

It follows that if we can compute and store the sums of V k
i ,

V k
j , V k

i V k
j , and n, we can compute the covariance with these

sums and n for any intermediate node. In order to compute
the covariance matrix of a parent node, we simply add these
variables as a weighted sum of the number of vertices con-
tained in each child node. This property is particularly useful
to compute the R-LODs of inner nodes in the kd-tree in an
out-of-core manner. Our algorithm has linear time complex-
ity and its memory overhead is a function of the height of the
tree. In practice, the memory overhead in our benchmarks is
less than 1MB.
4.5 C0 Discontinuity between R-LODs
Our LOD computation algorithm computes a drastic simpli-
fication. Therefore, if the underlying triangles have high cur-
vature, the PCA-based approximation can have high surface

1 The direction of the normal is chosen to be closer to the average
normal of triangles.

Fig. 7 C
0 Discontinuity: The left image shows the Stanford dragon

model as rendered by our approach with PoE = 0, i.e. using original
triangles. The top right image was acquired by setting PoE = 5 at
512 × 512 image resolution with no expansion of R-LODs. As can
be seen in the area of the dragon’s eye, there is a hole caused by C

0

discontinuity of our LOD representation. By allowing a small amount
of expansion of R-LODs, we can avoid having holes in the final image
as shown in the bottom right image. Close-ups of the eye are shown in
boxes with yellow borders.

deviation. In this case, it is possible that our algorithm does
not maintain C0 continuity between R-LODs, which can re-
sult in some holes in the resulting image (see Fig. 7). This
kind of problem has been well-studied in the LOD and point-
based rendering literature. Particularly, many techniques in
the LOD literature have been proposed to patch these holes
using precomputed data structures or runtime algorithms [6,
42]. However, those approaches can increase the storage and
runtime overhead of ray tracing algorithms. In our imple-
mentation, we do not use any patching techniques.

Instead, we ameliorate this problem through our R-LOD
selection algorithm. A very low PoE bound should be used
to limit the error introduced by the R-LODs. The low PoE
bound also minimizes temporal popping that can arise when
we switch between the R-LODs of parent and children nodes
during successive frames. Moreover, we assign higher weight
to surface deviation computation as part of the error metric
computation; therefore, higher resolutions are used in the re-
gion with high curvature.
Expansion of R-LODs: In addition to these two heuris-
tics, we also expand the extents of R-LODs to remove holes
caused by C0 discontinuity between R-LODs. Please note
that as the surface deviation increases, it is likely that gaps
become larger. Therefore, we increase the extent of a R-LOD
as a function of the surface deviation associated with the
R-LOD. This expansion is efficiently considered during the
plane and ray intersection as an additional numerical toler-
ance. In practice, we found that combining these heuristics
work well to remove holes caused by C0 discontinuity with-
out introducing any noticeable visual artifact given low PoE
error bounds (see Fig. 7).

5 Utilizing Coherences
In this section, we describe approaches to improve the per-
formance of our ray tracing algorithm using ray coherence
and cache-coherent layouts.
5.1 Ray Coherence
We define ray coherence as the coherence of rays in tree
traversal and intersection, i.e. rays may take a similar path
in the tree and may hit the same triangles. For primary rays,
our ray tracer starts out by assuming there is ray coherence
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Model Vert. Tri. Node Size R-LOD
(M) (M) (M) (GB) Comp. (min)

Forest 19 32 105 4.1 10

Double eagle 77.7 81.7 173 9.1 32

St. Matthew 128 256 378 26 124

Table 1 Benchmark models
Model complexity, the number of kd-nodes, the total size of kd-tree,
geometry, and R-LODs, and the construction time of R-LODs are

shown.

