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Gravity monitoring of CO2 movement 

 

ABSTRACT 

 

We examine the relative merits of gravity measurements as a monitoring tool for 

geological CO2 sequestration in three different modeling scenarios. The first is a 

combined CO2 enhanced oil recovery (EOR) and sequestration in a producing oil field, 

the second is sequestration in a brine formation, and the third is for a coalbed methane 

formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals 

with multiple fluid components (oil, hydrocarbon gas, brine, and CO2), whereas brine 

formations usually have much thicker injection intervals and only two components (brine 
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and CO2). Coal formations undergoing methane extraction tend to be thin (3-10 m), but 

shallow compared to either EOR or brine formations. The injection of CO2 into the oil 

reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the 

change in the vertical component of gravity (Gz) is directly correlated with the net change 

in reservoir density. Furthermore, time-lapse changes in the borehole Gz clearly identified 

the vertical section of the reservoir where fluid saturations are changing. The CO2-brine 

front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 

30% CO2 and 70% brine saturations, respectively, produced a -10 �Gal surface gravity 

anomaly. Such anomaly would be detectable in the field. The amount of CO2 in a coalbed 

methane test scenario did not produce a large enough surface gravity response; however, 

we would expect that for an industrial size injection, the surface gravity response would 

be measurable. Gravity inversions in all three scenarios illustrated that the general 

position of density changes caused by CO2 can be recovered, but not the absolute value of 

the change. Analysis of the spatial resolution and detectability limits shows that gravity 

measurements could, under certain circumstances, be used as a lower-cost alternative to 

seismic measurements.  

 

INTRODUCTION 

 

Cost effective monitoring of reservoir fluid movement during CO2 sequestration 

is a necessary part of a practical geologic sequestration strategy. Seismic techniques are 

well developed for monitoring production in petroleum reservoirs. The cost of time-lapse 

seismic monitoring in such cases is justified, because it is small compared to the profits 
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from the hydrocarbon production. However, the cost of seismic monitoring techniques is 

more difficult to justify in an environment of sequestration, where the process produces 

no direct profit. Therefore, other geophysical techniques such as gravity, which might 

provide sufficient monitoring resolution at a significantly lower cost, need to be 

considered.  

Petroleum reservoirs have the natural advantages of being already well 

characterized, having a demonstrated seal, having an existing infrastructure, and offering 

cost offsets in the form of enhanced petroleum production as CO2 is injected. From a 

monitoring standpoint, petroleum reservoirs offer more challenges than brine formations 

because they typically have less vertical extent, and have multiple in situ fluids (oil, 

hydrocarbon gas, brine, and CO2). Brine formations usually have much thicker potential 

injection intervals and only two components (brine and CO2). However, they would need 

to be characterized, and an infrastructure for injection and monitoring CO2 would have to 

be built. Coal formations undergoing methane extraction will tend to be thin (3 to 10 m) 

but shallow compared to either petroleum reservoirs or brine formations. In this paper, 

we consider the time-lapse performance of gravity monitoring, using models derived 

from reservoir flow simulations of three CO2 sequestration scenarios in: (1) an oil 

reservoir, (2) a brine formation, and (3) a depleted coalbed methane formation.  

Gravity methods are sensitive to density change. The density of CO2, typical 

reservoir fluids, and various combinations of both can be easily calculated (NIST14, 

1992); thus, it is possible to assess expected changes in geophysical properties. For most 

of the depth interval of interest for sequestration, CO2 is less dense and more 

compressible than brine or oil, and less dense than coal; consequently, gravity methods 
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are reasonable candidate methods for brine, oil-bearing formations or depleted coalbed 

methane reservoirs.  

The bulk rock density Dbulk of the reservoir is calculated using: 

2 2 2bulk w CO grain w brine CO COD (1 S S )D S D S D= − − + + ,       (1) 

where Sw is the brine saturation, SCO2 is the CO2 saturation, Dgrain is the grain density, 

Dbrine is the brine density, and DCO2 is the CO2 density. We neglect the density effect of 

CO2 dissolved in the brine; the grain density depends on reservoir formation.  

