Characterizing fault-plume intersection probability for geologic carbon sequestration risk assessment

PDF Version Also Available for Download.

Description

Leakage of CO{sub 2} out of the designated storage region via faults is a widely recognized concern for geologic carbon sequestration. The probability of such leakage can be separated into the probability of a plume encountering a fault and the probability of flow along such a fault. In the absence of deterministic fault location information, the first probability can be calculated from regional fault population statistics and modeling of the plume shape and size. In this study, fault statistical parameters were measured or estimated for WESTCARB's Phase III pilot test injection in the San Joaquin Valley, California. Combining CO{sub 2} ... continued below

Creation Information

Jordan, Preston D.; Oldenburg, Curtis M. & Nicot, Jean-Philippe November 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Leakage of CO{sub 2} out of the designated storage region via faults is a widely recognized concern for geologic carbon sequestration. The probability of such leakage can be separated into the probability of a plume encountering a fault and the probability of flow along such a fault. In the absence of deterministic fault location information, the first probability can be calculated from regional fault population statistics and modeling of the plume shape and size. In this study, fault statistical parameters were measured or estimated for WESTCARB's Phase III pilot test injection in the San Joaquin Valley, California. Combining CO{sub 2} plume model predictions with estimated fault characteristics resulted in a 3% probability that the CO{sub 2} plume will encounter a fault fully offsetting the 180 m (590 ft) thick seal. The probability of leakage is lower, likely much lower, as faults with this offset are probably low-permeability features in this area.

Source

  • Energy Procedia, GHGT9 Conference, Washington, DC, Nov. 16-20, 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1522E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 948499
  • Archival Resource Key: ark:/67531/metadc895428

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 29, 2017, 4:11 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jordan, Preston D.; Oldenburg, Curtis M. & Nicot, Jean-Philippe. Characterizing fault-plume intersection probability for geologic carbon sequestration risk assessment, article, November 1, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895428/: accessed May 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.