and shoots a beam using the algorithm presented in [22]. We
compute a common entry point in the tree for all rays in the
beam, at which the beam is split into either sub-beams or ray
packets depending on its size. For the latter case, we use the
coherent ray tracing algorithm [31] which works on a 2 × 2
packet of rays in parallel using current processors’ SIMD in-
structions. During all traversal, we check whether we need
to use R-LODs that have appropriate resolution based on our
LOD metric. If so, we stop traversal of that subtree and in-
tersect with the simplified representation. If the given model
is highly tessellated, beam tracing and the use of SIMD in-
structions may not work well and can even lead to a decrease
in performance (as explained in Section 3.2). However, we
found that the use of R-LODs alleviates this problem, as we
generally do not traverse as deep into the tree and therefore
execute less overhead intersections. Secondary rays can be
also handled in a similar manner.
5.2 Cache Coherence
Recently, there has been efforts to compute cache-coherent
layouts of meshes [40,39]. Since a kd-tree is more frequently
accessed than its input mesh at runtime, it is more highly
desirable to maintain cache coherence during run-time tree
traversals to help to achieve good performance. To achieve
this goal, it is critical to predict the runtime access behavior
and closely store kd-nodes that are likely to be accessed in
the succession. In order to predict the runtime behavior on
kd-nodes during tree traversal, we use a simple method to
compute the probability that a node will be accessed given
that its parent node has been accessed before, based on their
geometric relationship [41]. The ray tracing algorithm tra-
verses the child nodes from the parent node when there is an
intersection between a ray and the bounding box of the par-
ent node. Therefore, we estimate that the probability that the
child node is accessed increases as its surface area compared
to its parent node increases. This property is already well ex-
ploited by the kd-tree construction algorithms by using the
surface areas of the bounding boxes of the kd-nodes [17].
The layouts can increase the performance of the ray tracer
by 10 − 60% on massive models. This is in addition to the
speedups obtained by R-LODs.

6 Implementation and Results
In this section, we describe our implementation and high-
light the performance of our ray tracer on different bench-
marks.
6.1 Implementation
We have implemented our R-LOD construction algorithm
and ray tracer on both 32-bit and 64-bit machines that have
two dual-core Xeon processors running 32-bit and 64-bit
Windows XP, respectively. For runtime ray tracing, we use
memory mapped files to efficiently access large files of ge-
ometry and kd-tree. However, in the 32-bit OS, we can only
map up to 3GB total memory. To deal with larger data, we
have implemented explicit out-of-core memory access man-
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Fig. 9 Performance variation as a function of PoE: We show the
relative benefit of R-LODs on different aspects of overall performance
of ray tracing St. Matthew model. We measured the rendering time,
average number of processed node per ray, and size of working set on
a 32-bit Xeon machine with 2GB RAM. All these values are shown in a
scale-invariant manner by linearly scaling their maximum values to 1.
The performance of our LOD-based ray tracer drastically decreases as
we linearly increase the PoE. Moreover, the graph indicates that there
is high correlation between the performance of the ray tracer and the
size of working set. Image shots generated by tested PoE values can be
seen in Fig. 8.

agement. This is not necessary in the 64-bit OS where we
just use implicit OS memory mapping functionality.

In order to construct the kd-tree for a model that does not
fit into main memory, we first subdivide the model into vox-
els in an out-of-core manner and then build the kd-tree for
each of these voxels individually in core [42]. This step can
also be performed in parallel on different voxels for speeding
up the construction. Afterwards, the kd-tree for each voxel
is merged into the global tree, which is used for ray tracing.

Since we have found that the quality of the kd-tree is the
most important factor for fast ray tracing, we build the kd-
tree using the surface-area heuristic [17,10] and some fur-
ther improvements as presented by [22]. Especially impor-
tant is to introduce extra splits for empty areas in order to
bound the geometry more tightly for our R-LOD representa-
tion.
6.2 Results
Benchmarks: We have applied our LOD-based ray trac-
ing algorithm to different benchmarks as shown in Table
1. We computed different paths through these models and
measured the performance of the ray tracer with and with-
out LODs using a small PoE metric. We use a resolution
of 512 × 512 pixels for interactive rendering. We also use
2 × 2 super-sampling per pixel; therefore, we effectively
shoot 1K × 1K rays from the eye for each frame. We are
able to render most of these models at 5 − 12 frames a sec-
ond with primary rays and 1 − 8 frames a second when we
include reflections and shadow rays. These results are shown
in the video.
Preprocessing: We only compute R-LODs for a subset of
the nodes in the kd-tree to avoid excessive memory over-
head. Our current implementation selects every third node
on the path from the root node to the leaf node. Our unopti-
mized R-LOD construction implementation can process 2–3
million triangles per minute; most of the processing time is
spent on reading data from the disk. The size of R-LODs
associated with each node takes less than 10% of the total
storage. However, if we consider the additional 4 bytes for
R-LOD index and quantized error bound in the kd-nodes,
total storage overhead of our R-LOD nodes is roughly 33%
compared to the optimized kd-tree representation[30].
Performance variation as a function of PoE: We vary
the PoE metric for the St. Matthew model (256M triangles)
and measure its benefit on the rendering time, average num-
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(a) No LOD (b) PoE = 2.5 (c) PoE = 5
Fig. 8 Images of the St. Matthew model with different PoE values are shown at 512 × 512 image resolutions. We do not use anti-aliasing to
highlight image quality difference. Please note that the original St. Matthew model has many holes. The use of R-LODs can alleviate aliasing
artifacts and improve the performance of massive models.