 The feasibility of any geophysical technique depends not only on the inherent 

resolution of the technique, but on the magnitude of the change in the measured 

geophysical properties produced by increasing the CO2 concentration. Hence, calculating 

the expected gravity response of different models is an essential part of a survey design. 

We calculate responses for three sequestration scenarios, and discuss when the use of 

gravity monitoring is appropriate.  

Inversion of gravity data is very important, since construction of density contrast 

models significantly increases the amount of information that can be extracted from the 

gravity data. However, one substantial difficulty with the inversion of gravity data is its 

inherent non-uniqueness and lack of inherent depth resolution. This difficulty can be 

overcome by introduction of a priori information. We adopted the approach described by 

Smith et al. (1999) for magnetotelluric data inversion, in which the top and base of the 

reservoir are known, and we invert for a smooth density variation inside the reservoir. 

The inversion result is a cumulative density change in the reservoir as a function of x and 

y coordinates. We discuss inversion results for each scenario separately.   
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EOR/SEQUESTRATION MODEL 

 

The enhanced oil recovery (EOR)/sequestration reservoir in our model was a 

sandstone unit with about 30% porosity and 25-30 m thickness, at a depth of 1150–1350 

m. Time-lapse models of the reservoir were run at initial conditions and seven 5-year 

increments. In this paper, we show only the change caused by CO2 injection over 20 

years. A rock properties model, developed from log data, related reservoir parameters to 

geophysical parameters and aided in converting flow-simulation model parameters to 

geophysical parameters. The time-lapse measurements of the reservoir were used to 

produce time-lapse changes in geophysical properties that can be related to the movement 

of CO2 within the injection interval. A water-after-gas (WAG) injection strategy was 

considered, which produces complicated spatial variations in both CO2 saturation (SCO2) 

and brine saturation (Sw) within the reservoir over time.  

In general, since at reservoir conditions CO2 is less dense than either oil or water, 

the addition of CO2 to the reservoir causes a reduction in the measured gravitational 

attraction either at the surface or in a borehole. (We assume that porosity does not vary as 

gas is injected.) Net density changes within the reservoir over 20 years of CO2 injection 

are shown in Figure 1a, while net changes of CO2 saturation are shown in Figure 1b. A 

WAG injection strategy produces complicated spatial variations in water and CO2 

saturations, and in turn variations in net density within the reservoir over time. Cool 

colors (blue) represent density increase and low SCO2, whereas warm colors (red, yellow, 

green) represent density decrease and high SCO2. Black symbols indicate injection well 

locations. Gasperikova and Hoversten (2006) showed that the time-lapse change in the 
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vertical attraction of gravity (Gz) at the ground surface caused by the change in CO2 

saturation after 20 years was on the order of 3 μGal, which is right at the level of 

repeatability for a field survey using current technology (Hare et al., 1999; Brown et al., 

2003). Note that brine formations, which are generally thicker than petroleum reservoirs, 

would at the same depths produce measurable responses. This was the experience at the 

Sleipner CO2 project (Nooner et al., 2003) for a gravity survey conducted in 2002.  

Access to boreholes allows gravity measurements to be made closer to the 

reservoir, thus strengthening the signal compared to observations made on the surface. 

We calculated the response at a depth of 1200 m (10-100 m above the reservoir). As 

expected, the calculated magnitude of change in Gz was larger than for surface 

measurements and measurable in the boreholes with current commercial technology 

(Thomsen et al., 2003). However, access exclusively through the existing injection wells 

would substantially reduce the data coverage. Figure 2 shows a map of contoured 

changes in Gz measured only in the 22 injection wells at a depth of 1200 m. Warm colors 

represent a decrease in Gz due to presence of CO2, while cool colors represent an increase 

in Gz due to presence of water.  

In general, interpretation of the interpolated Gz changes from the existing 22 

boreholes would lead to an overestimate of the CO2 saturation changes in the reservoir. 

This problem is particularly evident at the north end of the reservoir, where increased 

CO2 saturation at two isolated wells produces an interpolated image that would be 

interpreted as increased CO2 between the wells where no CO2 exists. Borehole 

measurements need to be used in conjunction with some form of surface measurement to 

guide the interpolation between wells. Alternatively, pressure testing between wells could 
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provide estimates of spatial variations in permeability that could be used to condition, in 

a statistical sense, the interpolation of the borehole gravity data. Many possibilities exist 

for combining borehole data with other information to produce more accurate maps of 

change within the reservoir.  

