Final Report PetaScale Application Development Analysis Grant Number DE-FG02-04ER25629

PDF Version Also Available for Download.

Description

The results obtained from this project will fundamentally change the way we look at computer performance analysis. These results are made possible by the precise definition of a consistent system of measurement with a set of primary units designed specifically for computer performance analysis. This system of units, along with their associated dimensions, allows us to apply the methods of dimensional analysis, based on the Pi Theorem, to define scaling and self-similarity relationships. These relationships reveal new insights into experimental results that otherwise seems only vaguely correlated. Applying the method to cache-miss data revealed scaling relationships that were not seen ... continued below

Creation Information

Numrich, Robert W. June 20, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The results obtained from this project will fundamentally change the way we look at computer performance analysis. These results are made possible by the precise definition of a consistent system of measurement with a set of primary units designed specifically for computer performance analysis. This system of units, along with their associated dimensions, allows us to apply the methods of dimensional analysis, based on the Pi Theorem, to define scaling and self-similarity relationships. These relationships reveal new insights into experimental results that otherwise seems only vaguely correlated. Applying the method to cache-miss data revealed scaling relationships that were not seen by those who originally collected the data. Applying dimensional analysis to the performance of parallel numerical algorithms revealed that computational force is a unifying concept for understanding the interaction between hardware and software. The efficiency of these algorithms depends, in a very intimate way, on the balance between hardware forces and software forces. Analysis of five different algorithms showed that performance analysis can be reduced to a study of the differential geometry of the efficiency surface. Each algorithm defines a set of curvilinear coordinates, specific to that algorithm, and different machines follow different paths along the surface depending on the difference in balance between hardware forces and software forces. Two machines with the same balance in forces follow the same path and are self-similar. The most important result from the project is the statement of the Principle of Computational Least Action. This principle follows from the identification of a dynamical system underlying computer performance analysis. Instructions in a computer are modeled as a classical system under the influence of computational forces. Each instruction generates kinetic energy during execution, and the sum of the kinetic energy for all instructions produces a kinetic energy spectrum as a function of time. These spectra look very much like the spectra used by chemists to analyze properties of molecules. Large spikes in the spectra reveal events during execution, like cache misses, that limit performance. The area under the kinetic energy spectrum is the computational action generated by the program. This computational action defines a normed metric space that measures the size of a program in terms of its action norm and the distance between programs in terms of the norm of the difference of their action. This same idea can be applied to a set of programmers writing code and leads to a computational action metric that measures programmer productivity. In both cases, experimental evidence suggests that highly efficient programs and highly productive programmers generate the least computational action.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/25629-1
  • Grant Number: FG02-04ER25629
  • DOI: 10.2172/948514 | External Link
  • Office of Scientific & Technical Information Report Number: 948514
  • Archival Resource Key: ark:/67531/metadc895493

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 20, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 4, 2016, 7:11 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Numrich, Robert W. Final Report PetaScale Application Development Analysis Grant Number DE-FG02-04ER25629, report, June 20, 2008; United States. (digital.library.unt.edu/ark:/67531/metadc895493/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.