ber of processed nodes per ray, and size of working set per
frame. The working set is measured at a granularity of 4KB.
In order to show the relative benefit, we linearly scale each
value into [0, 1] by scaling the maximum value of each item
to 1. The min and max values of each item are as follows:
rendering time (ms)(160, 11914), size of the working set(MB)
(2, 1565), and average number of processed nodes per ray
(13.6, 22.42). As can be seen in Fig. 9, the performance of
the ray tracer increases drastically as we linearly increase the
PoE values.
Runtime performance: The benefit of LODs varies with
the reduction in the working set size. For a highly tessel-
lated St. Matthew model with 128M triangles, we achieve
more than one order of magnitude reduction in the size of
the working set and almost two orders of magnitude im-
provement in the frame rate. This model has low depth com-
plexity and more than half the primitives are visible from
the eye. We show the frame rates obtained during render-
ing of the St. Matthew model with and without R-LODs and
cache-oblivious layouts in Fig. 10. Moreover, we are able
to achieve 2.6 frames per second while rendering the model
with shadow and reflection with little loss of image quality
(see. Fig. 1). For the forest model shown in Fig. 4, we are
able to achieve more than five times improvement by using
R-LODs.

In the case of the Double Eagle tanker, we get 10%–
200% improvement. This model has high depth complexity
and is not highly tessellated. As a result, the performance im-
provement due to LODs is limited. An image of the tanker
with shadows is shown in Fig. 2.

7 Analysis and Comparison
In this section, we analyze the performance of our ray trac-
ing algorithm and also compare its performance to prior ap-
proaches. We also discuss some limitations of our approach.
7.1 Analysis
We first examine different aspects of our R-LOD represen-
tation.
R-LOD overhead: Our algorithm introduces 4 bytes of
additional storage for each kd-node. We also measure the ad-
ditional computational overhead of evaluating our LOD met-
ric during traversal by comparing the runtime performance
on the Stanford scanned dragon model (870K triangles) of
the standard ray tracer using 8 byte sized kd-nodes and of

our ray tracer, which uses 12 byte-sized nodes with stored R-
LODs. In order to measure the overhead of R-LODs, we set
our PoE metric to 0 during LOD tree traversal; consequently,
the image quality is the same in both cases. We found that
the R-LOD overhead for storage and traversal reduces the
performance by 2%–5%, as compared to ray tracing as de-
scribed in [30].
Performance gains: The use of R-LODs reduces both com-
putational workload and memory requirements. A major ben-
efit of R-LODs is the reduction of the working set size and
cache miss ratios of the runtime algorithm. This size de-
creases almost as a exponential function of the PoE as shown
in Fig. 9. As a result, we get fewer L1/L2 cache misses and
page faults and our new ray tracing algorithm is more cache
coherent.

7.2 Comparison to other approaches
Our algorithm integrates R-LODs with the kd-tree represen-
tation for ray tracing. The idea of using an integrated hier-
archical representation for traversal, visibility and simplifi-
cation has been used by other algorithms for interactive ren-
dering. These include the QSplat system [23], which uses
a hierarchy of spheres and a screen space PoE metric to
stop the tree traversal at a node. However, QSplat is mainly
designed for point datasets or dense meshes arising from
scanned models. Moreover, our LOD computation and er-
ror metric evaluation algorithms are different from QSplat
as we take into account primary and secondary rays. The
Quick-VDR system [42] uses a two-level multiresolution hi-
erarchy called CHPM for view-dependent simplification and
visibility culling of large polygonal models. However, the
CHPM representation has a high memory overhead and does
not lend itself well to ray tracing.