The inversion result of Gz data measured in 22 wells at a depth of 1200 m is 

shown in Figure 3, in the form of a cumulative density change as a function of x and y 

coordinates. Again, warm colors represent a density decrease, whereas cool colors 

represent a density increase and black symbols indicate well locations. The inversion 

used the top and the bottom of the reservoir as a priori information. The cell size used for 

a reservoir density model in the inversion domain was 500 x 500 x reservoir thickness 

(m). The choice of the cell size is governed by the spacing between the observation wells 

(which averages 2-3 km), in an attempt to reduce overparameterization of the inverse 

problem.  

The inversion recovers locations with increased CO2 saturation accurately, except 

in the area running northwest-southeast in the north part of the field, where no boreholes 

were present. The magnitude of density variation close to the wells recovered by 

inversion is close to the true value. However, as the distance from the observation wells 

increases, the constraint on the possible density variation decreases. This coupled with 

the smoothing constraint of the inversion, acts to produce density variations that, in 

general, have a lower magnitude than found in the true model. The complex nature of the 

true density variations, with both positive and negative variations, allows many smooth 

models of lower amplitude variations, which fit the observed data equally well. Although 

the magnitude of the density variations recovered by inversion are too low, the spatial 
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distribution of positive and negative changes in density are highly correlated with the true 

variations, and thus can be used to interpret the spatial distribution of CO2 in the 

reservoir. In the future, if borehole gravity measurements can be combined with 

additional information to produce a more accurate interpolated map of Gz, the inversion 

result would improve the density distribution throughout the entire field.  

In addition to considering spatial variations in Gz, both on the surface and at a 

single depth within boreholes, we calculated the response of Gz in vertical profiles down 

boreholes. Figure 4a and 4b are the changes in Sw and SCO2, respectively, over 20 years of 

CO2 injection along a vertical slice through the reservoir at one injection well. At the top 

of the reservoir near the injection well, Sw decreases while SCO2 increases. At the bottom 

of the reservoir, both SCO2 and Sw increase slightly. The difference in Gz calculated from 

measured Gz in the borehole before and after injection, shown in Figure 5, reflects this 

change by a decrease in the response at the top of the reservoir and an increase in the 

response at the bottom. The reservoir interval is between 1325 and 1350 m at this 

location (outlined by the shaded gray area in Figure 5). The change in Gz is ± 8 μGal, 

clearly identifying the position of fluid saturation changes within the reservoir. The sign 

of the change reflects the changes in the local densities caused by the combined changes 

in all fluids (oil, brine, and CO2).  

 Popta et al. (1990) showed that a geological structure with a sufficient density 

contrast can be detected by borehole gravity measurements, if the observation well is not 

further away than one or two times the thickness of the zone of density contrast. We 

calculated a borehole gravity response for a CO2 wedge of 250 m radius and density of 

2,260 kg/m3 (representing 20% CO2 saturation in 20% porosity), inside of a 100 m thick 
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sand layer with a density of 2,285 kg/m3 at a depth of 1 km (Figure 6a). The background 

density was 2,160 kg/m3. Borehole gravity response as a function of distance from the 

edge of the wedge is shown in Figure 6b. The maximum response at the edge of the CO2 

wedge is 10 μGal (due to a 1% change in density). The responses decrease with distance 

away from the wedge. Fifty meters away from the wedge, the response is 6 μGal; 100 m 

away, the response decreases to 4.4 μGal; and 200 m away, the response decreases 

further, to 2.5 μGal. Current borehole gravimeter technology has a repeatability of around 

5 μGal for Gz (Thomsen et al., 2003), meaning that with current technology, borehole 

measurements are sensitive to changes in a zone up to distances equal to a zone thickness 

away from the zone edge. Note, however, that work on more sensitive borehole 

gravimeters is ongoing and has the potential to significantly enhance the sensitivity of 

such devices in the near future (Thomsen et al., 2003). 

 

BRINE FORMATION MODEL 

 

Saline formations are deep sedimentary rocks saturated with formation waters or 

brines containing high concentrations of dissolved salts. These formations are widespread 

and contain enormous quantities of water, but are unsuitable for agriculture or human 

consumption. These brine-bearing formations are below and hydrologically separated 

from potable water reservoirs, and have been widely recognized as having high potential 

for CO2 sequestration. To study the sensitivity of gravity technique to the presence of 

CO2 in a brine formation, we created a model with a 20 m thick reservoir at a depth of 

1900 m, with porosity of 20% and variable CO2 and water saturations. The properties of 

 
 
 

9



the CO2 were calculated assuming hydrostatic pressure at 1900 m and a temperature of 

70°C, using the NIST14 code. Carbon dioxide is in a gas phase under these pressure and 

temperature conditions. As noted earlier, these brine formations have not been 

characterized in the past, and flow simulation models are built based on the stratigraphy 

and a few logs that might exist in the area; hence, these are simple models. Furthermore, 

gravity anomalies decay with the inverse square of the distance from their source, thus 

surface gravity response shows only large-scale changes within the reservoir. This model 

is representative of the In Salah Carboniferous sandstone reservoir that has been used for 

storage of about one million tons of CO2 per year (e.g., Wright, 2007, Haddadji, 2006). A 

mudstone layer of about 900 m acts as a seal for this reservoir and separates it from a 

shallow water reservoir.  

To simulate a CO2 front with a lateral extent of approximately 1 km, two models 

were run, one with the CO2 plume at the southeast corner of the model, and one with the 

CO2 front moved 1 km northwest. The plume had an SCO2 of 30% and Sw of 70%, and the 

initial brine formation had an Sw of 100%. The density model resulting from this CO2 

movement is shown in Figure 7a, whereas the Gz response is shown in Figure 7b.  The 

movement of the CO2-brine interface produces about a -10 μGal change in Gz. The same 

model, but with 90% CO2 saturation and 10% water saturation, would produce about a -

40 μGal anomaly, whereas a model with 10% CO2 saturation and 90% water saturation 

produces an -4 μGal response, which is likely on the edge of detectability in the field. For 

practical considerations, a model with 30% CO2 saturation and 70% water saturation 

would be a lower limit for detection in the field. 
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The inversion of Gz data shown in Figure 8 clearly identifies the anomalous zone, 

and the density change was recovered within 30% of the true value, using synthetic data 

with no noise added. Almost identical results were obtained when 2.5 μGal of random 

noise (25% of peak value) was added to the synthetic data. The level of uncertainty in 

density estimation would decrease if the reservoir was thicker. 

 

COAL MODEL 

 

Significant potential exists for carbon sequestration and enhanced methane 

recovery in coalbed methane production scenarios. Our study was motivated by a pilot 

test planned in the Black Warrior basin in Alabama. Coal seams in the Black Warrior 

basin are distributed through a thick stratigraphic section and are clustered in a series of 

coal zones within the Lower Pennsylvanian Pottsville Formation. Assessment of the CO2 

sequestration and enhanced recovery potential of coalbed methane in this area indicated 

that more than 5.9 Tcf of CO2 could be sequestered, while increasing coalbed methane 

reserves by more than 20% (Pashin and Clark, 2006). In the area of interest, coalbed 

methane is produced mainly from the Black Creek, Mary Lee, and Pratt coal zones at 

depths between 400 and 700 m and approximately 3 m thick on average. The 

permeability of coal in the Black Warrior basin decreases exponentially with depth as 

overburden stress increases. The permeability of the top layer is 100 mD, while the 

permeability of the deepest layer is around 1 mD. The pilot field test will include 

injecting a total of 1000 tons of CO2 into these three coal zones (300 tons to each zone).  
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Flow simulation models (Figure 9) showed that the highest CO2 mole fractions 

and the largest spatial extent of CO2 exist in the upper two coal layers. CO2 in the deepest 

layer hardly moved from the injection well, presumably due to very low permeability. 