Several other ray tracing algorithms based on LODs have
been proposed. The algorithm that is closest to our approach
is the out-of-core ray tracer described in [32]. While we use
R-LODs to perform fewer node and triangle intersections,
Wald et al. use a simplified version only when the data is
not in main memory in order to hide the latency incurred by
loading data from the disk. This approach works well when
the working set is smaller than main memory. Our LOD
based algorithm is complimentary to their work and uses a
different representation to reduce the size of the working set
and perform fewer ray intersections.
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Fig. 10 Frame time with and without R-LODs: The graphs shows
frame times while rendering the 128M St. Matthew model with/without
R-LODs and cache-oblivious (CO) layout. We measure frame time
when we approach the model starting from the viewpoint shown in Fig.
8. The path is also shown in the video.

Pharr et al. [20] describe an algorithm to optimize mem-
ory coherence in ray tracing. In their approach, the rays are
reordered so that they access the scene data in a coherent
manner. Their prime application was accelerating ray trac-
ing for offline rendering. Our LOD based approach is quite
complimentary to their algorithm. The LOD-based renderer
described by Christensen et al.[5] differs from ours in two
respects. Firstly, it uses subdivision meshes. Therefore, it is
primarily useful for computing appropriate tessellation lev-
els from the coarsest resolution. On the other hand, we com-
pute the R-LODs from the original mesh. Secondly, Chris-
tensen et al. use ray differentials, which is expensive for real-
time ray tracing. In contrast, our LOD metric is very efficient
and optimized for interactive rendering.
7.3 Limitations
Our approach has certain limitations. First of all, any LOD-
based acceleration technique can result in visual artifacts.
We minimize these artifacts by using a low PoE bound and
combining the projected screen-space error and surface de-
viation error of an R-LOD. If we use a high PoE bound, the
R-LODs may result in holes on the simplified representa-
tion. This visual artifact can be removed by employing im-
plicit surfaces[33,14] as a LOD and thereby sacrificing some
of the efficiency of our LOD representation. Moreover, our
current R-LOD representation is a drastic simplification of
the underlying geometric primitives and their material prop-
erties. As a result, the R-LOD representation may not pro-
vide high quality simplification for surfaces that have highly
varying BRDF. One possibility is to use a more complex re-
flectance representation [18] in such cases. Also, our LOD
metric does not give guarantees on the errors in the path
traced by the secondary rays and the illumination computed
at each pixel. However, we indirectly reduce the differences
by reducing errors associated with the R-LODs. Finally, our
efficient projection-based LOD error metric can currently
handle planar reflections and shadow rays, but not refraction
nor non-planar reflection.

8 Conclusion and Future Work
We have presented a novel LOD-based ray tracing algorithm
to improve the performance of ray tracing massive models.
We use the R-LOD representation as a drastic simplifica-
tion of geometric primitives contained in the subtree of a
kd-node and select the LODs based on our projection-based
LOD error metric. We have described a hierarchical R-LOD
construction algorithm that has linear time complexity and is
well suited for out-of-core computation. The use of R-LODs
results in fewer intersection tests and can significantly im-
prove the memory coherence of the ray tracing algorithm.
We have observed more than an order of magnitude speedup

on massive models, and most of these gains are due to im-
proved memory coherence and fewer cache misses.

There are many avenues for future work. In addition to
addressing current limitations of our approaches, we would
like to extend our current R-LOD representation to support
smooth implicit surfaces to improve the rendering quality,
and still have a compact representation. Moreover, we would
like to extend our approach to handle other kinds of input
model types such as point clouds [24] and higher order prim-
itives. It might be useful to integrate approximate visibility
criteria within our efficient LOD metric to further improve
the performance ray tracing on massive models with high
depth complexity. Also, we would like to consider visibility
issues during construction of R-LODs in order to have better
visual quality. Furthermore, we are interested in evaluating
our ray tracer on other complex datasets and measuring the
performance benefit. LODs could also be potentially useful
in the context of designing future hardware for interactive
ray tracing.
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