The reference model was a coal layer with 95% water saturation and 5% residual gas 

saturation. We assumed that water in fractures is replaced by CO2 and neglected any 

changes in the matrix density. Figure 10 shows a density variation due to CO2 presence in 

the uppermost 3 m thick coal layer at a depth of 400 m as a function of x and y 

coordinates. Figure 11 shows the surface gravity response of this model. The maximum 

response is -4 μGal, which is on the edge of detectability in the field. However, if the 

coal layer thickness was 6 m instead of 3 m, and the CO2 plume had the same lateral 

extent, the maximum surface gravity response would be around -9 μGal and measurable 

in the field.  

As discussed earlier, gravity anomalies decay with the inverse square of the 

distance from their source, and thus the same CO2 target at a greater depth produces an 

even smaller surface gravity response (not shown) and would be difficult to detect in the 

field. The deepest coal layer, around 700 m in depth, would have to be 18 m thick for a 

CO2 anomaly of the same lateral extent and properties described above to be detectable 

by surface gravity survey.  

Figure 12a shows inversion results from surface gravity data shown in Figure 11. 

The location of the CO2 plume was recovered correctly, although with the smoothing 

constraint of the inversion, the area was slightly overestimated, resulting in an 

underestimated value of density change (Figure 12a). The inversion of data with 1 μGal 
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random noise (25% of peak value) results in the correct location of the CO2 plume; 

however the density contrast cannot be resolved (Figure 12b). 

During an industrial size CO2 sequestration, a large volume of CO2 would be 

injected into the coalbeds. Using the properties of coal and CO2 for the same pressure and 

temperature conditions as above, we built a model in which the lateral extent of CO2 was 

several hundred meters. A plan view of the model is shown in Figure 13a; the section 

view is shown in Figure 13b. The undisturbed coal layer is on the left; a coal layer 

containing CO2 is on the right. Density of CO2 at a temperature of 35°C (95 F) and a 

pressure of 600 kPa is 10.6 kg/ m3, using the NIST14 code. Coal densities as a function 

of CO2 saturation, together with maximum peak surface gravity magnitudes given in 

Table 1, were calculated using the following formula: 

Density = (1- S(CO2))*Density(coal) + S(CO2)*Density(CO2)   (2) 

 

where S(CO2) is CO2 saturation.  

The presence of CO2 reduces the coal density, causing the decrease in the gravity 

response. Adsorption of CO2 into coal can affect the matrix density, and hence the total 

density change could be smaller than we predicted.  

The Gz response is defined as the difference between the model with and without 

CO2 present.  Figure 14 shows the surface gravity response (in μGal) for 10% of CO2 

saturation.  The maximum gravity response is -14 μGal.  The contact between the areas 

with and without CO2 is clearly visible, and the surface gravity response can be measured 

using current technologies. For the model with 50% CO2 saturation, the maximum 

gravity response is -70 μGal, whereas for the model with 90% CO2 saturation, the 

maximum gravity response is -125 μGal.   
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CONCLUSIONS 

 

Gravity measurements were modeled for EOR, brine, and coalbed methane 

formation models. The injection of CO2 produced a bulk density decrease in the 

reservoir, which in turn produced a reduction in the gravitational attraction from the 

reservoir. The spatial pattern of the change in the vertical component of gravity (Gz) was 

directly correlated with the net change in reservoir density. Furthermore, time-lapse 

changes in the borehole Gz clearly identified the vertical section of the reservoir where 

fluid saturations are changing. 

EOR reservoirs represent the most difficult case of possible sequestration 

scenarios, because of the relatively thin injection interval and the multiple fluid 

components present. In our simulations, changes in the vertical component of gravity on 

the surface caused by CO2 injection over a 20-year period were below the level of 

repeatability for current field surveys. However, measurements made in boreholes just 

above the reservoir interval were sensitive enough to observe measurable changes in Gz 

as CO2 injection proceeded. Inversion of such measurements made in numerous wells 

could map the areas of net density changes caused by injected CO2 and water within the 

reservoir.  

The CO2-brine front, on the order of 1 km within a 20 m thick brine formation at 

1900 m depth, with 30% CO2 and 70% brine saturations, respectively, produced a -10 

μGal surface gravity anomaly. We would expect such an anomaly to be detectable in the 

field.  
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The pilot test size amount of CO2 in a coalbed methane reservoir did not produce 

a large enough surface gravity response; however, we would expect that for an industrial 

size injection, the response would be measurable on the surface. 

Gravity inversions in all three scenarios illustrated that, provided we could collect 

high quality gravity data in the field, and we have some a priori information about the 

depth of the reservoir, we can recover the general position of density changes caused by 

CO2 presence, but not the absolute value of the change.  

Although at shallow depths and lower pressures CO2 has gas-like properties, since 

brine formations are commonly found above gas or oil reservoirs, gravity monitoring 

could still be useful for leak detection.   

The gravity technique presented here showed enough promise, as a low-cost 

supplement to seismic monitoring, to justify further evaluation and testing under a wider 

range of conditions. Borehole gravity measurements should be used in conjunction with 

pressure test data and/or surface seismic data, to provide a basis for statistical 

interpolation of predicted changes in SCO2. This may provide a low-cost way of 

monitoring changes within the reservoir, with only the initial 3D seismic survey being 

relatively expensive.  
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LIST OF FIGURES 

 

Figure 1a. Plan view of the net change in density (kg/m3) within the reservoir after 20 

years of CO2 injection. Location of 22 wells is indicated by black symbols. Cool colors 

represent density increase while warm colors represent density decrease. 

 

Figure 1b. Plan view of the net change in SCO2 within the reservoir after 20 years of CO2 

injection (SCO2 =1 is 100% of CO2, SCO2 =0 is 0% of CO2.) Location of 22 wells is 

indicated by black symbols. Cool colors represent low CO2 saturations while warm colors 

represent high CO2 saturations. 

 

Figure 2. Plan view of the change in Gz (μGal) at a depth of 1200 m after 20 years of 

CO2 injection using 22 wells indicated by black symbols. Warm colors represent decrease 

in Gz, whereas cool colors represent Gz increase. 

 

Figure 3. Inversion of Gz data in Figure 2. Black symbols indicate locations of 22 wells. 

Cool colors represent density increase (kg/m3), whereas warm colors represent density 

decrease. 

 

Figure 4a. Change in Sw after 20 years of CO2 injection. Dark colors indicate an increase 

in Sw, light colors represent a decrease in Sw. Black open squares indicate borehole 

gravimeter locations.  
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Figure 4b. Change in SCO2 after 20 years of CO2 injection. Dark colors indicate an 

increase in SCO2; light colors represent a decrease in SCO2. Black open squares indicate 

borehole gravimeter locations. 

 

Figure 5. Change in borehole vertical profile of Gz (μGal) over 20 years of CO2 

injection. The reservoir interval is indicated by the light gray area. 

 

Figure 6a. CO2 wedge of 250 m radius and density of 2,260 kg/m3 (representing 20% 

CO2 saturation in 20% porosity) inside of a 100 m thick sand layer with a density of 

2,285 kg/m3 at a depth of 1 km. The background density is 2,160 kg/m3. 

 

Figure 6b. Borehole gravity response (μGal) of the model in Figure 6a as a function of 

distance from the wedge edge. 

 

Figure 7a. Model of 1 km wide CO2 front in 20 m thick brine formation with 20% 

porosity at the depth of 1900 m. CO2 plume with 30% of CO2 and 70% of water is 

moving northwest. 

 

Figure 7b. Surface gravity response (μGal) of the model in Figure 7a as a function of x 

and y coordinates. 

 

Figure 8. Density change (kg/m3) as a function of x and y coordinates recovered by 

inversion of Gz data shown in Figure 7b.  
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Figure 9: Plan view of CO2 mole fractions for the coal layer at a depth of 400 m (from 

Sproule Associates). 

 

Figure 10: Plan view of a density model (kg/m3) based on the flow simulation model in 

Figure 9.  

 

Figure 11: Surface gravity response (μGal) of the model in Figure 10.   

 

Figure 12a. Density change (kg/m3) as a function of x and y coordinates recovered by 

inversion of the Gz data shown in Figure 11.  

 

Figure 12b. Density change (kg/m3) as a function of x and y coordinates recovered by 

inversion of the Gz data in Figure 11 with 1 μGal random noise (25% of peak response) 

added.  

 

Figure 13a: Plan view of a density model with a coal layer with no CO2 on the left and 

with CO2 on the right.  

 

Figure 13b: Cross-section of a density model with a coal layer with no CO2 on the left 

and with CO2 on the right.  
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Figure 14: Surface gravity response (μGal) for the coal layer in Figure 13 with 10% CO2 

saturation.  
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Table 1:  Coal layer density as a function of CO2 saturation at a temperature of 
35°C and pressure of 600 kPa. 
 

% CO2 Density (kg/m3) Peak Gravity Response 
(μGal) 

0 1435.0 0 
10 1292.6 -14 
50 722.8 -70 
70 437.9 -98 
80 295.5 -112 
90 153.0 -125 

 

 



 

 

Figure 1a. Plan view of the net change in density (kg/m3) within the reservoir after 20 
years of CO2 injection. Location of 22 wells is indicated by black symbols. Cool colors 
represent a density increase while warm colors represent the density decrease. 
 

 

Figure 1b. Plan view of the net change in SCO2 within the reservoir after 20 years of CO2 
injection (SCO2 =1 is 100% of CO2, SCO2 =0 is 0% of CO2.) Location of 22 wells is 
indicated by black symbols. Cool colors represent low CO2 saturations while warm colors 
represent high CO2 saturations. 
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Figure 2. Plan view of the change in Gz (μGal) at a depth of 1200 m after 20 years of 
CO2 injection using 22 wells indicated by black symbols. Warm colors represent decrease 
in Gz, whereas cool colors represent Gz increase. 
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Figure 3. Inversion of Gz data in Figure 2. Black symbols indicate locations of 22 wells. 
Cool colors represent density increase (kg/m3), whereas warm colors represent density 
decrease.  
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Figure 4a. Change in Sw after 20 years of CO2 injection. Dark colors indicate an increase 
in Sw, light colors represent a decrease in Sw. Black open squares indicate borehole 
gravimeter locations. 

 

 

Figure 4b. Change in SCO2 after 20 years of CO2 injection. Dark colors indicate an 
increase in SCO2; light colors represent a decrease in SCO2. Black open squares indicate 
borehole gravimeter locations. 
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Figure 5. Change in borehole vertical profile of Gz (μGal) over 20 years of CO2 
injection. The reservoir interval is indicated by the light gray area. 
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Figure 6a. CO2 wedge of 250 m radius and density of 2,260 kg/m3 (representing 20% 
CO2 saturation in 20% porosity) inside of a 100 m thick sand layer with a density of 
2,285 kg/m3 at a depth of 1 km. The background density is 2,160 kg/m3. 
 

 

Figure 6b. Borehole gravity response (μGal) of the model in Figure 6a as a function of 
distance from the wedge edge. 
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Figure 7a. Model of 1 km wide CO2 front in 20 m thick brine formation with 20% 
porosity at the depth of 1900 m. CO2 plume with 30% of CO2 and 70% of water is 
moving northwest.  
 
 
 

 
 

Figure 7b. Surface gravity response (μGal) of the model in Figure 7a as a function of x 
and y coordinates.  
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Figure 8. Density change (kg/m3) as a function of x and y coordinates recovered by 
inversion of Gz data shown in Figure 7b. 
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Figure 9: Plan view of CO2 mole fractions for the coal layer at a depth of 400 m (from 
Sproule Associates) 

 
 

 32



 
 

 
 

Figure 10: Plan view of a density model (kg/m3) based on the flow simulation model in 
Figure 9.  
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Figure 11: Surface gravity response (μGal) of the model in Figure 10. 
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Figure 12a. Density change (kg/m3) as a function of x and y coordinates recovered by 
inversion of the Gz data shown in Figure 11. 

 
 

 
 

Figure 12b. Density change (kg/m3) as a function of x and y coordinates recovered by 
inversion of the Gz data in Figure 11 with 1 μGal random noise (25% of peak response) 
added. 

 35



 

 
 

Figure 13a: Plan view of a density model with a coal layer with no CO2 on the left and 
with CO2 on the right.  
 

 

 
 

Figure 13b: Cross-section of a density model with a coal layer with no CO2 on the left 
and with CO2 on the right.  
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Figure 14: Surface gravity response (μGal) for the coal layer in Figure 13 with 10% CO2 
saturation. 
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